
Journal of Computer and Communications, 2019, 7, 206-218
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2019.77017 Jul. 23, 2019 206 Journal of Computer and Communications

AES Overhead Mitigation Using OpenMP

Hesham Alhumyani

Computer Engineering Department, Taif University, Taif, KSA

Abstract
The Advanced Encryption Standard (AES) has been extensively used in many
systems to provide security. However, many of the implementations are sus-
ceptible to Side Channel Attacks (SCA). To address the susceptibility, several
researchers have proposed a number of countermeasures. Masking scheme is
one of the countermeasures that are commonly used to counteract such at-
tacks. In this paper, we investigate the overhead of the countermeasure in
terms of execution time of the first order-masking scheme for the AES “En-
cryption part only”. To achieve that, we have implemented the sequential al-
gorithm of the AES with single processor, and after that used OpenMP direc-
tives to reduce the overhead of the countermeasure. Subsequently, the result
of the sequential algorithm has been compared with its parallel implementa-
tions using 2, 4, 6, and 8 processors. We show how parallel implementation of
the AES offers better performance yet flexible enough for cryptographic algo-
rithms. Compared to the sequential unmasked AES implementation, the best
masking scheme for the first order using data parallelism shows a perfor-
mance in terms of speed up around 5x when 8 threads are used.

Keywords
Advanced Encryption Standard, Encryptions, Parallelization, OpenMP

1. Introduction

AES (Advanced Encryption Standard), also referred to as Rijndael algorithm is
classified as a symmetric key cryptography algorithm. In the year 1998, Rijndael
algorithm was established by two Belgian scholars (John Daemen and Vincent
Rijmen). This cipher was later on elected by the National Institute of Standards
and Technology (NIST) [1] as the Advanced Encryption Standard (AES) to
succeed the earlier Encryption Standard System. The AES standard possesses
continuous blocks where each block contains 128 bits as well as 3 unalike key
lengths. The first key length has a value of 128 bits while the second key length

How to cite this paper: Alhumyani, H.
(2019) AES Overhead Mitigation Using
OpenMP. Journal of Computer and Com-
munications, 7, 206-218.
https://doi.org/10.4236/jcc.2019.77017

Received: June 19, 2019
Accepted: July 20, 2019
Published: July 23, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2019.77017
http://www.scirp.org
https://doi.org/10.4236/jcc.2019.77017
http://creativecommons.org/licenses/by/4.0/

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 207 Journal of Computer and Communications

has a value of 192 bits, with the third and final key length having a value of 256
bits. For each key size, a number of encryption rounds will be pertained indivi-
dually. Specifically, 10 encryption rounds are for the 128 bits, 12 encryption
rounds are for 192 bits and 14 encryption rounds are for 192 bits. Further,
throughout the encryption and decryption processes, a (4 * 4) changeable state
array will be composed from the 16 bytes of data. During the encryption proce-
dure, the state array is initialed with the original 16 bytes input data and will
keep varying in each round until attaining the final encrypted data. On the other
hand, in the decryption procedure, the state array is going to be initialed with
the enciphered data and will be updated in each round until the initial data is
fully recovered. The encryption of AES is accomplished in a fixed size block
where the size of each block is 128 bits. The AES encryption calculations are
computed through various repeated conversion rounds that construct the final
output (cipher text) from the input plaintext. Each round has numerous
processing stages, containing one that has a different encryption key. A set of
reverse rounds is pragmatic to convert the encryption text back into the initial
plaintext by the similar encryption key.

AES has been widely employed in numerous embedded devices with the ob-
jective of enhancing security [2]. However, many employments of cryptographic
are susceptible to Side Channel Analysis (SCA) for instance power-analysis [3]
[4] and timing attacks [5] [6], which exploit both power usage and timing during
cryptographic operations in order to access the key. To counteract this attack,
masking techniques are considered to be suitable approach [7]. The notion of
masking is to hide the real value with a corresponding random number. There-
fore, the power usage caused by calculation of this value cannot be projected by
the attacker. In this work, first, we are implementing the first-order masking
scheme for the AES Encryption part so that we can investigate the overhead of
the countermeasure. Second, the main contribution of this paper is to work spe-
cifically on the Sub-byte function of the AES algorithm to reduce this overhead.
With this software implementation, we are going to reduce the cost of masking
in terms of execution time by using OpenMP library [8].

