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Abstract 
The ability to localize moving objects within the environment is critical for 
autonomous robotic systems. This paper describes a moving object detection 
and localization system using multiple robots equipped with inexpensive optic 
flow sensors. We demonstrate an architecture capable of detecting motion 
along a plane by collecting three sets of one-dimensional optic flow data. The 
detected object is then localized with respect to each of the robots in the sys-
tem.  
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1. Introduction 

Sensor-equipped mobile swarm robots often have limited sensing and commu-
nication capabilities. In particular, sensors are sometimes constrained by the 
amount of data they can acquire or transmit to each other or to a base station. 
As a result, it is desirable to focus expensive sensors on only important targets 
and not waste sensing resources on empty space.  

We introduce a system for inexpensive moving object detection among swarm 
robots. Coarse optic flow information is computed from sensor data quickly on 
special hardware and is used to perform a rough localization on a plane. In this 
scheme, the addition of sensors scales well as optic flow is suited to computation 
on specialized hardware. The initial detection and localization given in this pa-
per may be used for further investigation by more expensive sensors and com-
putation.  

2. Background 

Optic flow is the perceived two-dimensional motion of pixels in an image as ob-
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served by a camera. This effect is caused by the motion of objects in a scene and 
relative to the camera [1]. Although optic flow often refers to a dense vector field 
of motion of each pixel, averages over an entire scene can be very useful in many 
applications and is often much easier to compute. Optic flow has been used ex-
tensively in robotic applications such as egomotion estimation, navigation, and 
obstacle detection [2] [3]. 

Analogous to optic flow, the motion of points in three- dimensional space is 
sometimes called scene flow. There has been work in reconstructing the scene 
flow from optical flow data from multiple camera views. This problem is 
ill-posed in general because flow tangent to the direction of the image intensity 
gradient is indeterminate [1]. 

3. Image Interpolation Algorithm 

There are a large number of popular algorithms for computing optic flow be-
tween two images. They exhibit varying computational complexities and accu-
racy. Most algorithms assume what is called the brightness constancy, which can 
be stated for an appropriate neighborhood around pixel coordinates ( ),x y  as 

( ) ( ), , , , 1I x y t I x u y v t= + + +                    (1) 

where I denotes the image intensity at a given position and  
( ) ( ) ( )( ), , , , , ,u v u x y t v x y t=  is the optical flow [4]. This assumption implies 
that an optical flow vector ( ),u v  exists whenever when the intensity of the im-
age matches an image at a later time shifted by that flow vector. This works best 
when scenes are consistently illuminated and the reflectance of object surfaces is 
independent of viewing orientation.  

Since Equation (1) imposes a single constraint with two unknowns, in general 
it is impossible to solve for the optic flow. For example, consider a pattern con-
sisting of horizontal lines. While vertical motion is easily discerned, a horizontal 
displacement does not cause a change in the image. To solve this issue, called the 
aperture problem, algorithms impose other constraints such as smoothness of 
the optic flow vectors [4].  

Many algorithms operate by matching features among a set of images, which 
can involve costly computation. The image interpolation algorithm (IIA) pro-
posed by Srinivasan instead works directly on the image gradient in a single pass 
[5]. IIA aims to estimate global optical flow and therefore arrives at a solution 
which best explains motion of an entire image instead of at each pixel. In partic-
ular it considers a number of versions of the image shifted by reference amounts 
and finds the ( ),x y  vector that produces the best interpolating image.  

