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Abstract 
In object detection, detecting an object with 100 pixels is substantially differ-
ent from detecting an object with 10 pixels. Many object detection algorithms 
assume that the pedestrian scale is fixed during detection, such as the DPM 
detector. However, detectors often give rise to different detection effects un-
der the circumstance of different scales. If a detector is used to perform pede-
strian detection in different scales, the accuracy of pedestrian detection could 
be improved. A multi-resolution DPM pedestrian detection algorithm is pro-
posed in this paper. During the stage of model training, a resolution factor is 
added to a set of hidden variables of a latent SVM model. Then, in the stage of 
detection, a standard DPM model is used for the high resolution objects and a 
rigid template is adopted in case of the low resolution objects. In our experi-
ments, we find that in case of low resolution objects the detection accuracy of 
a standard DPM model is lower than that of a rigid template. In Caltech, the 
omission ratio of a multi-resolution DPM detector is 52% with 1 false positive 
per image (1FPPI); and the omission ratio rises to 59% (1FPPI) as far as a 
standard DPM detector is concerned. In the large-scale sample set of Caltech, 
the omission ratios given by the multi-resolution and the standard DPM de-
tectors are 18% (1FPPI) and 26% (1FPPI), respectively. 
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1. Introduction 

Pedestrian detection has been a hotspot in computer vision research [1]. The 
corresponding detection algorithm has been developed towards high precision 
and instantaneity [2] [3]. For a driverless automobile, the usage of which has 
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become popular nowadays, its intelligent system should be able to detect the lo-
cations and quantities of pedestrians ahead, to analyze the road conditions, and 
to guarantee the safety of these pedestrians [4]. For such cases, the pedestrian 
detection is an inevitable procedure. The pedestrian detection problem is diffi-
cult because that the target people often have various characteristics and the 
surrounding environments also change frequently [5].  

The pedestrian sizes in real world are different from each other. Besides the 
height diversity of different people, many imaging differences are incurred by 
the different distances between people and the camera. Figure 1 shows a high 
resolution corresponds to the large pedestrian scale and a low resolution corres-
ponds to the small pedestrian scale in the process of pedestrian detection.  

Pedestrians contain rich information in the case of high resolution [6], and it 
is more likely for them to be detected. Even if they are locally overlapped, many 
algorithms have the capability to detect these targets [7]. However, in the case 
low resolution, the pedestrians which contain a small amount of information 
cannot be detected easily. Meanwhile, low resolution pedestrians are very vul-
nerable to the interferences of the surrounding environments. In most cases, a de-
tection algorithm has a much better detection result for the high resolution pede-
strians than that for the low resolution pedestrians. Dalal and Triggs [8] proposed 
a HOG detector. If the detection window is fixed to 128 64×  pixels during 
training and detection, this detector can generate good effects at the time of de-
tecting pedestrians with pixels greater than 128 64× . However, when the target 
pedestrians are smaller than 128 64× , the detector almost fails to detect any pe-
destrian. Although the target can be increased to larger than 128 64×  pixels by 
means of interpolation, the detection accuracy is still brought down. The DPM 
pedestrian detector makes use of a root filter and several part filters to describe the 
pedestrians. Information in the pedestrians of high resolution is sufficient. 

Figure 2(a) and Figure 2(b) are results obtained by utilizing a standard DPM 
 

 
     Figure 1. The pedestrians with Multiple resolution in a sample picture. 
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(a)                                       (b) 

Figure 2. The detection result of standard DPM. (a) The part filter and root filter in DPM 
(b) The detection result of standard DPM. 
 
detector to detect pedestrians in Figure 1. It is obvious that the small-scale pe-
destrians cannot be detected successfully. Therefore, the overall detection effect 
can be improved if we can improve the detection effect for low resolution pede-
strians and prevent affecting the detection effect for high resolution pedestrians. 

In this paper, we propose a multi-resolution DPM pedestrian detection algo-
rithm, which takes advantage of the standard DPM framework in training the 
pedestrian with the resolution factor as a hidden variable. For the high resolu-
tion pedestrians, the response can be figured out in the first place. And its loca-
tion can be estimated with the combination of this high resolution response and 
the response under a corresponding low resolution. However, for the low resolu-
tion pedestrians, the judgment over possible locations of these targets is carried 
out by only calculating the responses under the low resolution. High resolution 
and low resolution are only intuitive concepts in the common sense. In addition, 
resolution is closely associated with the heights of pedestrian samples.  

