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Abstract 

Weighted priority queueing is a modification of priority queueing that elimi-
nates the possibility of blocking lower priority traffic. The weights assigned to 
priority classes determine the fractions of the bandwith that are guaranteed 
for individual traffic classes, similarly as in weighted fair queueing. The paper 
describes a timed Petri net model of weighted priority queueing and uses dis-
crete-event simulation of this model to obtain performance characteristics of 
simple queueing systems. The model is also used to analyze the effects of fi-
nite queue capacity on the performance of queueing systems. 
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1. Introduction 

Although the internet was originally intended for non-time-critical transport 
[1], there is a growing interest in adding real-time traffic to the traditional 
non-time-critical bulk traffic. Real-time traffic is characterized by bounds on 
some performance metrics (such as delay, jitter or packet loss probability). Voice 
over IP (VoIP) and Internet Protocol TV (IPTV) are examples of real-time traf-
fic. Because of these performance bounds, real-time traffic requires preferential 
service during transport. 

The strategy for mixing real-time and bulk traffic is to use, at the nodes of the 
network, separate queues for different classes of traffic, so the real-time traffic 
can get the service it requires. Priority queueing [2] is the simplest mechanism 
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that provides preferential service to some classes of traffic; in the priority 
queueing, lower priority traffic can be serviced only when all queues of higher 
priority classes are empty. Such a policy works well when the traffic is not very 
intensive but can result in blocking lower priority traffic for extended periods of 
time if the traffic in higher priority classes becomes intensive. Therefore a num-
ber of modifications of (strict) priority queueing were proposed to avoid such 
blocking and to guarantee some levels of service for lower priority classes inde-
pendently of traffic in higher priority classes [3], [4]. Weighted priority queueing 
is one of such modifications which assigns fractions of the bandwidth to traffic 
classes according to class weights. 

Modern communication networks [5] are complex structures which—for 
modeling—require a flexible formalism that can easily handle concurrent activi-
ties as well as synchronization of different events and processes that occur in 
such networks [6]. Petri nets [7], [8] are such formal models. As formal models, 
Petri nets are bipartite directed graphs, in which the two types of vertices 
represent, in a very general sense, conditions and events. An event can occur 
only when all conditions associated with it (represented by arcs directed to the 
event) are satisfied. An occurrence of an event usually satisfies some other con-
ditions, indicated by arcs directed from the event. So, an occurrence of one event 
causes some other event to occur, and so on.  

In inhibitor Petri nets, in addition to directed arcs, inhibitor arcs provide “test 
if zero” condition which does not exist in “standard” Petri nets. Inhibitor arcs 
are needed for modeling priority mechanisms. 

In order to study performance aspects of systems modeled by Petri nets, the 
durations of modeled activities must also be taken into account. This can be 
done in different ways, resulting in different types of temporal nets. In timed Pe-
tri nets [9], occurrence times are associated with events, and the events occur in 
real-time (as opposed to instantaneous occurrences in other models). For timed 
nets with constant or exponentially distributed occurrence times, the state graph 
of a net is a Markov chain (or an embedded Markov chain), in which the statio-
nary probabilities of states can be determined by standard methods [10]. These 
stationary probabilities are used for the derivation of many performance charac-
teristics of the model. 

Timed Petri nets are used in this paper to develop models of weighted priority 
queueing and then performance characteristics of simple queueing systems are 
obtained by discrete-event simulation of developed models. 

Section 2 recalls basic concepts of Petri nets and timed Petri nets. Section 3 
describes the net model of weighted priority queueing while Section 4 uses the 
developed model to analyze the performance of simple weighted priority queue-
ing systems. Section 5 concludes the paper. 

2. Petri Nets and Timed Petri Nets 

Petri nets [8] are formal models of systems that exhibit concurrent activities. 
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Computer systems, communication networks, manufacturing systems and 
transportation systems are examples of such systems. Concurrent activities are 
represented in Petri nets by tokens which can move within a (static) graph-like 
structure of the net. More formally, a marked inhibitor place/transition Petri net 
  is defined as a pair ( )0, m=  , where the structure   is a bipartite 
directed graph, ( ), , ,P T A H=  with the two types of vertices being a set of 
places P and a set of transitions T, and a set of directed arcs A which connect 
places with transitions and transitions with places, A T P P T⊆ × × , while H 
is a set of inhibitor arcs which connect places with transitions, H P T⊂ × ; 
usually A H = ∅ . Finally, 0m  is the initial marking function which assigns 
nonnegative numbers of tokens to places of the net, { }0 : 0,1,m P →  . Places 
which are assigned nonzero numbers of tokens by a marking function m are 
called marked places, while places with zero tokens are called unmarked places. 
Marked nets can be equivalently defined as ( )0, , , ,P T A H m= . 

