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Abstract 
In our previous work, a novel algorithm to perform robust pose estimation 
was presented. The pose was estimated using points on the object to regions 
on image correspondence. The laboratory experiments conducted in the pre-
vious work showed that the accuracy of the estimated pose was over 99% for 
position and 84% for orientation estimations respectively. However, for larger 
objects, the algorithm requires a high number of points to achieve the same 
accuracy. The requirement of higher number of points makes the algorithm, 
computationally intensive resulting in the algorithm infeasible for real-time 
computer vision applications. In this paper, the algorithm is parallelized to 
run on NVIDIA GPUs. The results indicate that even for objects having more 
than 2000 points, the algorithm can estimate the pose in real time for each 
frame of high-resolution videos. 
 

Keywords 
Pose Estimation, Parallel Computing, GPU, CUDA, Real Time Image 
Processing 

 

1. Introduction 

In our previous work, a novel pose estimation algorithm based on points to re-
gion correspondence was proposed in [1]. Given the points on an object and the 
convex regions in which the correspondent image points lie, the concrete values 
of position and orientation between the object and the camera are found based 
on points to regions correspondence. The unit quaternion representation of ro-
tation matrix and convex Linear Matrix Inequalities (LMI) optimization me-
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thods are used to estimate the pose. By loosening the requirement of precise 
point-to-point correspondence and using convex LMI formulations, the algo-
rithm provided a more robust pose estimation method. While the pose estima-
tion experiments yielded satisfactory results, the test cases considered were small 
objects with four points per object. While this may be reasonable for lab experi-
ments, with the current high and ultra-high resolution images, larger objects are 
captured on images. Having a low number of points for larger objects, the pose 
estimation algorithm will have a low accuracy, as shown in [1]. It is also shown 
in [1] that for more points on a given object, the accuracy of the pose estimation 
increases. Moreover, some pose estimation based video processing applications 
require processing of larger objects in high-resolution images at high frame rates 
(300) in real-time, i.e., 300 high-resolution images have to be processed for an 
object with large number of points within a second to obtain the pose. Since, the 
serial execution time of the pose estimation algorithm is bound to the number of 
points, i.e., with a higher number of points, the execution time of the pose esti-
mation algorithm also increases. This makes the pose estimation involving large 
objects with high accuracy, infeasible for real-time applications. Therefore, the 
algorithm requires further analysis to make it suitable for real-time applications. 

The pose estimation algorithm, described in [1], is an iterative 2D search al-
gorithm. The number of computations for the algorithm is dependent on two 
factors: a) number of points on objects, also known as markers and b) accuracy 
of the estimated pose. The number of computations within a single iteration is 
determined by the number of markers, i.e., the number of computations within 
each iteration increases linearly with an increase in the number of markers. The 
number of iterations is determined by the desired accuracy, i.e., the number of 
iterations increases non-linearly for higher order accuracy, as it is a 2D search. 
However, the iterations being independent of one another make concurrent ex-
ecution of all iterations feasible. Since the number of concurrent iterations grows 
non-linearly with an increase in the desired accuracy, more execution cores are 
needed to maximize concurrency. Thus, the algorithm is well suited for General 
Purpose Computation on GPU (GPGPU) parallelization. 

In this paper, we propose a GPGPU parallelization approach for the pose es-
timation algorithm. The goal is to achieve optimal and scalable implementation 
of the pose estimation algorithm on GPUs, making it suitable for real-time ap-
plications. To achieve our goal, we parallelize the algorithm in two phases-design 
and implementation. In design phase, we analyze the algorithm, determine the 
bottleneck, re-factor the algorithm and data to enhance parallelism. For imple-
mentation phase, we follow the standard guidelines for optimization on GPU 
prescribed by NVIDIA and GPU experts, and fine tune GPU architecture para-
meters such as threading, blocks, streams etc. to obtain the near optimal imple-
mentation. Our method of parallelizing the algorithm first via design, and then 
via implementation, makes our effort of parallelization different from other 
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works. 
The original work presented in [1] was written by one of our authors. The 

