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Abstract 
In this paper, we consider the no-wait two-machine scheduling problem with 
convex resource allocation and learning effect under the condition of com-
mon due date assignment. We take the total earliness, tardiness and common 
due date cost as the objective function, and find the optimal common due 
date, the resource allocation and the schedule of jobs to make the objective 
function minimum under the constraint condition that the total resource is 
limited. The corresponding algorithm is given and proved that the problem 
can be solved in polynomial time. 
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1. Introduction 

In the scheduling problem of industrial production, the processing of the job is 
complicated. The processing time of the job in the classic scheduling problem is 
a constant, but in the actual production, the actual processing time of the job is 
often related to the normal processing time of the job, allocation of resources, 
learning effects, deteriorating effects of the machine and other factors. In view of 
the complexity of the current scheduling problem, a large number of scholars 
have given their own research. In 1980, Vickson [1] first proposed that the 
processing time has the resources controllable problem, which broke through 
the classic model of the scheduling problem and brought new research direc-
tions in the scheduling field. In actual industrial production, managers often use 
non-renewable resources as a tool to control the processing time of the job, so as 
to improve the running effect of the system. The scheduling problem of re-
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source-constrained processing time has also attracted the attention of scholars. 
In actual industrial production, with the improvement of worker's proficiency 
and the shorter machining time of the job, Biskup [2] first proposed a schedul-
ing problem with learning effect, and gave a new model. Wang et al. [3] studied 
the single machine scheduling problems with learning effects and resource allo-
cation, and obtained the optimal schedule, resource allocation and optimal algo-
rithm. Shabaty and Kaspi [4] proposed scheduling problems with convex re-
source-dependent processing times, and discussed the single-machine problems 
with the minimization of the total weighted flow time. Since then, Leyvand et al. 
[5] have proposed and demonstrated a uniform approach to scheduling prob-
lems with convex resource allocation. Zhu et al. [6] studied group scheduling 
problem with learning effect and resource allocation on a single-machine. Wang 
and Wang [7] studied the single machine scheduling problem with learning ef-
fect and convex resource-dependent processing time. Liu et al. [8] studied 
two-machine scheduling problem with learning effect and convex resource 
processing time under common due date, and gave the optimal algorithm to 
prove that it is solvable in polynomial time. Lu et al. [9] considered the optimal 
due-date assignment problem with learning effect and resource-dependent 
processing times. Li et al. [10] studied a single-machine due-window assignment 
scheduling based on common flow allowance, learning effect and resource allo-
cation. Yin et al. [11] studied a single machine scheduling problem with learning 
effects and controllable processing time. Gao et al. [12] considered two-machine 
no-wait flow shop scheduling problem with learning effect and convex resource 
allocation. Under the common due date condition, they proved the problem can 
be solved in polynomial time.  

In this paper, we consider the two-machine no-wait flow shop scheduling 
problem with learning effects and convex resource allocation. Under limited re-
source availability, some results are given. 

2. Problem Formulation 

There are n  independent jobs 1 2{ , ,..., }nJ J J  to be processed on a two-machine 
flow shop setting. Each job is required to be processed on machine 1M  and 
then on machine 2M , and between the two machines, the jobs are not allowed 
to wait, the operation jiO  ( 1,2,..., ; 1, 2j n i= = ). The processing time of each 
job is give as follows: 

( )
a

ji m
ji

ji

p r
P

u
=                          (1) 

where jiP  is the actual processing time of operation jiO , jip  is the normal 
processing time of operation jiO , jiu  represents the amount of a 
non-renewable resource allocated to operation jiO , r  is the actual scheduling 
position of the job jJ , a  is the learning index( 0a ≤ ), m  is a positive con-
stant. 
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In this model, d  is the common due date, jC  is the completion time of job 

jJ , max{0, }j jE d C= −  is the earliness of job jJ , max{0, }j jT C d= −  is the 
tardiness of job jJ . The purpose is to determine the optimal schedule 

[1] [2] [3] [ ]( , , ,..., )nJ J J Jπ = , the optimal resource allocation strategy * *
[ ]1 [ ]2,j ju u , and  

the common due date d  of jobs under the condition 
2

1 1

n

ji
i j

u G
= =

≤∑∑  so that the 

following objective function is minimized: 

1
( , , ) ( )

n

j j
j

f u d E T dπ α β γ
=

= + +∑                   (2) 

where weights , ,α β γ  are given constants ( 0, 0, 0α β γ≥ ≥ ≥ ). In what follows, 
the problem studied will be denoted by using the extended three-field notation 
scheme (Graham et al. [13]). 