In Petri nets the distribution of tokens over places changes by occurrences (or 
firings) of transitions. A transition t is enabled by a marking function m if all 
places connected to t by directed arcs are marked and all places connected to t by 
inhibitor arcs are unmarked. When an enabled transition t occurs (or fires), one 
token is removed from each place connected to t  by a directed arc and one to-
ken is deposited to each place connected to t  by an outgoing arc. An occur-
rence of a transition creates a new marking function, a new set of enables transi-
tions, and so on. The set of all marking functions that can be created starting 
from the initial marking 0m  is called the reachability set of a net. This set can 
be finite or infinite. 

A place is shared if it is connected to more than one transition. A shared place 
p is free-choice if the sets of places connected by directed arcs and inhibitor arcs 
to all transitions sharing p are identical. All transitions sharing a free-choice 
place constitute a free-choice class of transitions. For each marking function, ei-
ther all transitions in each free-choice class are enabled or none of these transi-
tions is enabled. It is assumed that a choice of an occurring transition in each 
free-choice class is random and can be described by probabilities associated with 
transitions. A shared place which is not free-choice is a conflict place and transi-
tions sharing it are conflicting transitions. 

Temporal behavior can be introduced in Petri nets in several ways, resulting 
in different classes of Petri nets “with time” [11]. In timed nets [9], occurrence 
times are associated with transitions, and transition occurrences are real-time 
events (as opposed to instantaneous occurrences in other models [12]); so, to-
kens are removed from input places at the beginning of the occurrence period, 
and they are deposited to the output places at the end of this period. All occur-
rences of enabled transitions are initiated in the same instants of time in which 
the transitions become enabled (although some enabled transitions may not in-
itiate their occurrences). If, during the occurrence period of a transition, the 
transition becomes enabled again, a new, independent occurrence can be in-
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itiated, which will overlap with the other occurrence(s). There is no limit on the 
number of simultaneous occurrences of the same transition (sometimes this is 
called infinite occurrence semantics). Similarly, if a transition is enabled “several 
times” (i.e., it remains enabled after initiating an occurrence), it may start several 
independent occurrences in the same time instant. 

Formally, a timed Petri net is a triple, ( ), ,c f=  , where   is a marked 
net, c is a choice function which assigns probabilities to transitions in free-choice 
classes and relative frequencies of occurrences to conflicting transitions, 

[ ]0,1c → , and f  is a timing function which assigns an (average) occurrence 
time to each transition of the net, :f T +→ R , where +R  is the set of nonneg-
ative real numbers. 

The occurrence times of transitions can be either deterministic or stochastic 
(i.e., described by some probability distribution function); in the first case, the 
corresponding timed nets are referred to as D-timed nets [13], in the second, for 
the (negative) exponential distribution of firing times, the nets are called 
M-timed nets (Markovian nets) [14]. In both cases, the concepts of state and 
state transitions have been formally defined and used in the derivation of differ-
ent performance characteristics of the model. In simulation applications, other 
distributions can also be used, for example, the uniform distribution (U-timed 
nets) is sometimes a convenient option. In timed Petri nets different distribu-
tions can be associated with different transitions in the same model providing 
flexibility that is used in simulation examples that follow. 

In timed nets, it is convenient to have a possibility of some events to occur 
“immediately”, i.e., in zero time; all transitions with zero occurrence times are 
called immediate (while the others are called timed). Since the immediate transi-
tions have no tangible effects on the (timed) behavior of the model, it is conve-
nient to “split” the set of transitions into two parts, the set of immediate and the 
set of timed transitions, and to first perform all occurrences of the (enabled) 
immediate transitions, and then (still in the same time instant), when no more 
immediate transitions are enabled, to start the occurrences of (enabled) timed 
transitions. It should be noted that such a convention effectively introduces the 
priority of immediate transitions over the timed ones, so the conflicts of imme-
diate and timed transitions are not allowed in timed nets. Detailed characteriza-
tion of the behavior or timed nets with immediate and timed transitions is given 
in [9]. 