Structure of this paper is as follows. In section 2, we thoroughly illustrate the 
DPM model for pedestrian detection, depicts the DPM learning algorithm, and 
describe the parameter initialization and the training procedures. In section 3, 
we illustrate the improved DPM algorithm in case of multi-resolution targets, by 
analyzing the features of pedestrian detection under multi-resolution, and de-
scribing the improved multi-resolution DPM pedestrian detection algorithm in 
detail. In Section 4, we apply this improved algorithm to a general dataset to 
comparatively analyze the experimental results. 

2. Overview of Related Theory 
2.1. Deformable Part Model 

The deformable part model (DPM) consists of a root filter and several part filters 
to describe the pedestrians. Specifically, the root filter describes each pedestrian 
as a whole, while each part filters describe a part of the pedestrian, such as the 
head and hand [9]. In this way, the constructed model can effectively capture the 
pedestrian information, and adapt well to the changes of body posture and 
dressing of the pedestrian [10]. 
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The DPM pedestrian detection is a x-resolution detection method. However, 
to some extent the algorithm is able to adapt to different resolutions, because of 
the following three reasons. 

Firstly, the DPM features are based on the image pyramid HOG features [11], 
which are adaptable to the scale variation within a certain range. Secondly, be-
cause the available data sets often consist of a large number of pedestrian sam-
ples, we have enough information for training a DPM model. For example, over 
84% positive samples in the Caltech pedestrian database are over 30 pixels in 
height, over 16% positive samples are more than 80 pixels in height, and around 
69% positive samples are between 30 pixels and 80 pixels in height. 

2.2. Hard Example Mining (SVM) 

In the training procedure, there are usually more negative samples than the 
available positive samples. Taking pedestrian detection for example, the images 
of pedestrians are positive samples, and the images without pedestrian are nega-
tive samples. In this case, 105 samples can be generated from an image, most of 
which are negative samples. It is almost impossible to take all negative samples 
into consideration. Therefore, we select the positive samples and the hard exam-
ples for constructing a training set. The hard examples are referred to those 
which are incorrectly classified at the first time. The Bootstrapping classification 
algorithm is employed for training an initial negative sample set. The algorithm 
collects the incorrectly classified samples at the first time, add these samples to 
the negative sample set to form the hard samples. The process is repeated for 
several times until a good classification result is achieved. We define the hard 
example and easy sample as follows: 

( ) ( ) ( ){ }, , | 1H D x y D yf xββ = ∈ <                (1) 

( ) ( ) ( ){ }, , | 1E D x y D yf xββ = ∈ >                (2) 

where, ( ),H Dβ  denotes the incorrectly classified samples at the first time or 
the samples located within the classification boundary ( ),E Dβ  denote the 
correctly classified samples. The samples on the classification boundary do not 
belong to ( ),H Dβ  or ( ),E Dβ . ( ) ( )* arg min DD Lββ β= . 

Because DL  is strictly convex, ( )* Dβ  is the single result of the optimized 
problem. Given a sample library D , we want to find a small sample set C  with 

C D⊆  and ( ) ( )* *C Dβ β= . To solve this problem, we firstly define an initial 
set which contains all the training samples. We train an LSVM model, and renew 
the previous set by removing the simple samples and by adding the new hard 
examples.  

2.3. Hard Example Mining with LSVM 

For the LSVM, mining hard examples is equivalent to optimize 
( )( )pZ

D
β

 rather 
than ( )DL β . This constraint turns the whole optimization problem to a convex 
optimization problem.  
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As for the hard example mining with SVM, we define an set with samples in 
the form of ( ),x z , in which ( )z Z x∈ . In the real application, the set consists 
of ( ),x zΦ  rather than ( ),x z . We define a vector set ( )F i v= ⋅ , in which i 
denotes sample index, and ( ),v x z= Φ  with ( )iz Z x∈ . Because the hidden 
variable z  is not fixed, for each sample ix , there may be multiple correspond-
ing ( ),i v F∈ . Then we define ( )I F  as the index of vectors in the vector set 
F , and dene the target function for β  with the feature vectors in F : 

( ) ( )( )( )( )
2

,
1 max 0,1 max
2F i i v Fi I FL C y vβ β β∈∈

= + − ⋅∑     (3) 

FL  can be optimized with the gradient-descent algorithm. We use ( )V i  as 
the set of feature factors v .  