work has been used in [2] and also has been acknowledged as a highly accurate 
pose estimation algorithm in [3] [4]. However, no effort has been made to paral-
lelize the algorithm described in [1]. There are several real-time suitable pose es-
timation algorithms published in the year 2015 alone, [5]-[11] to mention a few. 
However, these algorithms have limitations based on their approach. Pose esti-
mation described in [5] [6] [7] [8] require a database of objects. The limitation 
of using database centered pose estimation is the overhead involved in creating a 
useful, open source and widely accepted database. Moreover, the pose estimation 
application would be limited to the objects in the database. The pose estimation 
algorithm described in [8] [9] exploit certain features for a given object. The 
usage of such algorithm is limited to certain objects, thereby limiting its applica-
tion. The pose estimation described in [10] requires special cameras. The cam-
eras are an additional cost, and may not be feasible to use in different kinds of 
application. On the contrary, the algorithm described in [1] is generic pose esti-
mation algorithm with high accuracy, i.e., it does not require a database or ex-
ploit certain features of an object or use special cameras. In comparison to other 
generic and highly accurate pose estimation algorithms, it estimates pose with-
out subjecting the estimation to local minima or divergence [1]. 

The focus of our research work is to parallelize the algorithm in [1]. While the 
sequential implementation of the algorithm in [1] can serve as a baseline for 
measuring our parallelization, we have reviewed four GPU implemented pose 
estimations, generic and non-generic, to compare our parallelization and pro-
vide a reference to readers. These reviewed implementations have low execution 
time or high accuracy or both as their landmark. The proposed implementation 
in [11] accelerates a generic pose estimation algorithm on GPUs, completing de-
tection and pose estimation under 22 ms per image of resolution 500 × 500 pix-
els. The estimated pose is not as accurate as the one described in [1], but is 
comparable to our implementation. The algorithm in [12] provides another ge-
neric pose estimation algorithm implemented on GPUs. The pose estimation is 
reconstructed in real time, with execution time varying from 10 milliseconds to 
hundreds of milliseconds depending on the number of objects, the kind of ob-
ject, the resolution and the accuracy. This parallel implementation is comparable 
to our work, with a difference that our work provides more accurate pose esti-
mation. The pose estimation algorithm described in [13], is highly accurate hu-
man pose estimation using datasets. The algorithm in [13] is implemented on 
GPUs for low resolution images, with execution time varying between 100 milli-
seconds to 1200 milliseconds, based on the accuracy of pose estimation. Hence, 
the algorithm in [13] is limited to human pose estimation, applicable for low- 
resolution images and has longer execution time than our implementation. The 
algorithm described in [14] is used for highly accurate pose estimation in un-
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manned air vehicles (UAV) for takeoff and landings. The authors in [14] per-
form a field evaluation using low end GPUs such as Jetson TK1. It is observed 
that pose estimation takes under 25 milliseconds for standard 640 × 480 images. 
Though the algorithm has good performance, especially considering that the si-
mulations were carried out on a low-end GPU, it is explicitly used for UAV. 

The purpose of our work is to extend the work in [1]. Parallelizing the algo-
rithm in [1] would help us build a highly accurate, robust, real-time feasible and 
scalable algorithm, which would make our parallel version of pose estimation 
algorithm unique, with respect to all other algorithms that have only few, but not 
all, of the above mentioned features. 

This paper is organized as follows: Section 2 describes an implementation of 
the algorithm provided in [1]. Section 3 provides the optimization design. In 
Section 4, the performance of our parallel implementation is compared with se-
quential execution and a parallel implementation of the continuous 8-point pose 
estimation algorithm. We conclude the paper by summarizing our findings. 

2. Pose Estimation Algorithm 

The implementation description of the pose estimation algorithm introduced in 
[1] henceforth known as the optimal position estimation algorithm (OPEA) is 
provided in this section. The following assumptions for the implementation are 
made: 

a) Monocular pose estimation is considered. 
b) There is a relative motion between the camera and object. 
c) There are at least four markers per object. 
d) Camera captures images in the form of video frames, with at least 24 

frames per second (fps). The fps is assumed to increase with an increase in the 
rate of relative motion between the camera and the object. 

e) It is a continuous pose ( ),vω  estimation, where, 
T

x y zω ω ω ω =    is  

the angular velocity relative to the camera and object, 
T

x y zv v v v =    is the 
translational velocity relative to the camera and the object 

f) The velocity, v, is measured in spherical coordinates. Spherical coordinates 
( ), ,r β ϕ  are represented by radial distance (r), azimuthal angle ( )β  and polar  

angle ( )ϕ  as shown in Figure 1. By assuming 
π π π π,  
2 2 2 2

β ϕ− ≤ ≤ − ≤ ≤   

and r = 1, an iterative search can be performed with ease and then scaled by a 
factor of radial distance. 