The rest of the paper is organized as follows. Section 2 discusses the detailed
AES algorithm. Section 3 defines and discusses the side channel attacks. Section
4 shows the countermeasure of Side channel attacks through masking. Our pro-
posed parallelism schemes are that algorithm is explained deeply in Section 5.
The experimental results for a different number of threads are explained in Sec-
tion 6. Finally, the conclusion is in Section 7.

2. AES Algorithm

In this section the phases of AES Algorithm are explained as follows:
1) Key Expansion:
from the encryption key and by employing Rijndael’s key schedule, the round

keys are originated. However, it is important to take note that a distinct 128-bit

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 208 Journal of Computer and Communications

round key block is needed by AES for every round in addition to one more extra
round.

2) Initial Round:
At the beginning, an Add Round Key (pre-round transformation) will be ap-

plied with each byte of the state been collected with a block of the round key
employing bitwise XOR.

3) Rounds:
The number of the rounds is dependent on the specific length of each key

while in every round, the following conversion will be followed:
a) Sub Bytes: this entails a non-linear replacement phase which involves every

byte been replaced with an alternative one as per the lookup table.
b) Shift Rows: this is a switch phase where the last three rows of the state are

moved sporadically with a specific number of stages. Shift Row changes the
second row as 1 byte to the left, 2 bytes to the left for the third row and 3 bytes to
the left for fourth row.

c) Mix Columns: this phase sees the 4 bytes of every column of the state been
joined by an invertible linear change system. Indeed, the Mix Columns function
precedes 4 bytes as input and outputs 4 bytes; with each input byte imitating all
the four-output bytes. Collected with Shift Rows, diffusion in the encryption is
delivered by the Mix Columns. Furthermore, in the operation, every column is
multiplied and increased by a fixed matrix:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 
 
 
 
 
 

Matrix multiplication is comprised of addition and multiplying of the ac-
cesses, and in this case, the multiplication process is described as follows: mul-
tiplication by one implies no modification, multiplication by two implies shifting
to the left, whole multiplication by three implies shifting to the left and then
presenting XOR with the preliminary unchanged assessment. Further, after
shifting, a restricted XOR with 0x1B has to be accomplished if the shifted value
is higher than 0xFF. The cases highlighted comprises of the distinct cases of the
normal multiplication in Galois Field (GF) (28). Therefore, addition entails an
XOR operation. Generally, every column tends to be considered as a polynomial
over GF (28) and is after that multiplied modulo x4 + 1 with an immobile poly-
nomial c(x) = 0x03 · x3 + x2 + x + 0x02. The resultant coefficients are demon-
strated in their hexadecimal equivalent of the binary demonstration of bit poly-
nomials from GF (2) [x]. In case of the Mix Columns phase, it can also be ob-
served as a multiplication by the illustrated specific Maximum Distance Separa-
ble (MDS) matrix in the restricted field GF (28). This procedure is designated
more in the object Rijndael’s mix columns.

d) Add Round Key:
In this phase, sub key is joined with the state. For each round, a subkey is ori-

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 209 Journal of Computer and Communications

ginated from the main key by the use of Rijndael’s key schedule with every sub-
key been of similar size to the state key. By connecting each byte of the state with
the equivalent byte of the subkey, through the use of bitwise XOR, the subkey
provides the support.

4) Final Round (no MixColumns)
a) Sub-Bytes.
b) Shift Rows.
c) Add Round Key.