3. Main Results 

Lemma 1. (Gao et al. [12]) For any specified schedule π , there exists an op-
timal common due date with the property that the common due date value d  
coincides with the completion time of a job. 

Lemma 2. (Gao et al. [12]) For the 

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait P u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

problem, an optimal sequence exists such that [ ]kd C= , where 

( )min max ,0 ,nk nβ γ
α β

   −   =     +     
                 (3) 

As in Gao et al. [12], for a no-wait flow shop problem with a constraint

[ 1]1 [ ]2j jC C+ ≥ , we have 

1

k-1

[ ] [ ]
1 1

1

[ ]1 [ ]2 [ ]2
2 1

( , , ) ( )

( ) ( )

( 1) ( 1)

n

j j
j

n

j j
j j k

k k

j k j
j j

f u d E T d

d C C d nd

j p k p p

π α β γ

α β γ

α

=

= = +

−

= =

= + +

= − + − +

 
= − + − − 

 

∑

∑ ∑

∑ ∑

 

( )

[ ]1 [ ]2 [ ]2 [ ]1 [ ]2
1 1 1

[ ]1 [ ]1 [ ]1
2 1 1

1

[ ]2 [ ]2 [ ]2 [ ]2 [ ]2
1 1

[

( 1) ( )

( 1) ( 1)

( 1) ( )

n n k

j k j j k
j k j k j

k n k

j j j
j j k j

n k

k k k j j
j k j

j
j

n j p n k p p n p np

j p n j p n p

k p n k p np p p

p

β γ

α β γ

α β γ β α

ω

= + = + =

= = + =

−

= + =

   
+ − + − − + + +   

   

= − + − + +

 
+ − − − + + − 

 

=

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

]1 [ ]2

1 1[ ]1 [ ]2

m ma an n
j

j
j jj j

j p j
u u

υ
= =

   
+      

   
∑ ∑

 (4) 

where 
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, 1
( 1) , 2,3,...,
( 1), 1, 2,...,

j

n j
j n j k
n j j k k n

γ
ω α γ

β

=
= − + =
 − + = + +

               (5) 

and 
, 1, 2,..., 1

( 1) ( ) ,
, 1, 2,...,

j

j k
k n k n j k
j k k n

α
υ α β γ

β

− = −
= − − − + =
 = + +

                (6) 

Lemma 3. For a given sequence [1] [2] [3] [ ]( , , ,..., )nJ J J Jπ = , the optimal re-
source allocation *( )u π  for the problem 

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

is: 
1

1 1
[ ]1*

[ ]1 1 1
1 1 1 1

[ ]1 [ ]2
1 1

( ) ( )
1, 2,...,

( ) ( ) ( ) ( )

m
am m

j j
j m mn n

a am m m m
j j j j

j j

G p j
u j n

p j p j

ω

ω υ

+ +

+ + + +

= =

= =
+∑ ∑

，    (7) 

1
1 1

[ ]2*
[ ]2 1 1

1 1 1 1
[ ]1 [ ]2

1 1

( ) ( )
, 1, 2,...,

( ) ( ) ( ) ( )

m
am m

j j
j m mn n

a am m m m
j j j j

j j

G p j
u j n

p j p j

υ

ω υ

+ +

+ + + +

= =

= =
+∑ ∑

   (8) 

Proof. Obviously under the condition 
2

1 1

n

ji
i j

u G
= =

=∑∑ , we can get the minimum 

value of the objective function.  