Where f denotes an image intensity, we linearize Equation (1) about the first 
reference image 0f ,  

( )( ) ( )( )0 2 1 4 3
ˆ / 2 / 2ref reff f x x f f y y f f= + ∆ ∆ − + ∆ ∆ −         (2) 

where 

( ) ( )1 0, Δ ,reff x y f x x y= +  
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( ) ( )2 0, Δ ,reff x y f x x y= −  

( ) ( )3 0, , Δ reff x y f x y y= +  

( ) ( )4 0, , Δ reff x y f x y y= −  

IIA finds the ( )Δ ,Δx y  which minimizes the mean square error between the 
second image f  and its estimate f̂ : 

( )2ˆ ˆf argmin f f dxdy= −∫∫                     (3) 

We assume that the displacement consists of a vertical and horizontal com-
ponent with no rotation. From substituting (2) into (3), 

( )2
21 2 2F f f dxdy= −∫∫  

( )2
43 4 3F f f dxdy= −∫∫  

( )( )4321 4 3 2 1F f f f f dxdy= − −∫∫  

( )( )0 2 12hF f f f f dxdy= − −∫∫  

( )( )4 40 2 12vF f f f f dxdy= − −∫∫  

21 4321

4321 43

refh

v

ref

x
xF F F

F F F y
y

∆ 
 ∆     =     ∆     
∆  

 

Then the final equation can be solved as  

43 4321
2

4321 2121 43 4321

1ref h

v

ref

x
x F F F

F F Fy F F F
y

∆ 
 ∆ −     =      −∆ −     
∆  

 

The IIA algorithm is simple to compute in a single pass and is robust to local 
failures of the assumption (1) as it averages over the entire image [5].  

4. Approach 

Optical flow is related to scene flow by the relative position of the object as well 
as the camera projection matrix. Assume an object in 3D space has a position 
represented in homogeneous coordinates by [ ], , ,1 Tx y z=x . The projected 
point on camera i is given by [ ], ,1 T

i i iu u v= . Then iu  is related to x  by the 
projection matrix 3 4

iP ×∈  as follows: 
~i iu P x                             (4) 

where ~ denotes equality up to a scaling factor. The coordinates of iu  and iv  
are given by  

11 12 13 14

31 32 33 34
i i i i

i
i i i i

P x P y P z Pu
P x P y P z P

+ + +
=

+ + +
                   (5) 
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21 22 23 24

31 32 33 34
i i i i

i
i i i i

P x P y P z Pv
P x P y P z P

+ + +
=

+ + +
                   (6) 

We can state the constraints (Equations (5) and (6)) for each view  
1 / 2i N≤ ≤  as the following matrix equation: 

31 11 32 12 33 13 14 34
1 1 1 1 1 1 1 1 1 1 1 1

24 2231 21 32 22 33 23
1 1 11 1 1 1 1 1 1 1 1

31 21 32 22 33 13 14 34
2 2 2 2 2 2 2 2 2 2 2 2
31 21 32 22 33 23

2 2 2 2 2 2 2 2 2 2

P u P P u P P u P P P u
x P P vP v P P v P P v P
yP u P P u P P u P P P u
zP v P P v P P v P P

 − − − −
 

− − − − 
   =− − − −  
 − − −   

 
   

24 22
2 2P v

 
 
 
 
 

− 
 
 

      (7) 

Or where 3 4 3NQ × ×∈  and Nq∈ , 

1:3xQ = q                             (8) 

Equation (8) can be solved using the pseudo-inverse. This is called the direct 
linear transformation algorithm [6].  

1:3x Q+= q  

Given a set of optical flow measurements, { }0 1, |1 / 2i iu u i N≤ ≤ , we would like 
to recover 0x  and 1x . The scene flow x  and optical flow u  over time Δt  
satisfy 

1 0 Δt≈ +x x x  
1 0 Δi i t≈ +u u u  

As in (4), { }0,1x  and { }0,1
iu  are related by a scaling factor: 

0 1
0 1~ ~i i i iP Pu x u x  

Both 0x  and 1x  can be computed using Equation (8) for each set of points. 
This gives us our estimate of the location of the object and its velocity. 

5. Implementation 

In this work we focus on coarse localization in sparse scenes. We assume that 
objects are in the foreground and move rigidly. Optical flow sensors are ar-
ranged on the robot agents as in Figure 1. We assume the positions and orienta-
tions of the robots are known. 