3. Side Channel Attacks (SCA)

In this section the main idea of Side Channel Attacks (SCA) is explained:
SCA comprises of attacks which happen to be established on the Side Channel

Information [3] [4] that is the information which can be recovered from the ci-
pher device and is not the plaintext to be encrypted or the cipher text conse-
quence emanating from the encryption procedure. Side channel exploration
methods are of apprehension since the attacks can be displayed rapidly and at
times can be applied using willingly accessible hardware whose costs vary from a
couple of hundred dollars to a lot of thousands of dollars. The expanse of time
necessary for the attack and scrutiny differs on the nature of attacks.

Simple Power Analysis (SPA) can be explained as a side-channel attack, that
comprises visual analysis of graphs of the current that is used by a specific device
over a given period of time. Differences in power usage occur as the device ex-
ecutes dissimilar operations. For instance, distinctive directions accomplished by
a microprocessor will have divergent power consumption outlines. Correspon-
dingly, in a power trace from a smart card execution of an AES encryption, the
ten rounds can be seen evidently as shown in Figure 1 [9].

Timing attacks are constructed on calculating the duration it requires a unit to
accomplish operations. This data can provide information related to the pass-
word keys. For instance: by cautiously assessing the time interval needed to ac-
complish private key operations, an intruder may find secure Diffie-Hellman
exponents, factor Rivest Shamir Adleman (RSA) keys and get access to another
cryptosystem. In case a unit is susceptible, the attack is obviously going to be

Figure 1. AES power tracing from [9].

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 210 Journal of Computer and Communications

simple and often necessitates only identified cipher text.
Comparably, squaring and multiplication operations in RSA accomplishments

can frequently be illustrious, facilitating an attacker to process the password key.
Even in cases when the magnitude of the variants in power usage is insignificant,
average digital oscilloscopes could simply demonstrate the data-induced dispari-
ties. In order to filter out high-frequency mechanisms, Frequency filters and av-
eraging functions are regularly used.

Differential power analysis (DPA) comprises of a side-channel attack that
holds statistically exploratory power usage capacities from a cryptosystem [10].
In this case, the attack operates bigotries differing power usage of microproces-
sors or other hardware while exploit operations applies secret keys. DPA attacks
possess signal processing and error correction controls that can contain confi-
dences from capacities, that include a lot of noise to be considered applying ba-
sic power evaluation. By making use of differential power analysis, an attacker
can be in a position to attain password keys by investigating power usage capaci-
ties from various cryptographic operations implemented by a susceptible smart
card or other different devices. Different counter measures can be done to over-
come those attacks. One of the measures entails inserting dummy operations
randomly so that noise is made in the signal. Our countermeasure method
against the side-channel attacks entails concealing the data at the point of calcu-
lation, by either adding or multiplying the data with random values. All the
phases in a round of AES are affine, with the exception of Galois field inversion
sub step of the S-box (Sub Bytes) phase. As far as the other steps are concerned,
the computation of the mask correction is linear hence the additive concealing is
considered to be most convenient.

4. Masking in AES

In this section, we discuss the masking scheme which has been applied in this
work on AES of 128-block size and 128 of key size (10 rounds). Random values
“X” are generated at the beginning of the algorithm and XORed with plain text
“A”. Subsequently, the masked value (A⊕X) is XORed with the cipher key
“K”. AES operations will modify the random (mask) values during the AES
transformations. Hence, the mask values are corrected after each AES operation.
In our implementation, during the execution of 10 rounds, the mask values are
updated in Sub-Byte and Mix-Column steps to provide more security. Also, new
mask values are generated again for a new plain text block. AddRoundKey is
XORed with the plain text to form the input of each round. However, the
Mix-Column and the mask values have to be removed from the last round
(round 10) to form the cipher text as has been illustrated in Figure 2. Figure 3
illustrates the data flows in each round of AES with masking scheme. The fol-
lowing is representing the rules expression of Figure 3:
• Rectangular shape: expresses the input and output state after each operation.
• A: Represents the plain text.

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 211 Journal of Computer and Communications

Figure 2. AES Masking.

Figure 3. AES operations in each round.

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 212 Journal of Computer and Communications

• X: Represents the mask value.
• K: Represents the Key.
• 1

2iX : Represents the linear of mask transformation (“X1”) after sub byte step
and simultaneously the mask values are updated second time with the new
mask value (“ 2iX ”).