Since OPEA is an iterative 2D search algorithm, it explores a 2D space for all 
possible values of the pose of v and ω. The search begins by assuming a value of v, 
where v in spherical coordinates is given by [ ]sin cos sin sin cosv ϕ β ϕ β ϕ= ,  

and 
π π π π1, ,
2 2 2 2

r β ϕ= − ≤ ≤ − ≤ ≤ . The magnitude of v is inherently ambi-  

guous in the image data. It is impossible to find r. Consequently, it is set to be r  
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Figure 1. Spherical coordinate system representation. 
 

= 1. For each assumption of v, a corresponding ω is calculated. The error in 
( ),vω  pair estimation is calculated by re-projecting all the markers of the ob-
ject. The error is quantized and compared across all values of ( ),vω . The 
( ),vω  providing the least error and positive depths for all markers is selected as  

the pose. Since the value determining v have boundary conditions 
π π ,
2 2

β− ≤ ≤  

π π
2 2

ϕ− ≤ ≤ , the increment intervals of β  and ϕ  determine the accuracy of  

the pose estimated, i.e., the smaller the incremental value of β  and ϕ , the 
greater the accuracy of ( ),vω . 

Consider two images taken from a single camera with relative velocity be-
tween the image and the object. Let the image coordinates of markers on the first 
image be lx , where [ ]T1x x y=  and 4, , fl m=   and fm  represents the 
number of markers per image frame. Let the difference between the markers’ 
positions on the second frame from the first frame be represented by lx , where 

[ ]T1 2 0x x x=   . Unit vectors for lx  and lx  are calculated using: 

l
l

l

x
u

x
=                               (1) 

( )T l
l l l

l

x
u I u u

x
= −



                       (2) 

where I represents an identity matrix and T
lu  represents the transpose of lu . 

Once a value of v is assumed, a corresponding value for ω is calculated as fol-
lows: 

1C Bω −= −                           (3) 

2 T 2

1

ˆ ˆ
jm

l l
l

C u vv u
=

= ∑                        (4) 
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2 T

1

ˆ ˆ
jm

l l l
l

B u vv u u
=

= ∑                           (5) 

3 2

3 1

2 1

0
ˆ 0

0

u u
u u u

u u

− 
 = − 
 − 

                     (6) 

1 2 3u u u u=                            (7) 

The difference ( )ˆi iu uω−  provides the error measurement in ω. We obtain 
the cross product of this difference with u to obtain a perpendicular vector, rep-
resentative of the error in estimating pose. This process removes the depth of all 
points from the equations. A single scalar value error (J) for all markers of an 
object, indicating the error in estimating ( ),vω  is calculated as follows: 

( ) ( ) T

1

ˆ ˆˆ ˆ 
jm

s l l l l l l
l

Q u u u u u uω ω
=

   = − −   ∑                 (8) 

T
sJ v Q v=                                      (9) 

Thus, the plot of J versus ( ),β ϕ , selected for v, provides a surface. The lowest 
points ( ),β ϕ  with respect to J on the surface show possible ( ),vω  values with 
lowest errors. Similar to other pose estimations, depth constraints dictated by 
the epipolar geometry helps in selecting the right pose. The depth (d) constraint 
for each marker is calculated as follows: 

( )Tˆl l ld u u vω= −                     (10) 

If the depth of all points has the positive numerical sign and the value of J 
corresponding to the same ( ),vω  is minimal, then ( ),vω  is taken as the pose. 
If the depth of all points has the negative numerical sign and the value of J cor-
responding to the same ( ),vω  is minimal, then the pose is taken to be ( ), vω − . 

3. Parallelization of OPEA 

We begin this section by analyzing the calculations in OPEA. The analysis is 
split into two phases. The first phase analyzes code refactoring of OPEA to suit 
parallelization. However, the refactored code can be used as a sequential or pa-
rallel code. The second phase analyzes the data reorganization and code for a 
parallel implementation of the refactored code, to match the GPU architecture. 