The optical flow sensor we use is the Centeye Stonyman vision chip fitted with 
a cellphone-type lens. Among the advantages of this device are its low cost, low 
power consumption, and ease of interfacing with a micro-controller. The chip 
supports a resolution of up to 112 → 112 although data can be read asynchron-
ously from any size pixel region. We determined the (horizontal) field of view of 
the sensor to be 40 by collecting images of a checkerboard pattern at various 
ranges and computing the angular extents. The projection matrix is assumed to 
be of the form 

0

00
0 0 1

x
T T

y

u
P v R R T

α γ
α

 
   = −  
  
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Figure 1. Multi-robot optical flow scenario. 

 
where R  and T  are the orientation and translation of the sensor in global 
coordinates. The focal lengths xα  and yα  were estimated from the field of 
view by assuming a pin-hole camera response of the Centeye sensors. We set the 
skew, 0γ = . 0u  and 0v  are the coordinates of the center of the optical flow 
region. 

We use the Mbed NXP LPC1768 microcontroller to interface with the Centeye 
sensor. This architecture is illustrated in Figure 2. Using a microcontroller al-
lows the data to be processed with little expense and without introducing a bur-
den to the CPU on board the robot. This device is fairly low power and inexpen-
sive. This optic flow algorithm could also be implemented at even lower cost di-
rectly in hardware. From the robot’s point of view, the microcontroller and 
Centeye configuration emulates a special purpose optical flow sensor. The robot 
communicates with the Mbed chip through a serial interface over USB. A simple 
message library was implemented to deal with initialization and collecting ver-
tical and horizontal flow data from each region of the sensor. 

Finally, optic flow data from each robot is relayed to a centralized processor 
which computes the target position and velocity estimate. It would also be easy 
to perform this calculation directly on one or all of the robots, given a commu-
nication link between them. As optic flow is computed for few large regions on 
each vehicle, there is little data to transmit compared to full images from the 
Centeye sensors.  

We compute the optic flow using the image interpolation algorithm on blocks 
of size 24 × 24 pixels. Therefore, each window covers about 8.57˚ in the vertical 
and horizontal directions. Three such regions are used for each sensor: one in 
the center, and two 12.14˚ to the left and right. Optic flow is computed on each 
microcontroller at 6.67 Hz. A length 6 moving average filter is used to reduce 
sensor noise. This data is sent to the central computer for processing. Averaged 
optical flow data under a threshold is discarded to ignore sensor noise. For each 
region i , we assume 0

iu  refers to the center of that cell. The final position 1
iu  

is then estimated from the computation of u , performed on the microcontroller.  
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Figure 2. Multi-robot optic flow architecture. Processor collects 
and processes data from multiple robots. 

 
From 0

iu  and 1
iu  we use the direct linear transform algorithm described 

above to compute 0x  and 1x . 

6. Results 

The experiment was conducted in a Vicon arena approximately 10 meters by 12 
meters in size. Three robots were situated in an approximate triangle. A human 
wearing a Vicon tracked hat walks into the scene between the robots. Each robot 
collected and averaged data, relaying it to a base station. The position was then 
estimated from the flow data and the positions and orientations of the robots. In 
our experiment, the human was alerted by an audible command (e.g. “Stop right 
there”) and the position estimate is relayed to a camera system which performs 
facial detection and finer localization.  

The averaged, thresholded flow data is shown in Figure 3. The threshold was 
chosen to eliminate most false positives when there was no scene activity. It is 
clear that as the target walks onto the scene, the sensors register hits in either the 
positive or negative direction. 

An overview of the scene is given in Figure 4. The path followed by the per-
son is given in green, as tracked using a Vicon marker helmet. Black points are 
the estimated coordinates. Red vectors give the estimated scene flow in arbitrary 
units. The black points are generally on intersections of the yellow sensitive re-
gions of the Centeye sensors. This is a limitation of the block-based optical flow 
computation. However, the red motion estimates also track the position change 
of the object, providing more data about its path. Estimates with extremely low 
velocities such as the extraneous point in Figure 4 can be discarded. 

7. Discussion 

Optic flow was successful in detecting motion about a scene. Although individu-
al sensors are very noisy, thresholding and combining data from multiple  
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Figure 3. Optic flow scenario data collected on each robot. 
 