3. Weighted Priority Queueing 

In priority queueing [2], separate queues are used for packets of different classes 
of traffic (different priorities). Packets for transmission (over the shared com-
munication channel) are always selected starting from the (nonempty) queues of 
highest priority. Consequently, packets from lower priority queues are selected 
only if all higher priority queues are empty. This can block the lower priority 
classes of traffic for extended periods of time if the traffic is intense. 
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Weighted priority scheduling limits the number of consecutive packets of the 
same class that can be transmitted over the channel; when the scheduler reaches 
this limit, it switches to the next nonempty priority queue and follows the same 
rule. These limits are called weights, and are denoted 1w . With k classes of traf-
fic, if there are sufficient numbers of packets in all classes, the scheduler selects 

1w  packets of class 1, then 2w  packets of class 2, …, then kw  packets of class 
k, and again 1w  packets of class 1, and so on. Consequently, in such a situation 
(i.e., for sufficient supply of packets in all classes), the channel is shared by the 
packets of all priority classes, and the proportions are:  

1, ,

, 1, 2, ,i i
i

j jj k

w su i k
w s

=

= =
∑



  

where , 1, ,is i k=   is the transmission rate for packets of class i. If the trans-
mission rates are the same for packets of all classes (as is assumed for simplicity 
in the illustrating examples), the proportions are:  

1, ,

, 1, , .i
i

jj k

wu i k
w

=

= =
∑



  

For an example with 3 priority classes and the weights equal to 4, 2 and 1 for 
classes 1, 2 and 3, respectively, these “utilizations bounds” are equal to 4/7, 2/7 
and 1/7, for classes 1, 2 and 3, respectively. 

A Petri net model of weighted priority scheduling for three classes of packets 
with weights 4, 2 and 1 is shown in Figure 1. The model is composed of three 
identical interconnected sections corresponding to the three priority classes. 

The main elements of the model are the three queues represented by places 

1p , 2p  and 3p  for traffic class 1, 2 and 3, respectively, and timed transitions 

1t , 2t  and 3t  modeling the transmission of selected packets through the 
communication channel. The three classes of packets are generated (indepen-
dently) by transitions 01t , 02t  and 03t  with places 01p , 02p  and 03p . The 
occurrence times ( )01f t , ( )02f t  and ( )03f t  determine the arrival rates for 
queues 1, 2 and 3, respectively. 

The scheduling is based on repeated selection of queues in order of priorities 
(first class 1, then 2, and so on) for the transmission of queued packets. This se-
lection operation is represented by a loop with places 0r , 1r , 2r  and 3r , and 

1q , 2q  and 3q . There is a single “control token” in this loop (shown in place 

0r  in Figure 1). This token indicates the queue that is used for transmission of 
packets (by the subscript 1, 2 or 3); a token in place 0r  indicates that no queue 
is selected. 

Let 0r  be marked. If all three queues are empty, the next packet arriving to 
one of the queues enables one of the transitions 1s , 2s  or 3s , the control to-
ken is moved from 0r  to place ir  corresponding to the nonempty queue, and 
an occurrence of transition ia  selects a token from ip  for transmission. At 
the same time, one token from place iw  is moved to place iu . When the 
channel becomes available for transmission (which is indicated by an occurrence 
of 0it ), the control token is returned to ir . Now there are three possibilities: 
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• if the queue (place ip ) is nonempty and the weight ( iw ) is nonempty, 
another token is selected from ip  and forwarded for transmission; 

• if the queue is empty, an occurrence of transition id  moves the control to-
ken from ir  to iq ; 

• if the weight is empty, an occurrence of transition ic  also moves the control 
token from ir  to iq .  

A token in iq  moves (by repeated occurrences of ib ) all tokens from place 

iu  back to iw , and when iu  becomes empty, an occurrence of transition ie  
moves the control token to the next class represented by 1ir+ . If the queue for 
this class is empty, occurrences of transitions 1id +  and 1ie +  move the control 
token to a subsequent class until 0r  is reached, and then the highest priority 
nonempty class is selected by an occurrence of one of transitions 1s , 2s  or 

3s . 
 

 
Figure 1. Petri net model of weighted priority queueing with three priority classes, infi-
nite queues and weights 4-2-1.  
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The model shown in Figure 1 needs to be modified slightly to represent finite 
queues. The modifications are identical for all traffic classes, and are shown in 
Figure 2 for class 1. 

The (finite) capacity of the queue is represented by the initial marking of place 

14p  (shown in Figure 2 as K). When a packet is generated (by 01t ) and the 
queue is not full, i.e., place 14p  is marked, an occurrence of 14t  enqueues the 
packet in 1p . If, however, the queue is full, place 14p  is unmarked, the inhibi-
tor arc ( )14 15,p t  enables 15t  and the packet is dropped. 