• 2
2iX : Represents the linear of mask transformation after Shift row step “X2”

but it is not updated.
• 3

3iX : Represents the linear of mask transformation after Mix-column “X3”
step and simultaneously the mask values are updated third time with the new
mask value “ 3iX ”.

• Symbol “B”, “S”, “T” and “AK”: Demonstrates the output state after
Sub-Byte, Shift Row, Mix-column and after AddRoundkey steps respectively.

• E: Represents the cipher text.
S-Box implementation:
Here, we highlight the justification in why we chose the Sub-Byte function to

be the perfect candidate for parallelism. The Sub-Byte step in the basic AES al-
gorithm replaces each byte in the state matrix from its corresponding look-up
value. However, the first-ordered masking includes an additional 16 bytes for the
random values as shown in Figure 4.

AES S-box is described by a multiplicative inverse x − 1 and an affine trans-
formation. In order to get the inverse, each byte has to be multiplied by itself 254
times such that x254∙x = 1 in the Galois Field and hence x − 1∙x = 1. Once inverse
has been obtained, affine conversion is applied by multiplying multiplicative in-
verse value with a fixed matrix and then adding it with 0 × 63 as follows:

7 1 1 1 1 1 0 0 0 7 0
6 0 1 1 1 1 1 0 0 6 1
5 0 0 1 1 1 1 1 0 5 1
4 0 0 0 1 1 1 1 1 4 0
3 1 0 0 0 1 1 1 1 3 0
2 1 1 0 0 0 1 1 1 2 0
1 1 1 1 0 0 0 1 1 1 1
0 1 1 1 1 0 0 0 1 0 1

b a
b a
b a
b a
b a
b a
b a
b a

       
      
      
      
      
      = × ⊕      
      
      
      
      
             













The main difficult part while designing a masking is Sub-Byte step because it
is nonlinear transformation. On the other hand, the part of multiplicative in-
verse is the only part that has to be modified. Thus, we used the proposed me-
thod (a secure inverse algorithm) to generate the multiplicative inverse for a
given number in GF (s8). It is important to note that during the calculation of
the algorithm in this operation, the mask values are updated. Therefore, there
are lots of computations in the Sub-Byte making it a good candidate to be paral-
lelized.

5. Parallelism

In this section we present the two methods of parallelism that have been used in

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 213 Journal of Computer and Communications

Figure 4. An additional matrix for the mask.

this work. The first method is using dividing data to run independently, and the
second method is to apply the parallelism specifically in the Sub-Byte function.
The detailed explanation is presented below:

5.1. Data Parallelism

In Data parallelism, the data is divided into different parts with these parts been
assigned to various threads for execution. Every node executes the same proce-
dure or function even though on a different data set. The method is quite suc-
cessful in cases where there is huge data to be processed. AES can be employed
in the following way using Data parallelism; in cryptography, the best paralleli-
zation means of operation employed with a block cipher to undertake the entire

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 214 Journal of Computer and Communications

encryption algorithm entails the Electronic Code Book (ECB) mode. The com-
plete plain text is divided into blocks of a certain length which can be processed
individually. Every block of plaintext is encoded with a similar key as a unit and
transformed into a cipher text block. Each thread takes 16 bytes at a time and
executes the AES encryption independently. When the threads finish the job,
there is a barrier being used to make sure that the writing to the cipher text has
to be ordered according to the order of the plain text.

5.2. Task Parallelism

Here everything is executed sequentially except the Sub-Byte step. As mentioned
above, the Sub-Byte stage takes more time to generate the Sub-Byte value. In the
Sub-Byte operation, instead of a single thread doing the multiplicative inverse
and the affine transformation alone for each byte in the (4 * 4) state matrix; we
assign different threads to different bytes. Since each byte can be calculated in-
dependently with no dependencies, parallel paradigm can be implemented in
this stage. Since we have a two-dimensional array, we have used nested for-loop
in order to reach each byte. Thus, we used the proper method that parallelizes
the nested for-loop in OpenMP and increases the performance.