The first phase of analysis begins by splitting the calculations in OPEA into 
three steps. Equations (1)-(5) are taken to be the “compute velocity” step. Equa-
tions (8), (9) are taken to be “compute error” step. Lastly, Equation (10) is taken 
to be the “selection of pose” step. If the total number of iterations in each di-
mension is represented by k, Table 1 shows the number of floating point of op-
erations (FLOP) for each step. 

Hence the execution time of OPEA increases linearly with an increase in mf 
but a quadratic increase with an increase in k. 
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Table 1 also shows that the compute velocity step has the maximum FLOP 
count in the computation phase. Analyzing Equations (1)-(7), the dependency of 
variables for the compute velocity step is provided in Figure 2. Clearly, the 
compute velocity step in OPEA has varied data dependencies, which can be se-
parated as: 

a) v dependent computations 
b) v independent computations 
Since only v dependent computations are needed inside the iteration, the v 

independent computations can be pre-computed outside the iterations, thus re-
ducing the total FLOP count of OPEA. 

We now provide an advanced version of OPEA, referred to as AOPEA, which 
refactors code to suit parallelization better. To facilitate code refactorization, we 
introduce two new operations 

a) Stackoperation: Convert 3 × 3 symmetric matrix elements to a vector. 
b) Unstackoperation: Convert 6 × 1 vector into 3 × 3 symmetric matrix. 

 
Table 1. FLOP Count Split-up for OPEA Algorithm. 

Step FLOP count 

Compute Velocity 138mf + 49 

Compute Error 45mf + 11 

Selection of Pose 5mf 

Per Iteration 188mf + 60 

OPEA Algorithm (188mf + 60)k2 

 

2ˆlulluu ˆ Tvv

T
l vvu2ˆ

22 ˆˆ l
T

l uvvu

C

ll
T

l uuvvu ˆˆ2

B

ω
 

Figure 2. Dependencies in compute velocity step. 
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The computation of B, C and Qs are performed in two parts. The v indepen-
dent computations, computed only once for a given set of markers, represented 
by , ,s

p p spB C Q , and intermediary result variable Mp are calculated as shown be-
low: 

T

1 1

1 2 2 1

1 3 3 1

1 2 2

2 3 3 2

3 3

f

l l

l l l l

m l l l l

p l l
l

l l l l

l l

c
c c
c c

B
c

c c
c

µ
µ µ
µ µ

µ
µ µ

µ

=

 
 

+ 
 +

=  
 
 + 
  

∑                     (11) 

[ ]

1
1

2
1

3
1

0 1 0
0 0 1

0 0 1

f

f

f

m
l

l
m

s l
p

l

m
l

l

u

C u

u

=

=

=

 
 
 
   =    
 
 
  

∑

∑

∑

                   (12) 

( )( )2

1

ˆ ˆ
fm

j
sp l l l jl

Q u u u
=

= ∑                        (13) 

( )( )T

1

ˆ ˆ
fm

p l l l l
l

M u u u u
=

= ∑                       (14) 

where, 

( )ˆl
l lc u u=                              (15) 

2
1 2 3ˆ l l l

lu µ µ µ =                      (16) 

T

1 1

1 2 2 1

1 3 3 1

2 2

2 3 3 2

3 3

l l
j

l l l l
j j
l l l l

l j j
j l l

j
l l l l
j j

l l
j

u

µ µ
µ µ µ µ
µ µ µ µ

µ µ
µ µ µ µ

µ µ

 
 

+ 
 +
 =
 
 + 
  

                   (17) 

where l
jc  represents the thj  element of the vector lc  and 1 2 3, ,µ µ µ  are 

vectors. The v dependent computations, which are performed for all iterations, 
to complete the calculations of B, C and Qs are provided below: 

S
pB B v=                             (18) 

( )unstack s S
pC C v=                     (19) 
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T
s pQ M N N C= + + +                    (20) 

where, 

( )T stack Sv vv=                          (21) 

[ ]1 2 3s s sN Q Q Qω ω ω=                 (22) 

The new FLOP count for the AOPEA is provided in Table 2. In comparison 
with OPEA, the number of computations is observed to be significantly lower. 

The steps for selection of pose, discussed in Equation (10), can be skipped if J 
is greater than an already computed minimum value. Hence, neglecting the 
FLOP count for the same, the total FLOP count for AOPEA is 177mf + 216k2 – 
24. The separation of mf and k2 computational steps facilitates an increase in ex-
ecution time exclusive to either the number of markers or accuracy. For exam-
ple, a real-time application requiring higher accuracy can have lower mf and 
high k value, whereas a real-time application requiring higher mf can have low k 
iteration count. In both cases, only the computations relevant to each are in-
creased. 