 
Figure 4. Scenario view from above. Dimensions are in millimeters. The three points 
where yellow lines emanate from are the locations of the three robots. A spurious point 
near (0, 500) could be excluded due to its low scene flow value. 
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sources allows false alarms to be reduced. As shown by the results, this method 
approximately tracks both the position and motion of a moving object. 

Noise in the optic flow data presented one of the greatest difficulties encoun-
tered in this experiment. The following are some of sources of inaccuracy 
present in our experimental setup: 
• Noise on the CMOS sensor—Although fixed-pattern CMOS noise is miti-

gated by an initial calibration step, there is still a good deal of noise on the 
imagery obtained from the Centeye sensors. This is from a variety of internal 
and environmental sources. 

• Interference from the Vicon motion capture system—The Vicon motion 
capture environment consists of 8 infrared cameras each surrounded by an 
array of infrared emitters. IR-reflective markers on the robots allow precise 
position and orientation estimates to be made. The Centeye lenses ideally 
block infrared light but the largest source of leakage was from the lens 
mounts. The mounts were rapid prototyped in plastic which is translucent to 
IR. This leakage would be greatly improved with better lens mounts fabri-
cated from other materials. 

• Failure of the projection approximation—We assumed that the Centeye 
lenses act essentially as pinhole cameras in the determination of the projec-
tion matrix. This is not true in general. A more accurate camera calibration 
should be done to determine the correspondence from global coordinates to 
pixel coordinates (and therefore flow correspondence). 

• Inaccurate mounting of the lenses and sensors—Due to difficulties en-
countered during fabrication, the lens mounts were imperfect and did not 
hold the lenses at the correct focal length and orientation. In particular, the 
lenses were threaded but the precision of the rapid prototyping machine was 
insufficient to preserve the threaded receptacle for the lens. The lack of lens 
precise mounting breaks down some of the assumptions of the theoretical 
work. The field of view was determined from just one sensor, and the as-
sumption was made that all were identical. Again, better lens mounting 
would solve this major issue. 

8. Future Work 

There are a number of improvements that can be made to this experiment. First, 
better lens mounting would greatly improve the quality of the optical flow mea-
surements. This would involve fabrication with a material that is opaque to 
infrared light. A higher precision prototyping machine could be used to create 
threads for the lenses. Better noise reduction and faster sampling of Centeye data 
would reduce the estimate error. Using wider angle lenses and more sensors 
would eliminate many missed detections by reducing the number of dead spots. 

A missed detection often occurs in cases where a moving object is not seen 
simultaneously by three sensors, but rather one-by-one in quick succession. 
Such a situation may still provide enough information to estimate the target po-
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sition by making forward projections of the limited flow data in spots where the 
object cannot be detected. Another way to mitigate this issue is to add more 
sensors to each robot and use lenses with a larger field of view. 

As shown by the results, the estimated position alone does not give a full un-
derstanding of the path of the object. The position estimate could be combined 
with scene flow estimates to obtain a more accurate tracking. For instance, a 
Kalman filter could be used to leverage both sources of information and inte-
grate incremental motion into path data. 

In this experiment, optic flow data from each robot was relayed to a single 
base station. In scenarios with a larger number of robots that are dispersed 
farther, robots may use their collective on-board processing capability to com-
pute target estimates. In this case, a communication scheme with internetwork-
ing between robots would be required. This experiment assumed knowledge of 
the position and orientation of the robots provided by Vicon motion tracking. 
Future work could involve estimating the locations of swarm members using 
optical flow for situations where this information is not precisely known. This 
would also require networking and coordination between swarm agents. 

Finally, while motion in this experiment was constrained to the ground plane, 
the method can be extended to three- dimensional motion. The above deriva-
tions assumed the general case of 3D scene flow. The main reason for the expe-
rimental limitation was the small vertical field of view of the sensors. Due to the 
use of three square flow computation windows, the horizontal sensitivity cov-
ered about 25.7˚, while the vertical extent was only 8.57˚. The use of additional 
sensors would reduce this limitation. 
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