Min 
1

( , , ) ( )
n

j j
j

f u d E T dπ α β γ
=

= + +∑  

S.t. 
2

1 1
0

n

ji
i j

u G
= =

− =∑∑                       (9) 

According to Lagrangian multiplier method, from (9) and (4), we have: 
2

1 1

2

1 1 1

[ ]1 [ ]2
[ ]1 [ ]2

1 1 1 1[ ]1 [ ]2

( , , , ) ( , , ) ( )

( ) ( )

( )

n

ji
i j

n n

j j ji
j i j

m ma an n n n
j j

j j j j
j j j jj j

L u d f u d u G

E T d u G

p j p j
u u G

u u

π λ π λ

α β γ λ

ω υ λ

= =

= = =

= = = =

= + −

= + + + −

   
= + + + −      

   

∑∑

∑ ∑∑

∑ ∑ ∑ ∑

   (10) 

where λ  is the Lagrangian multiplier.  
Since each of the objectives is a convex function, according to Lagrangian 

multiplier method.  
Differentiating (10) with respect to [ ]1ju , we have 

[ ]1
1

[ ]1 [ ]1

( )( , , , ) 0, 1, 2,...,
( )

a m
j

j m
j j

p jL u d m j n
u u

π λ
λ ω +

∂
= − × = =

∂
        (11) 

then 
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( )
1

1
* 1
[ ]1 [ ]1 , 1, 2,...,

mmj a m
j j

m
u p j j n

ω
λ

+
+

 
= = 
 

              (12) 

Differentiating (10) with respect to [ ]2ju , we have 

[ ]2
1

[ ]2 [ ]2

( )( , , , ) 0, 1, 2,...,
( )

a m
j

j m
j j

p jL u d m j n
u u

π λ
λ υ +

∂
= − × = =

∂
         (13) 

then 

( )
1

1
* 1
[ ]2 [ ]2 , 1, 2,...,

mmj a m
j j

m
u p j j n

υ
λ

+
+

 
= = 
 

             (14) 

Differentiating (10) with respect to λ , we have 

[ ]1 [ ]2
1 1

( , , , ) 0
n n

j j
j j

L u d u u Gπ λ
λ = =

∂
= + − =

∂ ∑ ∑               (15) 

Substituting (12) and (14) into (15), we have 
1 1

1 1 1 1
[ ]1 [ ]21

1 11

( ) ( ) ( ) ( )
m mn n

a am m m m
j j j j

j jm

m p j m p j

G G

ω υ
λ

+ + + +

= =+ = +
∑ ∑

        (16) 

From (16) and (12), we have  
1

1 1
[ ]1*

[ ]1 1 1
1 1 1 1

[ ]1 [ ]2
1 1

( ) ( )
1, 2,...,

( ) ( ) ( ) ( )

m
am m

j j
j m mn n

a am m m m
j j j j

j j

G p j
u j n

p j p j

ω

ω υ

+ +

+ + + +

= =

= =
+∑ ∑

，  

From (16) and (14), we have  
1

1 1
[ ]2*

[ ]2 1 1
1 1 1 1

[ ]1 [ ]2
1 1

( ) ( )
, 1, 2,...,

( ) ( ) ( ) ( )

m
am m

j j
j m mn n

a am m m m
j j j j

j j

G p j
u j n

p j p j

υ

ω υ

+ +

+ + + +

= =

= =
+∑ ∑

 

Substituting (7) and (8) into (4), under optimal resource allocation * *
[ ]1 [ ]2,j ju u  

and [1] [2] [3] [ ]( , , ,..., )nJ J J Jπ = , we obtain that a new unified expression for 

1
( , , ) ( )

n

j j
j

f u d E T dπ α β γ
=

= + +∑ . 