Finally, when a packet is selected for transmission and is removed from the 
queue, each occurrence of transition 10t  returns a token to 14p , indicating that 
the queue can store another packet. 

4. Performance Characteristics 

The model shown in Figure 1 (three classes of traffic, weights 4-2-1) is used for 
performance analysis of weighted priority queueing. The utilizations of the 
shared communication channel as functions of traffic intensity of class 1 (the 
highest priority), 1ρ , with constant traffic intensities for classes 2 and 3, 

2 0.5ρ =  and 3 0.25ρ = , is shown in Figure 3. 
For 1 0.25ρ ≤ , channel utilizations for classes 2 and 3 are constant at the le-

vels of 0.5 and 0.25, respectively (all service rates are equal to 1 for simplicity, so 
the utilizations are equal to traffic intensities and also the arrival rates are equal 
to traffic intensities); for class 1, the utilization changes linearly with 1ρ . It 
should be noted that traffic intensities 2ρ  and 3ρ  are significantly greater that 
the performance levels guaranteed by the weights 4-2-1 (equal to 2/7 and 1/7 for 
classes 2 and 3, respectively). For 1 0.25ρ = , the channel becomes fully utilized 
( 1 2 3 1ρ ρ ρ+ + = ), so further increases of 1ρ  result in decreasing utilizations of 
the channel for classes 2 and 3, until the levels guaranteed by the weights are 
reached (these levels are 2/7 or 0.286 and 1/7 or 0.143). This occurs at 1 4 7ρ =  
or 0.571. 

Average waiting times for classes 1, 2 and 3, as functions of traffic intensity 

1ρ  with 2 0.5ρ =  and 3 0.25ρ =  (i.e., consistent with Figure 3) are shown in 
Figure 4. 

For 1 0.25ρ > , queues 2 and 3 are nonstationary because their arrival rates 
are greater than departure rates. Similarly, for 1 0.571ρ > , queue 1 is nonsta-
tionary. In practical queueing systems the capacities of queues are finite, so the 
nonstationary regions correspond to dropping of some arriving packets because 
they cannot be queued. 

If, however, the (constant) traffic intensities 2ρ  and 3ρ  do not exceed the 
levels of traffic determined by the weights, the behavior of the queueing system 
is different, as shown in Figure 5 for 2 0.25ρ =  and 3 0.1ρ = . 

In this case queue 1 becomes nonstationary at 1 2 31 0.65ρ ρ ρ= − − = . More-
over, the waiting times for classes 2 and 3 depend rather insignificantly on the 
traffic of class 1, as shown in Figure 6. 
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Figure 2. Petri net model for class 1 of weighted priority queueing with a finite queue and 
weight 4.  
 

 
Figure 3. Channel utilizations as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with infinite queues and weights 4-2-1.  

 

 
Figure 4. Average waiting times as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with infinite queues and weights 4-2-1.  
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Figure 5. Channel utilizations as functions of 1ρ  with 2 0.25ρ =  and 3 0.1ρ =  
for weighted priority queueing with infinite queues and weights 4-2-1.  

 

 
Figure 6. Average waiting times as functions of 1ρ  with 2 0.25ρ =  and 3 0.1ρ =  
for weighted priority queueing with infinite queues and weights 4-2-1.  

 
When the capacity of a queue is finite, packets which arrive when the queue is 

full are dropped as they cannot be queued. The percentage of dropped packets is 
an important metric of the system. Figure 7 shows the fraction of packets which 
are dropped in a weighted priority queueing with weights 4-2-1 and with queue 
length equal to 5, as functions of traffic intensity 1ρ  with 2 0.5ρ =  and 

3 0.25ρ = . 
Figure 7 shows that the fraction of packets dropped increases for 1 0.25ρ >  

and—for classes 2 and 3—reaches the level of 45% for 1ρ  close to 0.6. This 
should not be surprising because in the same range of values of 1ρ  the utiliza-
tion of the shared channel decreases from 0.5 to 0.286 for class 2 and from 0.25 
to 0.143 for class 3 (as shown in Figure 3). This decrease results is dropping 
about 45% of packets (practically the same for classes 2 and 3). 