To reduce the overhead of iterations further; the v dependent computations 
are performed twice-first with coarse accuracy with high increments for each 
iteration, and second with finer accuracy with smaller increments for each itera-
tion. Coarse accuracy iterations, having smaller values of k, provide a coarse es-
timation of ( ),vω  which helps in limiting the search to a smaller interval. The 
second round of v dependent computations are performed with finer accuracy 
values for a much smaller interval around the coarse estimated ( ),vω . These 
modifications result in refactoring the OPEA code to AOPEA algorithm along 
with refactored code. Thus, this reduces the total number of iterations per-
formed significantly. The increment values for the coarser and finer iterations 
are dependent on the application. The AOPEA can be implemented either as a 
sequential or parallel algorithm. 

The second phase of analysis looks at the implementation of AOPEA as a pa-
rallel algorithm. It begins with looking at data reusability for the algorithm. Fig-
ure 3 shows how some of the computed data variables can repeatedly be used. 

 
Table 2. FLOP count Split-up for AOPEA algorithm. 

Step v Independent FLOP count v Dependent FLOP count 

Compute Velocity 141mf − 12 160 

Compute Error 36mf − 12 56 

Selection of Pose 0 5 mf 

Per Iteration 0 5 mf + 216 

AOPEA Algorithm 177mf – 24 + (5mf + 216)k2 
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Figure 3. AOPEA data reusability. 
 

For the v independent computations, we arrange the data into two matrices 
such that one matrix-matrix multiplication provides the results for BP, Qsp and 
mp. We perform a global synchronization after v independent computations are 
completed. The results thus obtained are re-arranged into a single matrix, and 
distributed (data) to many-cores on GPUs, known as streaming processors. This 
arrangement facilitates coalesced memory access for all matrix or vector multip-
lications and additions involved. Coalesced memory access on GPUs, are shown 
to provide better performance in [15]. Since iterations are mutually exclusive, we 
can assign one iteration search to a single streaming processor on the GPU. 
Apart from separating the iterations, GPU-based code optimizations as shown in 
[15] are performed on the code for maximum performance. 

4. Results 

In this section, we analyze the effectiveness of AOPEA, its parallelization, and 
scalability. To analyze AOPEA, first, we compare the execution time of sequen-
tial implementation of AOPEA with a reference pose estimation algorithm, and 
sequential OPEA algorithm. For the reference pose estimation, we use the con-
tinuous pose estimation algorithm (CPEA). Second, we look at the execution 
time of parallel implementations of CPEA, OPEA, and AOPEA parallelized us-
ing standard parallel libraries. Lastly, we look at the execution time of our paral-
lel implementation of AOPEA, analyzing its scalability. 

The programs are executed on Intel Xeon CPU, having two E5620 proces-
sors operating at 2.40 GHz and running a 64 bit Windows 7 Pro Operating Sys-
tem. The sequential programs are executed on a 64-bit MatlabR2014b software. 
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Matlab’soriginal core has been developed from LINPACK and EISPACK [16]. 
LINPACK and EISPACK have proven to be computationally effective ways to 
solve linear algebra problems [17]. Hence we use this software to obtain the ref-
erence time for sequential programs. 

For parallel program execution, the CPU is equipped with a NVIDIA Tesla 
C2075 card. The card is equipped with 448 cores and 6GB of memory for general 
computations. Though K20x and K40m cards seem to be a good option for GPU 
parallelization, we limit ourselves to a low-cost GPU such as C2075. For the de-
velopment of parallel AOPEA implementation, NVIDIA’s CUDA 6.0 integrated 
with Microsoft Visual 2015 via NSight was used. For developing parallel CPEA, 
OPEA and AOPEA code using standard libraries, cuBLAS library package was 
used. cuBLAS library package is an accelerated Basic Linear Algebra Subpro-
grams (BLAS) library provided by NVIDIA for GPUs. A combination of APIs 
available in the cuBLAS package is used to perform the operations in CPEA, 
OPEA, and AOPEA. Lastly, for profiling NVIDIA’s Visual Profiler, NVVP, com- 
patible with CUDA 6.0 and Microsoft Visual 2015 was used to profile the code. 