1

[ ]1 [ ]2 [ ]1 [ ]2

1 1 1 1[ ]1 [ ]2[ ]1 [ ]2

1 1
1 1 1

[ ]1 [ ]1
1 1

( , ( ), ) ( )

( ) ( ) ( ) (

n

j j
j

m m m ma a a an n n n
j j j j

j j j j
j j j jj jj j

mn n
m a am m m

j j j j
j j

f u d E T d

p j p j p j p j
u uu u

G p j p j

π π α β γ

ω υ ω υ

ω ω

∗

=

∗ ∗
= = = =

− + + +

= =

= + +

       
= + = +              

       

= ×

∑

∑ ∑ ∑ ∑

∑ ∑
1

1 1 1
[ ]2

1

11 1 1
1 1 1 1 1 1

[ ]2 [ ]1 [ ]2
1 1 1

1 1
1 1 1

[ ]1 [ ]2
1 1

) ( ) ( ) )

( ) ( ) ( ) ( ) ( ) ( ) )

( ) ( ) ( ) ( )

m mn
a mm m m

j j
j

mm m mn n n
a a a mm m m m m m

j j j j j j
j j j

m mn n
m a am m m m

j j j j
j j

p j

p j p j p j

G p j p j

υ

υ ω υ

ω υ

+ + +

=

+

+ + + + + +

= = =

− + + + +

= =

  
+     

 
+ × +    

= +

∑

∑ ∑ ∑

∑ ∑
1

1 )
m+

 
  
   

(17) 
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In what follows, we derive the optimal schedule for  

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

It is clear that the minimum value of (17) is equal to minimizing 
1 1

1 1 1 1
[ ]1 [ ]2

1 1
( ) ( ) ( ) ( )

m mn n
a am m m m

j j j j
j j

p j p jω υ+ + + +

= =

+∑ ∑  

Let us define binary variables jrx , such that 1jrx = , if job ( 1, 2,..., )jJ j n=  
is scheduled at position ( 1, 2,..., )r r n= , otherwise 0jrx = . Then, the problem  

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

can be solved by the following linear assignment problem: 

Min 
1 1

n n

jr ji
r j

xθ
= =
∑∑                            (18) 

S.t. 
1

1, 1, 2,...,
n

jr
r

x j n
=

= =∑                       (19) 

1
1, 1, 2,...,

n

jr
j

x r n
=

= =∑                       (20) 

0 1, 1,2,.., , 1, 2,...,jrx or j n r n= = =                 (21) 

where 
1 1

1 1 1 1
1 2( ) ( ) ( ) ( )

m m
a am m m m

jr r j r jp r p rθ ω υ+ + + += +              (22) 

, 1
( 1) , 2,3,...,
( 1), 1, 2,...,

r

n r
r n r k
n r r k k n

γ
ω α γ

β

=
= − + =
 − + = + +

               (23) 

and 

, 1, 2,..., 1
( 1) ( ) ,
, 1, 2,...,

r

r k
k n k n r k
r k k n

α
υ α β γ

β

− = −
= − − − + =
 = + +

                (24) 

By solving this linear assignment problem, we can get the optimal job se-
quence [1] [2] [3] [ ]( , , ,..., )nJ J J Jπ =  of the problem 

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

Based on the above analysis, our algorithm for 

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

can be described as follows. 
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Algorithm 1 

Step 1. According to (3), calculate ( )min max ,0 ,nk nβ γ
α β

   −   =     +     
. 

Step 2. According to (22), calculate the jrθ . 
Step 3. Solve the linear assignment problem (18)-(21) to determine the optim-

al job sequence [1] [2] [3] [ ]( , , ,..., )nJ J J Jπ = . 
Step 4. According to (7) and (8), calculate the optimal resource allocation 

* *
[ ]1 [ ]2,j ju u . 
Step 5. According to (1), calculate the actual processing times jip . 
Step 6. Calculate the common due date [ ]kd C= . 
Theorem 1. The problem 

2

1 1 1
2 , , ( )

ma n n
ji

ji ji j j
i j jji

p r
F no wait p u G E T d

u
α β γ

= = =

 
− = ≤ + +  

 
∑∑ ∑  

can be solved in 3( )O n  time by Algorithm 1. 
Proof. According to the lemmas 1, 2, 3 and the assignment problem (18)-(21), 

we can get the correctness of Algorithm 1, the complexity of step 2 in Algorithm 
1 is 2( )O n , step 3 is 3( )O n , the complexity of steps 1,4,5,6 is ( )O n . So the 
complexity of Algorithm 1 is 3( )O n . 
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