Average waiting times are shown in Figure 8, and the average queue lengths 
for all three classes of traffic in Figure 9. 
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Figure 7. Fraction of dropped packets as functions of 1ρ  with 2 0.5ρ =  and 

3 0.25ρ =  for weighted priority queueing with queues length = 5 and weights 4-2-1.  

 

 
Figure 8. Average waiting times as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with queue length = 5 and weights 4-2-1.  

 

 
Figure 9. Average queue lengths as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with queue length = 5 and weights 4-2-1.  
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Results shown in Figure 7, Figure 8 and Figure 9 are related to each other. 
For weights 4-2-1 and for high-intensity traffic, each scheduling cycle includes 4 
packets from class 1, 2 packets from class 2 and just 1 packet from class 3. Each 
packet served from class 3 is thus accompanied by 6 other packets, so if the av-
erage length of the queue 3 is n, the average waiting time for class 3 is expected 
to be 7n. For 4.2n =  (Figure 9), this results in the average waiting time for 
class 3 that is close to 30 (as shown in Figure 8). For class 2, two packets are 
served in each scheduling cycle, so its average waiting time is one half of that for 
class 3 (the average queue lengths are practically the same for classes 2 and 3, as 
shown in Figure 9). 

It should be observed that from performance point of view, it is not beneficial 
to have long queues for packets waiting for service. For high intensity traffic 
these queues will be practically full, and then the average waiting time will simp-
ly increase proportionally with the queue length. Figure 10 and Figure 11 show 
the average queue length and the average waiting time for the case when all 
queue lengths are equal to 10. 

The average waiting times in Figure 11 are about two times greater than those 
in Figure 8. 

Finally, Figure 12 and Figure 13 show the fraction of the dropped packets 
and the average waiting times for the case when the traffic intensities do not ex-
ceed the levels determined by the weights, i.e., 2 0.25ρ =  and 3 0.1ρ = , as in 
Figure 6. 

For class 1, the increase of the fraction of dropped packets is caused by queue 
1 which is becoming full; all arriving packets which cannot be queued, are 
dropped. 

For classes 2 and 3, the fraction of dropped packets is very small and the av-
erage waiting times are also rather small. 
 

 
Figure 10. Average queue lengths as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with queue length = 10 and weights 4-2-1.  
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Figure 11. Average waiting times as functions of 1ρ  with 2 0.5ρ =  and 3 0.25ρ =  
for weighted priority queueing with queue length = 10 and weights 4-2-1.  

 

 
Figure 12. Fraction of dropped packets as functions of 1ρ  with 2 0.25ρ =  and 

3 0.1ρ =  for weighted priority queueing with queues length = 5 and weights 4-2-1.  

 

 
Figure 13. Average waiting times as functions of 1ρ  with 2 0.25ρ =  and 

3 0.1ρ =  for weighted priority queueing with queue length = 5 and weights 4-2-1.  
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5. Concluding Remarks 

Efficient use of modern networks requires detailed knowledge of network cha-
racteristics, traffic statistics, transmission media types, and so on. Some of this 
information can be obtained by measurements performed under real traffic, but 
other can only be provided by detailed models, verified by comparisons with 
measurement data. On the basis of these characteristics, specific methods can be 
developed to determine the optimal numbers of links, the transmission capacity 
of links, the management strategy for resources shared among traffic classes, and 
others. 

The goal of this paper is to provide insight into the behavior of weighted 
priority queueing, a modification of (strict) priority queueing that eliminates 
blocking of lower priority traffic that is typical for priority-based traffic man-
agement schemes. The paper shows that when the weights match the characte-
ristics of lower priority traffic, the performance provided by the analyzed scheme 
is actually quite good. However, since in real communication networks the cha-
racteristics often change, a dynamic weight selection method may be needed for 
adjusting the performance to the changing character of the traffic. Some ideas 
for such a dynamic weighted queueing can be found in [15] and [16]. 

The weighted priority queueing exhibits several similarities to the weighted 
fair queueing [3], [17] but seems to be simpler to implement. An in-depth com-
parison of these queueing methods is needed for better understanding their rela-
tive strengths and weaknesses. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] Giambene, G. (2014) Queueing Theory and Telecommunications—Networks and 
Applications. 2nd Edition, Springer-Verlag, New York.  