For the purpose of this paper, we use execution time as a measure of perfor-
mance. Low execution time is considered to be better. Each implementation of 
an algorithm (CPEA, OPEA or AOPEA) for a given marker size and accuracy is 
considered as one simulation and the execution time is collected. Each simula-
tion is executed one thousand times and an average execution time (AET)is 
computed. The standard deviation of AET for all simulations was observed to be 
under 3%. Each simulation has been verified by reconstructing objects in images. 
Data, for verification of algorithms, is taken from videos under indoor computer 
lab conditions using 60 fps at 1080 p resolution. The number of markers for si-
mulations is varied to study the scalability of the algorithms, i.e., we choose 

5 6 112 , 2 , , 2fm  =   . For all simulations, the accuracy is assumed to be 0.01 ra-
dians which satisfies the accuracy required for 3D re-projection for real-time ap-
plications. For AOPEA, the accuracy for the coarse resolution is taken to be 0.15 
radians, and 0.01 radians for finer resolution. The interval for the finer search is 
taken to be twice the coarse resolution. 

Table 3 shows the sequential AET of CPEA, OPEA and AOPEA algorithms 
for a different number of markers per frame. For smaller mf, the CPEA has lower 
AET, whereas, for larger mf, the CPEA has a non-linear increase in AET. This is 
due to the computations in CPEA being ( )( )3

fO m . Hence for small mf, AET 
for CPEA is low and grows exponentially as mf increases. The computations of 
OPEA, as seen in Table 1, are ( )2

fO m k . Hence, the AET for OPEA is signifi-
cantly higher for all mf values. For AOPEA, the AET is higher than CPEA for 
lower values of mf values. This is due to the overhead in v independent compu-
tations that are pre-computed before the iterations. However, as v increases, 
there is a proportionate increase in AET. This is due to the iterative computa-
tions of AOPEA being linearly proportional to mf, as seen in Table 2. 
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Next, we look at the parallel implementation of CPEA, OPEA and AOPEA, 
implemented using cuBLAS library API calls. The results, which include the data 
transfer time between CPU and GPU, are presented in Figure 4. The CPEA, af-
ter parallelization, shows reduced AET in comparison to sequential AET, showing  
 
Table 3. Average execution time for sequential CPEA, OPEA, and AOPEA algorithms for 
different markers per frame. 

Markers per Frame 
AET (msecs) 

CPEA OPEA AOPEA 

32 0.32 1.52E+05 97.70 

64 1.10 2.97E+05 102.50 

128 1.80 5.84E+05 118.08 

256 8.50 1.18E+06 146.14 

512 41.60 2.31E+06 194.74 

1024 824.50 4.66E+06 296.45 

2048 70826.70 1.02E+07 503.71 

 

 
Figure 4. Average execution time comparison between parallel implementation of CPEA, OPEA and AOPEA using cuBLAS for 
Different Number of Markers. 
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good scaling till 512 mf. This is because CPEA has sufficient parallelism in its 
code. However, for mf > 512 the profiler indicated occupation of all cores on the 
GPU. This forces fragments of code in the queue to wait till cores become idle 
serializing the execution, increasing the AET. In the case of OPEA, the algorithm 
is embarrassingly parallel with respect to iterations i.e., the number of iterations 
is more than 90,000 and independent of one another. Hence, the problem has 
enough workload for GPUs even for low mf. The profilers indicate that the GPU 
cores are completely occupied. But, as mf increases, due to the lack of idle GPU 
cores, more code execution is serialized leading to higher AET. In case of 
AOPEA, with lower computations than CPEA and OPEA and increasing linearly 
with increase in mf, the AET shows small increments for every doubling of mf. 
Due to the separation of v dependent and independent computations in AOPEA, 
the data needs to be re-arranged after completing the v independent computa-
tions. This forces additional data transfers between CPU and GPU. For low val-
ues of mf, the AET is limited by the overhead of data transfers between CPU and 
GPU. In fact, the data transfers contribute to nearly 90% of AET for all values of 
mf. However, despite overhead of data transfer time, AOPEA has the best AET 
for higher values of mf. 