6. Experiment Results

The AES algorithm has been efficaciously parallelized using OpenMP API direc-
tives and compiled in GCC Linux. The specifications of the system used are: In-
tel Core i7-3770 that has 3.40 GHz CPU, an 8 GB RAM and a 6 MB cache size.
We implemented the sequential part of the code and then worked on the paralle-
lization part. We carried out the experiments on different file sizes using differ-
ent threads numbers while a number of threads have been used to execute the
AES algorithm on different file sizes that vary from 500 KB to 9 MB and have a
scale of 500 KB. Figure 5 and Figure 6 illustrates the execution time of data and
Sub-Byte parallelism respectively using 2, 4, 6 and 8 threads on different data
size. As it can be clearly seen in both figures, the running time increases linearly
as the data increases. In Figure 5, the execution time is reduced from around
325 seconds to 60 seconds when using 8 threads with 9MB of data, whereas the
best enhancement, in terms of the execution time in Sub-Byte parallelism (Task
parallelism) is reduced to 100 seconds as shown in Figure 6.

Figure 7 illustrates the differences between data and Sub-Byte parallelism us-
ing 8 threads. Both methods have given us an enhancement in the speed up. The
figure points out that the data parallelism gives better enhancement than the
Sub-Byte. It is well known that splitting the data will lead to no dependency in
the AES encryption and hence, it would be better. The enhancement of the task
parallelism shows the overhead that the Sub-Byte operation makes. Thus, para-
lyzing this step would lead to an enhancement in the performance.

The last experiment was applied to an 18 MB file size with 2, 4, 6, and 8 threads
in order to observe the behavior of the processing of large data-sets. However, we

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 215 Journal of Computer and Communications

Figure 5. Data parallelization using 2, 4, 6, and 8 threads.

Figure 6. Sub-Byte parallelization using 2, 4, 6, and 8 threads.

Figure 7. Data vs Sub-Byte parallelization using 8 threads.

are using our machine implying that we have limited resources which are up to 8
threads. By executing the sequential algorithm on the 18 MB, the running time
was 616.12 seconds. Figure 8 and Figure 9 shows the speed up of the data and
Sub-Byte parallelism when we use 18 MB with different number of threads. Ta-
ble 1 and Table 2 shows the parallel execution time for each thread with its cor-
responding speed up. From Table 1, we can observe that the best speed up is

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 216 Journal of Computer and Communications

Figure 8. Data parallelization speed up.

Figure 9. Sub-byte parallelization speed up.

Table 1. Data parallelization speed up using 2, 4, 6, and 8 threads.

Number of Processors Execution Time Speed up

2 388.6366678 1.585417227

4 247.4803907 2.489697332

6 249.1675771 2.472838865

8 208.2105133 2.959270685

Table 2. Sub-Byte parallelization speed up using 2, 4, 6, and 8 threads.

Number of Processors Execution Time Speed up

2 319.1093511 1.930846796

4 171.0243877 3.60270998

6 158.656005 3.883567271

8 120.9055063 5.096139019

5.09 seconds when 8 threads are executed. However, according to the number of
threads being used and its utilization, 2 threads gives more utilization. In data
parallelism, the speed up reaches 1.9x, which is almost to 2 when using 2
threads, whereas the task parallelism reaches 1.5x.

https://doi.org/10.4236/jcc.2019.77017

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 217 Journal of Computer and Communications

As can depict from Figure 8 and Figure 9, when the number of threads in-
creases the speed up increases even though when it reaches a certain point, there
is only a slight increase. Therefore, increasing the number of processors after
that point might not enhance the performance and due to that, there is no need
for more processors. The main reason behind this steady state or slight increase
is because the synchronization process between the used threads. As a result, an
overhead arises and affect the performance.

