
Journal of Computer and Communications, 2017, 5, 57-62
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.512006 Oct. 30, 2017 57 Journal of Computer and Communications

Heap Sorting Based on Array Sorting

Haiming Li, Ping Chen, Yong Wang

School of Computer and Information Engineering, Shanghai University of Electric Power, Shanghai, China

Abstract
A kind of heap sorting method based on array sorting was proposed. Some
advantages and disadvantages of it were discussed. It was compared with the
traditional method of direct application. In the method, the ordered keywords
in the array are put into the heap one by one after building an empty heap.
This method needs relatively less space and is fit for ordered sequence.

Keywords
Heap Sort, Array, Bottom-Up, Algorithm

1. Introduction

In the field of computer algorithm design, sorting algorithm is one of the im-
portant methods which is used to process date. Heap sort algorithm’s time com-
plexity is relatively low [1] [2] [3] [4]. So if we can understand its thought very
well and use it flexibly, we will solve many problems in our life.

In computer science, heapsort is a comparison-based sorting algorithm.
Heapsort can be thought of as an improved selection sort: like that algorithm, we
can quickly locate the elements of the required index by using the characteristics
of the array [5] [6]. Heap is a completely two binary tree that in ordered set, sa-
tisfies the following properties of the heap that the max key value of the key ele-
ments of every node in heaps is no more bigger than it in parent node (just in
terms of maximum heap terms). Therefore, the largest element of the heap is
stored in the root node (the minimum heap similarly, no longer). When we
realize the stack with an array of H[1∙∙∙N], according to the order of top-down
and from left to right in turns, we can store the elements of the heap in the array
elements of H[1], H[2], ∙∙∙, H[n]. In general, the left-son node element of heap
element of H[i] is H[2i]; the right-son node element is H[2i + 1]; the parent
node element is H[[i2]]; then heap properties can be expressed as: H[[i2]] =
H[i], I = 2 ~ n.

How to cite this paper: Li, H.M., Chen, P.
and Wang, Y. (2017) Heap Sorting Based
on Array Sorting. Journal of Computer and
Communications, 5, 57-62.
https://doi.org/10.4236/jcc.2017.512006

Received: October 10, 2017
Accepted: October 27, 2017
Published: October 30, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.512006
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.512006
http://creativecommons.org/licenses/by/4.0/

H. M. Li et al.

DOI: 10.4236/jcc.2017.512006 58 Journal of Computer and Communications

Heapsort was invented by J. W. J. Williams in 1964 [7] [8]. This was also the
birth of the heap, presented already by Williams as a useful data structure in its
own right: in this algorithm, establishing the initial stack by O (n) time; then
continually exchanging the top element with the bottom element to reconstruc-
tion of the heap. Eventually, all the elements are in good order. In the same year,
R. W. Floyd published an improved version that could sort an array in-place,
continuing his earlier research into the treesort algorithm. It only needs one
record size of auxiliary space to use heap sort. And each record to be sorted only
takes up one storage space.

It is easy to find that there is a large amount of calculation in the process of re-
constructing the heap, and the efficiency of reconstruction depends on comparing
between the number of elements and moving of heap elements. The commonly
used reconstruction algorithm Heapify [1] [2] makes the node elements along an-
yone path down. Each layer needs to be compared for 2 times, and the left and
right son node elements compare for 1 time. Then the larger one does with the
parent node elements for another time. This process is repeated until the parent
element is no less than the son node elements (the maximum heap).

There is an example of depth h: Numbers of keywords comparison are at least
()2 1h − times in the selection sort algorithm. When building the heap which

has n elements and h depth, the numbers should be less 4n for Formula (1). The
depth of a complete two fork tree is []2log 1n + . In the process of the heap re-
built, the Heapad just is invoked n − 1 times. The total numbers of comparison
should be no more than

() []

() ()

1

2
2

2 3 1

2

log

2 1 2 2 2 3 2 1 2 2

2 2 4

n

i

h h

h

t n i

h h n

nh

−

=

−

+

=

 = × × + × + × + + − × + × − 
= − +

∑

� (1)

Therefore, the worst case is that we should do 2nlogn + O(n) comparison and
nlogn O(n) times elements moving.