Figure 5 shows the AET of our version of AOPEA for different mf values. Due  
 

 
Figure 5. Average execution time of our implementation of AOPEA different number of markers. 
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to a single data transfer between CPU and GPU in each direction, and highly op-
timized code, the AET is found to be just over a millisecond for 2048 markers. 
The implementation also shows good scalability even at 2048 markers, unlike 
Figure 4 i.e., with an increase in markers there is a linear increase of AET. To 
better compare the performance of our version of parallel AOPEA, Figure 6 
provides the speed up of our parallel implementation of AOPEA with CPEA, 
OPEA and AOPEA implemented using cuBLAS library calls. In case of CPEA, 
the speed up exponentially increases, especially for higher mf. In case of OPEA, 
we observe a linear speed up with an increase in markers. Whereas for AOPEA, 
the speed up saturates at about 250×. The low AET and good scalability of our 
parallel implementation of AOPEA indicate its suit ability for real-time applica-
tions. 

Though our version of pose estimation shows low AET, using it for real-time 
applications may have higher AET. This is because real-time applications com-
bine pose estimation with tracking of markers. This would involve additional 
overheads. For example, real-time applications would use a video, where each 
frame is considered as an image. The image from the camera needs to be trans-
ferred to CPU, and then to the GPU. The image may also need to be pre- 
processed to obtain distinct position of markers. In order to show that our parallel  
 

 
Figure 6. Speed up of our implementation in comparison to CPEA, OPEA & AOPEA implemented using cuBLAS library calls. 
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implementation can be used for real time applications, we conducted a lab expe-
riment. A 1000 fps high-resolution camera was used to capture a video tracking 
32 markers. The position of the 32 markers were pre-calculated, but fed to the 
pose estimation algorithm in real time on a per image basis. Simulations for dif-
ferent image resolutions were conducted, where each image obtained from the 
camera, was copied to CPU, transferred to GPU, converted from Red-Green- 
Blue format to gray-scale format, and then pose was estimated. Using simula-
tions’ AET, the supported fps that our pose estimation algorithm could process, 
was calculated. 

Figure 7 shows the supported fps by our parallel implementation of AOPEA 
for 640 × 480 (640 k), 1280 × 720 (720 p) and 1920 × 1080 (1080 p) resolution 
videos. For 640 k videos, real-time applications using 600 fps can use our parallel 
implementation with ease since our implementation supports 681 fps. However, 
for 720 p and 1080 p, due to the large amount of data, we observe a sharp de-
crease in supported fps. For 720 p, our parallel implementation of AOPEA sup-
ports 285 fps, whereas for 1080 p, it supports 112 fps. 

5. Conclusions 

We have modified the algorithm provided in [1] to meet the performance 
 

 
Figure 7. Supported FPS for real-time pose estimation using our parallel implementation of AOPEA. 
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requirements of real-time applications. An analysis of the implementation indi-
cated that there was a) redundancy in computations and b) data and code or-
ganization un-fitting for GPU architectures. We modified the implementation, 
to suit parallelization on GPU architectures, in two phases: first, refactoring the 
algorithm to have lesser number of operations and enhanced parallelism, and 
secondly, optimizing the data and code to obtain better parallelism for GPU ar-
chitectures. We compared the effectiveness of our algorithm AOPEA, with 
CPEA and OPEA, for sequential and parallel implementations. For sequential 
implementation, AOPEA performed much better than its predecessor algorithm 
OPEA. However, for lower markers per frame, CPEA performed better than 
AOPEA whereas for higher markers per frame AOPEA performed better than 
CPEA. To understand the effectiveness of our parallel implementations, CPEA, 
OPEA and AOPEA were parallelized using the cuBLAS library and compared 
with our parallel implementation. The results showed that our parallel imple-
mentation of AOPEA has lowest execution time. Moreover, our parallel imple-
mentation also showed good scalability of performance with an increasing num- 
ber of markers per frame. Moreover, a lab simulation of a real-time application 
indicated that our parallel implementation of AOPEA supports at least 100 fps 
even for high-resolution videos. Hence, our parallel implementation of AOPEA 
could be implemented on GPUs for real-time applications using high-resolution 
frames with a high number of markers per frame. 

For our future work, we plan on pursuing two additions to the AOPEA: a) 
multi-GPU implementation of the algorithm for images from 3 - 4 cameras, and 
b) integrating our AOPEA and multi-GPU AOPEA algorithm with a tracking 
algorithm. 
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