The gradient-descent algorithm is described as follows. 
1. ta  is the learning rate for iteration t . 
2. ( )i I F∈  is the index for samples in F . 
3. ( )arg maxi v V iv vβ∈= ⋅ . 
4. If ( ) 1i iy vβ ≥ , then ( )taβ β β= − . 
5. Otherwise, ( )t i ia Cny vβ β β= − − . 

We set ( ) ( )* arg min FF Lββ β=  and try to find ( ) ( )( )* *
pF D Zβ β=  in a 

sample set ( )pD Z  of small size.  
As for the hard example mining with standard SVM, we define the feature 

vectors for hard and simple example in training set D  as follows. 

( ) ( )( ) ( ) ( )( ){ }, , , | arg max , and , 1i i i i i iz z
H D i x z z x z y x zβ β β

∈
= Φ = ⋅Φ ⋅Φ <  

( ) ( ) ( ){ }, , | 1iE F i v F y vβ β= ∈ ⋅ >                (4) 

We find the hard examples by calculating ( )( )*
pD Zβ . 1F  is defined as the 

initial feature vector set.  
The LSVM hard example mining algorithm is given below: 

1. Train model with ( )*:t tFβ β= . 
2. If ( )( ), p tH D Z Fβ ⊆ , stop the iteration and return tβ . 
3. Remove the simple samples by : \ttF F X=′ , where ( ),t tX E Fβ⊆ . 
4. Add new hard examples by 1 :t tF F X+ =  , where 

( )( ), \t p tX H D Z Fβ ≠ ∅ . 
In the 3rd step simple samples are removed from the training set, while in the 

4th step new hard examples are added to the training set. The entire iteration 
procedure terminates when there are no hard examples to add. 

3. Pedestrian Detection with Multi-Resolution DPM 
3.1. Fixed Resolution Model 

Let x  represent an image window, and ( )x∅  represent the image feature. As 
many slide window detection algorithms, we have  

( ) ( ) ( )0 wheref x f x w x> = ⋅∅                  (5) 

in which x  is marked as pedestrian. We train the above model with the positive 
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and negative samples of the training set ( ),i ix y , in which { }1,1iy ∈ − . The 
commonly available training algorithms include SVM and boosting, and we em-
ploy the linear SVM for training the parameter :w  

( )( )1arg min max 0,1
2

i
w i iiw w w C y w x= ⋅ + − ⋅∅∑         (6) 

in which ix  is assumed to be of a fixed size during training and testing. We de-
fine a feature vector ( )x∅  to deal with the windows of different sizes. 

3.2. Models with Fixed Resolutions 

If an image contains objects of different resolutions at the same time, the detec-
tor of a fixed resolution usually cannot detect all different objects simultaneous-
ly. Because we can describe the different distances of pedestrians in an image, for 
each window x  we can dene a binary variable s to represent the distance of a 
pedestrian. We use 0s =  to represent the distant target pedestrians, and use 

1s =  to denote the close target pedestrian. Our classifier is the same as the pre-
vious one. ( ) ( ), ,f x s w x s= ⋅∅ , 

( )

( )

( ) ( )

0

1

0
01

, if 0 and , if 1
0

10

x

x s s x s s
x

∅   
   
   ∅ = = ∅ = =
   ∅
   

  

  (7) 

where ( )0 x∅  and ( )1 x∅  denote the features at different scales, such as a 
pedestrian of 50 pixels and a pedestrian of 100 pixels. 

3.3. Multi-Scale Multi-Resolution Model 

For the close target pedestrians with s = 1, we can transform a model for high- 
resolution targets to two models for different resolution targets. For instance, we 
can transform a 100 pixels window into two windows of 50 pixels, and calculate 
the features at the small window scale. In this way, we can transform a model for 
high-resolution target to two models for different resolution targets:  

( )

( )

( )

( )

( )

1 0

1

1 0
, , if 0 and , , if 1

0
0 1

x x

x s z s x s z s
x

∅ ∅   
   
   ∅ = = ∅ = =
   ∅
   
   

  (8) 

With the above formula we can transform the object features at a fixed resolu-
tion into features at different resolutions. However, because ( )0 x∅  is different 
at different resolutions, the linear SVM is not suitable for training models. 