7. Conclusion

The paper has explained in detail the parallelization of the AES algorithm. The
AES input is handling 128 bits (one block) at a time. Each block goes through
several operations such as Sub-Byte, Shift-Row, Mix-Column and each operation
depends on the previous one. The AES algorithm has been parallelized using two
methods namely Data and Sub-Byte parallelization. Each block (128-bit) from
the plain text that is going to be encrypted is independent. Thus, the first phase
is to apply the (single instruction multiple data) method (SIMD) since each
block is independent from one another. Since we are using masking technique,
we observe that the sub-Byte operation dominated the cost overhead. Thus, we
decided to parallelize the Sub-Byte operation because it requires multiplicative
inverse and affine transformation for each given byte and that consumes more
time in computations. On the other hand, OpenMP directives have been em-
ployed to parallelize the code and address the problem of the overhead caused
by masking with up to 8 threads that have been used to run multiple experi-
ments. Finally, our work mainly focused more in the Sub-Byte function and we
had limited number of threads. Therefore, in the future work, we consider us-
ing Field-Programmable Gate Array (FPGA) to utilize the hardware through
performing many computations which we are expecting a better enhancement in
both speed and security aspects.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this
paper.

References
[1] Daemen, J. and Rijmen, V. (2013) The Design of Rijndael: AES-the Advanced En-

cryption Standard. Springer Science & Business Media, New York.

[2] Selvaraju, N. and Sekar, G. (2010). A Method to Improve the Security Level of ATM
Banking Systems Using AES Algorithm. International Journal of Computer Appli-
cations, 3, 5-9.

[3] Brier, E., Clavier, C. and Olivier, F. (2004) Correlation Power Analysis with a Lea-
kage Model. In: Joye, M. and Quisquater, J.J., Eds., Cryptographic Hardware and
Embedded Systems-CHES 2004. Lecture Notes in Computer Science, Springer, Ber-
lin, Heidelberg. https://doi.org/10.1007/978-3-540-28632-5_2

[4] Mangard, S., Oswald, E. and Popp, T. (2008) Power Analysis Attacks: Revealing the

https://doi.org/10.4236/jcc.2019.77017
https://doi.org/10.1007/978-3-540-28632-5_2

H. Alhumyani

DOI: 10.4236/jcc.2019.77017 218 Journal of Computer and Communications

Secrets of Smart Cards. Springer Science & Business Media, New York.

[5] Kocher P.C. (1996) Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In: Koblitz, N., Eds., Advances in Cryptology CRYPTO
1996. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 104-113.
https://doi.org/10.1007/3-540-68697-5_9

[6] Rebeiro, C., Mukhopadhyay, D. and Bhattacharya, S. (2014) Timing Channels in
Cryptography: A Micro Architectural Perspective. Springer Publishing Company,
Cham.

[7] Coron, J.-S. (2014) Higher Order Masking of Look-Up Tables. In: Nguyen, P.Q. and
Oswald, E., Eds., EUROCRYPT 2014. Lecture Notes in Computer Science, Springer,
Heidelberg, 441-458. https://doi.org/10.1007/978-3-642-55220-5_25

[8] http://www.openmp.org/

[9] Kocher, P., Jaffe, J. and Jun, B. (1999) Differential Power Analysis. In: Wiener, M.,
Eds., Advances in Cryptology. CRYPTO 1999. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 388-397. https://doi.org/10.1007/3-540-48405-1_25

[10] Kocher, P., Jaffe, J., Jun, B. and Rohatgi, P. (2011) Introduction to Differential Pow-
er Analysis. Journal of Cryptographic Engineering, 1, 5-27.
https://doi.org/10.1007/s13389-011-0006-y

https://doi.org/10.4236/jcc.2019.77017
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-55220-5_25
http://www.openmp.org/
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y

	AES Overhead Mitigation Using OpenMP
	Abstract
	Keywords
	1. Introduction
	2. AES Algorithm
	3. Side Channel Attacks (SCA)
	4. Masking in AES
	5. Parallelism
	5.1. Data Parallelism
	5.2. Task Parallelism

	6. Experiment Results
	7. Conclusion
	Conflicts of Interest
	References