[2] Georges, J.-P., Divoux, T. and Rondeau, E. (2005) Strict Priority versus Weighted 
Fair Queueing in Switched Ethernet Networks for Time Critical Applications. 19th 
IEEE International Parallel and Distributed Processing Symposium, Denver, 4-8 
April 2005, 141-148. https://doi.org/10.1109/IPDPS.2005.413 

[3] Dekeris, B., Adomkus, T. and Budnikas, A. (2006) Analysis of QoS Assurance Using 
Weighted Fair Queuing (WFQ) Scheduling Discipline with Low Latency Queue 
(LLQ). 28th International Conference on Information Technology Interfaces, Cav-
tat/Dubrovnik, 19-22 June 2006, 507-512.  

[4] Yang, L., Sheng, C., Zhang, E.-H. and Liu, H. (2012) A New Class of Priority-Based 
Weighted Fair Scheduling Algorithm. Physics Procedia, 33, 942-948.  
https://doi.org/10.1016/j.phpro.2012.05.158 

[5] Tannenbaum, A.S. (2003) Computer Networks. 4th Edition, Prentice-Hall, Engle-
wood Cliffs.  

[6] Sehra, S.S., Sehra, S.K. and Kaur, K. (2012) Analyzing the Effect of Queuing Discip-
lines on Network Performance. International Journal of Computers and Distributed 

https://doi.org/10.4236/jcc.2018.611019
https://doi.org/10.1109/IPDPS.2005.413
https://doi.org/10.1016/j.phpro.2012.05.158


D. Strzeciwilk, W. M. Zuberek 
 

 

DOI: 10.4236/jcc.2018.611019 208 Journal of Computer and Communications 

 

System, 2, 118-121. 

[7] Murata., T. (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of 
IEEE, 77, 541-580. https://doi.org/10.1109/5.24143 

[8] Reisig, W. (1985) Petri Nets—An Introduction (EATCS Monographs on Theoreti-
cal Computer Science 4). Springer-Verlag, New York.   

[9] Zuberek, W.M. (1991) Timed Petri Nets—Definitions, Properties and Applications. 
Microelectronics and Reliability (Special Issue on Petri Nets and Related Graph 
Models), 31, 627-644. https://doi.org/10.1016/0026-2714(91)90007-T 

[10] Allen, A.A. (1991) Probability, Statistics and Queueing Theory with Computer 
Science Applications. 2nd Edition, Academic Press, San Diego.  

[11] Popova-Zeugmann, L. (2013) Time and Petri Nets. Springer-Verlag, Berlin Heidel-
berg.  

[12] Robertazzi, T.G. (1990) Computer Networks and Systems: Queueing Theory and 
Performance Evaluation. Springer-Verlag, New York.  
https://doi.org/10.1007/978-1-4684-0385-5 

[13] Zuberek, W.M. (1987) D-Timed Petri Nets and Modelling of Timeouts and Proto-
cols. Transactions of the Society for Computer Simulation, 4, 331-357.  

[14] Zuberek, W.M. (1986) M-Timed Petri Nets, Priorities, Preemptions, and Perfor-
mance Evaluation of Systems. In: Advances in Petri Nets 1985, Springer-Verlag, 
Berlin, 478-498. https://doi.org/10.1007/BFb0016227 

[15] Wang, H., Shen, C. and Shin, K. (2001) Adaptive Weighted Packet Scheduling for 
Premium Service. IEEE International Conference on Communications. Conference 
Record, Helsinki, 11-14 June 2001, 1846-1850.  

[16] Panza, G., Graziolli, M. and Sidoti, F. (2005) Design and Analysis of a Dynamic 
Weighted Fair Queueing (WFQ) Scheduler. 15th IST Mobile and Wireless Com-
munications Summit, Dresden, 19-23 July 2005, 134-138.  

[17] Quadros, G., Alves, A., Monteiro, E. and Boavida, F. (2000) How Unfair Can 
Weighted fair Queuing Be? Fifth IEEE Symposium on Computers and Communica-
tions (ISCC 2000), Antibes-Juan Les Pins, 3-6 July 2000, 779-784.  
https://doi.org/10.1109/ISCC.2000.860738 

 

https://doi.org/10.4236/jcc.2018.611019
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/0026-2714(91)90007-T
https://doi.org/10.1007/978-1-4684-0385-5
https://doi.org/10.1007/BFb0016227
https://doi.org/10.1109/ISCC.2000.860738

	Modeling and Performance Analysis of Weighted Priority Queueing for Packet-Switched Networks
	Abstract
	Keywords
	1. Introduction
	2. Petri Nets and Timed Petri Nets
	3. Weighted Priority Queueing
	4. Performance Characteristics
	5. Concluding Remarks
	Conflicts of Interest
	References