3.4. Multi-Resolution DPM Algorithm for Pedestrian Detection 

A significant feature of the above method is that a rigid template is used for ob-
ject detection at both large and small scales. The description operators at low le-
vels (e.g., HOG feature) are adaptable to small image deformation [12]. Howev-
er, such method is not applicable in case of large scales. For example, HOG fea-
ture detector is invariant to different postures of a 50 pixels height pedestrian, 
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but not invariant to the 100 pixels height pedestrians. If we are to detect a large- 
scale target, we can choose a low-resolution template. And if we hope to gain 
more information, we can select a high-resolution template. For a good adapta-
bility to the deformation at a large scale, we adopt a DPM model. As a hidden 
parameter z  is defined in the DPM model, we use ( )1 ,x z∅  as the combina-
tion of HOG feature and the deviation. 

( )

( )

( )

( )

( )

0 0

0

1 1
, , if 0 and , , if 1

0 ,
0 0

x x

x s z s x s z s
x z

∅ ∅   
   
   ∅ = = ∅ = =
   ∅
   
   

  (9) 

The classifier passes through all the hidden variables at last, and calculates  
( ) ( ), max , ,zf x s w x s z= ⋅∅ : 

( )
( )
( ) ( )

0 0 0

0 0 1 1

if 0
,

max , if 1z

w x b s
f x s

w x x z b s

∅ + == 
∅ + ∅ =

⋅

⋅ +⋅
         (10) 

( ),f x s  is transformed into a standard linear template for calculating the re-
sponse at a low resolution. For calculating the response at a high resolution, 
( )f x  would need to search all part models to nd the model which makes the 

maximum response. Suppose the distances between different parts and the root 
filter are independent from each other, the following formula can be calculated 
with the QP  algorithm: 

( ) ( ) ( )1 1 ,max , max , ,z z j j jk j kj j k Ew x z w x z w z z
∈

∅ = ∅ + ⋅∅⋅ ⋅∑ ∑   (11) 

in which jz  denotes the location of part j , jw  denotes the template of part 
j , kjw  denotes the deformable model of part j  and k , and E  denotes the 

boundary. ( ), jx z∅  represents the HOG feature at location jz , and 

( ),j kz z∅  represents the deformation difference between part j  and part k . 
For a given training set ( ), ,i i ix s y , we can employ the LSVM algorithm for 
training the model parameter w . 

At the stage of model training, we set 1is =  if the training sample has a large 
scale ( )0h > , in which is  is no longer a hidden variable. And we set 0is =  if 
the training sample has a small scale ( )50h < , in which is  is not a hidden va-
riable, either. If the training sample has a medium scale ( )50 100h< < , the 
training sample can be considered as both a high resolution object and a low 
resolution object. In this case, is  becomes a hidden variable, which can be 
added to the set of hidden variables of the LSVM model for training. The rough 
procedure consists of the random initialization of variables is  and iz , the cal-
culation of model parameter β  in model training, and the acquisition of value 
for the hidden variable in accordance to the maximum response which would be 
taken into the next iteration. 

4. Experiment Process and Dataset 
4.1. Overview of the Algorithm 

Our proposed multi-resolution DPM is similar to a hybrid deformable model 
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with two target models. But there are also big differences between these me-
thods. Firstly, many parameters are shared in our deformable model, while all 
parameters in the hybrid deformable model are independent from each other. 
Secondly, our multi-resolution deformable model consist a different procedure 
for the variable is . At the training state, is  is a hidden variable, while at the 
test state is  would become a visible variable. The procedure of pedestrian de-
tection by multi-resolution DPM is shown in Figure 3.  

First, DPM parameters 0w  and 1w  are initialized by the initialization me-
thod as illustrated before. 0w  is the model parameter at a low resolution, while 

1w  is the model parameter at a high resolution. At the training state, we set the 
value of s  by considering the height h  of a trained sample, for which 1s =  
if 100h >  and 0s =  if 50h < . For the samples with 1s = , LSVM can be 
used to train a standard DPM model, which renders the model parameter 1w . 
For the samples with 1s = , a linear SVM can be used to train a DPM model (no 
hidden variable is involved), which renders the model parameter 0w . For the 
samples with height 50 100h< < , we add s  to the set of hidden variables, and 
 

 
Figure 3. The processing steps of pedestrian detection on multiple resolutions. 
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train the model with the LSVM algorithm. 