About the study of the heap sort, there are now many studies analyzing that
and putting forward the optimization plan of it based on different views for the
heap sort, such as some reference papers like Mr. Wu Shangzhi who published
the “heap sorting algorithm improvement and complexity analysis on the heap”
in 2002 at the Journal of Northwest Normal University (Natural Science Edi-
tion). It improves the traditional sorting algorithm and reduces the complexity
of the algorithm.

2. Reference Knowledge

1) Heap: it can be defined as a two binary tree where each node has one key.
There are some requirements:

a) The shape of a tree: every layer of the tree is full except the rightmost ele-
ment on the last floor.

https://doi.org/10.4236/jcc.2017.512006

H. M. Li et al.

DOI: 10.4236/jcc.2017.512006 59 Journal of Computer and Communications

b) Parent advantage (heap’s characteristic): the key of each node isn’t less
(more than in minimum heap) than its child’s key (for any leaf node, we think
this condition is automatically satisfied).

2) The large and small root heap: the key of root node (also known as the top
of the stack) in which heap is the largest of all node keyword and this heap called
root pile or maximum heap. Similarly, the minimum keyword root node in
which heap is called the small heap or the minimum heap. For example in Fig-
ure 1.

a) Large root heap sequences: (96, 83, 27, 38, 11, 09)
b) Small heap sequence: (12, 36, 24, 85, 47, 30, 53, 91)
Be careful:
1) Any sub tree in a heap is also a heap.
2) The heap discussed above is actually a two fork heap (Binary Heap). The K

fork heap can be defined like that. But it is not studied in this paper.
3) Heap sort is a tree selection sort algorithm. There are some characteristics:

in the sorting process, the H[l∙∙∙N] is regarded as a sequential storage structure
with a totally two fork tree. We can choose record of the maximum (or mini-
mum) keyword in the current unsorted state by the relationship between the
parent node and child node in two binary tree algorithm (according to the se-
quence storage structure of the two fork tree). Large root heap (or small root
heap) records maximum (or minimum) key, so the heapsort can get the maxi-
mum (or minimum) keyword in the unsorted state currently. This process is
simpler.

3. A Method of Classical Heap Construction-Bottom-Up
Construction Reactor

In the initialization of a completely two forks tree which contains several nodes,
the key is placed in the given order, and then heap the tree. The process is as
follows: from the last parent node to the root node, checking the key whether
meet the requirements. If it doesn’t meet the heap’s characteristic, we should
exchange the position of the biggest key of its child nodes and the key value of
the node. We repeat the same process for remaining element until to meet the

(a) (b)

Figure 1. Tree map of a example.

https://doi.org/10.4236/jcc.2017.512006

H. M. Li et al.

DOI: 10.4236/jcc.2017.512006 60 Journal of Computer and Communications

requirements. For the subtree rooted at the current parents node, the algorithm
operate trend node of the node with the operation after complete the heaping.
After complete the operation of the tree node, the algorithm will be ended.

Description of Bottom-up build heap algorithm:
method HeapBottomUp(H[1..n])
//Construct a heap from a known array by a bottom-up algorithm
//Input: a known arrayH[1..n]
//Output: a heapH[1..n]
for i←n/2 downto 1 do
k←i;v←H[k]
heap←false
while not heap and 2*k≤n do
j←2*k
if j<n //There are two children
if H[j]<H[j+1]j←j+1
if v≥H[j]
heap←true
else H[k]←H[j];k←j
H[k]←v

4. Array Build Heap

In the first step, the heap is built according to the given order in the classical
stack construction method. In the second step, the parents and children nodes
are exchanged until to meet the heap’s characteristic. Therefore there is some
thought. Firstly, we can build the empty heap. Secondly, these key values which
given by an array of known sequence stored in the array from large to small (or
large) are arranged in the array. Thirdly, we insert the sorted sequence into a
heap directly one by one. So you don’t have to adjust the key node in the heap.

The specific procession is that: first, constructing an empty two binary tree.
Second, all the key value of nodes that removed are stored in an array. Then,
these key are ranked with quick sorting according to the order from large to
small (maximum heap).Besides, the one at the head is the parent node and the
one at the back is the child node. Next, the values are sorted in turn into two bi-
nary tree according to the order of the top-down.