4.2. Evaluation Method 

Whole Image Evaluation 
The detection result for an image consist of a set of bounding boxes ( )BB  

and a corresponding confidence score [13]. If the detection result ( )dtBB  and 
the standard result ( )gtBB  has a great extent of overlapping, we consider the 
detection result matches the standard result. We define that a detection result 
matches the standard result if they have over 50% parts overlapped: 

( )
( )0 0.5dt gt

dt gt

area BB BB
a

area BB BB
= >





                  (12) 

Each ( )dtBB  can match to at most one ( )gtBB , which means that every de-
tected ( )dtBB  can only match one ( )gtBB  but not multiple ( )gtsBB . There-
fore, if a detection result ( )dtBB  could match multiple ( )gtsBB  we only select 
the ( )gtBB  with the highest confidence as the final detection result. If a 
( )dtBB  is not matched with any ( )gtBB , it is labeled as false positive. And if a 

( )gtBB  is not matched with any ( )dtBB , it is labeled as false negatives as well. 

4.3. Experiment Dataset 

1. INRIA 
The INRIA data set is a static pedestrian detection database which has been 

widely employed in recent researches. The training set consists of 614 positive 
samples (containing 2416 pedestrians) and 1218 negative samples. The test set 
consists of 288 positive samples (containing 1126 pedestrians) and 453 negative 
samples. Images in the INRIA data set are mainly collected from google, GRAZ- 
01 and personal photographs. 

2. Caltech Pedestrian Database 
The Caltech Pedestrian Database is a large scale database. It consists of videos 

of 640 × 480 pixel with 30 frames per second, captured by in-vehicle cameras for 
about 10 hours. Within these videos, 250,000 frames (around 137 minutes), 
350,000 bounding boxes, and 2300 pedestrians are manually annotated by hu-
man experts. The data set is divided into 10 sets, among which sets 00 - 05 are 
used for training, and sets 06 - 10 are used for testing. In our experiment, we also 
employ sets 00 - 05 for training and sets 06-10 for testing. 

Pillor [14] divide samples in the Caltech Pedestrian Library into distant 
( )30h < , medium ( )30 80h< <  and near 80h >  types, according to the 
heights ( )h  of pedestrians.  

The model feature of DPM is based on the HOG feature of the image pyra-
mid, and DPM has good adaptability to a certain range of scale changes. Usually 
the pedestrian samples in our data set are not too small, so there is enough in-
formation for building the DPM model. 

In the Caltech pedestrian database, the average height of the samples is 48 
pixels. More than 84% of the positive samples have height greater than 30 pixels, 
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more than 16% of the positive samples have height greater than 80 pixels, and 
about 69% of the positive samples have height from 30 to 80 pixels. In the case of 
high-resolution ( )100h > , the DPM model show very good results in tradition-
al DPM model tests. In this work we defined targets with height 100h >  as the 
high resolution target, targets with height 50h <  as the low resolution targets, 
and targets with height 50 100h< <  as the unknown resolution targets in 
which case the resolution factor is treated as a hidden variable.  

5. Results and Discuss 
5.1. The Result in INRIA 

There are nearly one thousand pictures in INRIA pedestrian database. Our 
model is trained on the INRIA training set, and evaluated on the INRIA test set. 
The multi-resolution DPM-based pedestrian detection algorithm acquires a pre-
cision of 87.2% on INRIA pedestrian database, which is slightly better than 
86.9% as the precision of the standard DPM. This is mainly because that there 
are too few picture samples in this data set, and the pedestrian scale is too big in 
the pictures. Only a few pictures contain the small-scale pedestrians, in which 
case the multi-resolution DPM detector cannot change the detection method at 
the high resolution. Therefore, the detection result is almost the same as the 
standard DPM result. 

5.2. The Result in Caltech Database 

Training our model on the Caltech pedestrian database is more challenging than 
on the INRIA dataset. The number of samples in the Caltech pedestrian dataset 
is large, which is much larger than the number of samples in the INRIA dataset. 
The Caltech pedestrian dataset consists samples of 640 480×  pixel resolution, 
in which many pedestrian targets of small scales are included.  

In this section, set0 to set5 in Caltech database are employed for training, and 
set6 to set11 are chosen for testing. Figures 4(a)-(d) show the detection results 
for all-distance, near-distance, middle-distance and far-distance samples, respec-
tively. Specifically, the near-distance corresponds to pedestrians with height 

80h >  pixel, the middle-distance corresponds to pedestrians with height 
30h >  but 80h < , and the far-distance corresponds to pedestrian with height 
30h < . 