Description of array build heap algorithm:
method sort Byarray(H[1..n])
//A heap is constructed by array sorting
//Input: a known arrayH[1..n]
//Output: a heapH[1..n]
for i←n-1 downto 1 do
max←i
for j←n downto i+2 do
if H[j]>H[max] max←j

https://doi.org/10.4236/jcc.2017.512006

H. M. Li et al.

DOI: 10.4236/jcc.2017.512006 61 Journal of Computer and Communications

swap H[i] and H[max]
for i←1 downto n do
heap←H[i]

5. Algorithm Comparison between Classical Heap
Construction Method and Array Heap Build Method

1) Time complexity:
Classical algorithm:
Time needed to build a heap: O(n)
The time needed to take the top element and adjustment: O(nlog(2n))
Several elements need to repeat this action several times, and the time each

action required is related to height. However, height can be considered invaria-
ble by rough calculations, so that the time complexity is: nlog(2^n)。

Worst case: Mean complexity
Best case: O(1)
Array algorithm:
In an ideal situation, every time the array to be sorted will be divided into two

parts as long as each other, and it needs log(2,n) times division. In the worst case
that an array has ordered or roughly ordered, only one element of each parti-
tioning can be divided every time. The lower bound of time complexity is
O(nlog(2,n) and the worst case is O(n^2). In actually, the average value of time
complexity is O(nlog(2,n).

2) Space complexity:
Classical algorithm: O(1)
Array algorithm:
Best case: O(log(2,n)
Worst case: O(n)
3) Stability:
The stability of two methods is caused by the disagreement of its relationship

between father and son nodes with its subscript rules. But the stability can be
promised if exchanging their conditions which are comprised. Besides, the two
elements which have the same keyword may be belong to different parent nodes,
so stability is not confirmed.

6. Conclusion

This paper presents a heap sorting algorithm based on array and finishes the
comparison with the traditional method of direct application. In the larger array
sequence, the heap sorting algorithm is applied directly. Its time complexity is as
same as quick sort and merging sort. It can run with less storage space, so it’s fit
for ordered sequence sorting. The application of principle reflected that the al-
gorithm is especially suitable for the realization of priority queue.

Acknowledgements

This work is supported by Shanghai University of Electric Power Smart Grid

https://doi.org/10.4236/jcc.2017.512006

H. M. Li et al.

DOI: 10.4236/jcc.2017.512006 62 Journal of Computer and Communications

Collaborative Innovation Project (A-0009-17-002-05) and Shanghai Science and
Technology Innovation Fund for Small and Medium Enterprises (1601H1E2600).

References
[1] Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Diffe-

rential Equations. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-5561-1

[2] Huo, H.W. (2002) Research of Fast Sorting Algorithm. Microelectronic and Com-
puters, 19, 6-9.

[3] Wu, S.Z. (2002) The Analysis of Improved Heap Sorting Algorithm and Its Com-
plexity. Journal of Northwest Normal University (Natural Science Edition), 38,
24-26.

[4] Liu, M.Q. (2012) Study of Sorting Algorithm Time Complexity. Software Tribune,
11, 35-37.

[5] Cook, C. and Kim, D. (1980) Best Sorting Algorithm for Nearly Sorted Lists.
CACM, 23, 620-626. https://doi.org/10.1145/359024.359026

[6] Mehlhorn, K. (1984) Data Structures and Algorithms. Vol. 1, Springer-Verlag, Ber-
lin.

[7] Schaffer, R. and Sedgewick, R. (1991) The Analysis of Heapsort. Technical Report
CS-TR-330-91, Princeton University, Princeton, NJ.

[8] Hayward, R. and Mcdiarmid, C. (1991) Average Case Analysis of Heap Building by
Repeated Insertion. Journal of Algorithms, 12, 126-153.
https://doi.org/10.1016/0196-6774(91)90027-V

https://doi.org/10.4236/jcc.2017.512006
https://doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1145/359024.359026
https://doi.org/10.1016/0196-6774(91)90027-V

	Heap Sorting Based on Array Sorting
	Abstract
	Keywords
	1. Introduction
	2. Reference Knowledge
	3. A Method of Classical Heap Construction-Bottom-Up Construction Reactor
	4. Array Build Heap
	5. Algorithm Comparison between Classical Heap Construction Method and Array Heap Build Method
	6. Conclusion
	Acknowledgements
	References