The experiment result suggests that the multi-resolution DPM algorithm 
renders better detection results than that the standard DPM in terms of all test-
ing sets, Figure 4(a) shows the result based on all test samples. The multi-reso- 
lution DPM-based pedestrian detection algorithm achieves a missing rate of 52% 
(1FPPI), which is much better than the missing rate 59% (1FPPI) achieved by 
the DPM pedestrian detection algorithm. This result suggesting that multi-reso- 
lution DPM has better detection effect than the standard DPM. In terms of the 
large-scale samples ( 80h > ) in Caltech database, the multi-resolution DPM- 
based detection algorithm renders a missing rate of 18% (1FPPI), while the 
standard DPM-based detection algorithm renders a missing rate of 26% (1FPPI),  
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Figure 4. The result on Caltech pedestrian data set by different distance. (a) The result on 
all-distance samples; (b) The result on near-distance; (c) The result on middle-distance; 
(d) The result on far-distance samples. 
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which suggests that the multi-resolution DPM also outperforms the standard 
DPM for large-scale targets. For small-scale samples, the difference in both 
models is not as obvious as shown in Figure 4(b), which is mainly because, that 
the useful information at small scales is very limited (the objects at less than 30 
pixels are known as small-scale objects). At this point, the detection algorithm 
cannot acquire enough information for detection. 

5.3. The Result in Part of Caltech Database 

In order to better explain the experiment result, we further select 3000 pictures 
from the standard Caltech database for evaluation. This experiment is conducted 
to compare the detection effects of the detection algorithm at a high resolution 
(corresponding to the standard DPM algorithm), the detection algorithm at a 
low resolution (corresponding to merely the root filter-based DPM algorithm), 
and the proposed multi-resolution DPM algorithm. 

The experiment result is shown in Figure 5, in which LR represents the low- 
resolution detection algorithm, HR represents the high-resolution detection al-  
 

 
Figure 5. The results of different-scale targets on the subset of the Caltech pedestrian data 
set. (a) Large-scale target; (b) Small-scale target. 
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gorithm, and MR represents the multi-resolution detection algorithm.  
The results of large-scale target ( )90h >  detection as shown in Figure 5(a), 

the multi-resolution DPM algorithm achieves similar performance as the stan-
dard DPM algorithm. Both algorithms are better than the low-resolution detec-
tor. 

Figure 5(b) shows the terms of the small-scale target ( )90h <  detection, we 
find that the detection effect of the standard DPM algorithm drops quickly as 
the target scale grows small. The detection effect of the multi-resolution DPM 
algorithm is slightly lower than that of the rigid template. 

According to the overall comparison is shown in Figure 6, the multi-resolu- 
tion DPM algorithm is better than the high-resolution detection algorithm on 
the testing set. We find that the missing rate on test set is 52% with a rigid tem-
plate. This is lower than 59%, which is the missing rate with the standard DPM 
algorithm. This is because most of the pedestrian samples are with height 
30 80h< < , and even the high-resolution algorithm cannot detect the small- 
scale targets. The standard DPM algorithm achieves a good detection effect for 
the large-scale targets. 

6. Conclusion 

In this paper we proposed a Pedestrian Detection Method at Multiple Resolu-
tion. Especially during pedestrian detection under the high resolution, such an 
algorithm can generate very significant effects. However, targets in images ac-
quired in the real world are under diverse resolutions in most cases. Considering 
this, the standard DPM is subjected to great limitations. Here, a multi-resolution 
DPM algorithm based on the standard DPM algorithm is presented. In this way, 
pedestrian detection is fixed to different resolutions. For example, pedestrians 
under the high resolution can be detected through a deformable part model, 
while those under the low resolution are detected based on the rigid template. In 
 

 
Figure 6. The result on the subset of the Caltech pedestrian data set. 
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Caltech, omission ratio of a multi-resolution DPM detector was 52% (1FPPI); 
comparatively, it became 59% (1FPPI) as far as a standard DPM detector was 
concerned. In the large-scale sample set of Caltech, omission ratio of the multi- 
resolution and the standard DPM detectors were 18% (1FPPI) and 26% (1FPPI) 
respectively. The general results of proposed method are better than the stan-
dard DPM.  
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