
Journal of Computer and Communications, 2016, 4, 40-60
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2016.413004 October 26, 2016

A Six Sigma Security Software Quality
Management

Vojo Bubevski

Bubevski Consulting™, Brighton, UK

Abstract
Today, the demand for security software is Six Sigma quality, i.e. practically zero-
defects. A practical and stochastic method is proposed for a Six Sigma security soft-
ware quality management. Monte Carlo Simulation is used in a Six Sigma DMAIC
(Define, Measure, Analyze, Improve, Control) approach to security software testing.
This elaboration used a published real project’s data from the final product testing
lasted for 15 weeks, after which the product was delivered. The experiment utilised
the first 12 weeks’ data to allow the results verification on the actual data from the
last three weeks. A hypothetical testing project was applied, supposed to be com-
pleted in 15 weeks. The product due-date was Week 16 with zero-defects quality as-
surance aim. The testing project was analysed at the end of the 12th week with three
weeks of testing remaining. Running a Monte Carlo Simulation with data from the
first 12 weeks produced results which indicated that the product would not be able to
meet its due-date with the desired zero-defects quality. To quantify an improvement,
another simulation was run to find when zero-defects would be achieved. Simulation
predicted that zero-defects would be achieved in week 35 with 56% probability, and
there would be 82 defects from Weeks 16 - 35. Therefore, to meet the quality goals,
either more resources should be allocated to the project, or the deadline for the pro-
ject should be moved to Week 36. The paper concluded that utilising Monte Carlo
Simulations in a Six Sigma DMAIC structured framework is better than conventional
approaches using static analysis methods. When the simulation results were com-
pared to the actual data, it was found to be accurate within −3.5% to +1.3%. This ap-
proach helps to improve software quality and achieve the zero-defects quality assur-
ance goal, while assigning quality confidence levels to scheduled product releases.

Keywords
Security Software, Quality Management, Six Sigma, DMAIC, Monte Carlo
Simulation

How to cite this paper: Bubevski, V. (2016)
A Six Sigma Security Software Quality Man-
agement. Journal of Computer and Com-
munications, 4, 40-60.
http://dx.doi.org/10.4236/jcc.2016.413004

Received: July 15, 2016
Accepted: October 23, 2016
Published: October 26, 2016

Copyright © 2016 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.413004
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.413004
http://creativecommons.org/licenses/by/4.0/

V. Bubevski

41

1. Introduction

Six Sigma methodologies were originally formulated by Motorola in the mid-1980s.
Subsequently, Six Sigma evolved into a set of comprehensive and powerful improve-
ment frameworks and tools. Six Sigma refers to having six standard deviations between
the mean of the actual performance of the process and the expected performance limits
of the process. That translates to a 0.999997 probability (99.9997%) that the process
performance is as desired, or to fewer than 3.4 failures per one million opportunities.

Most industries today recognize Six Sigma as a standard means to accomplish proc-
ess and quality improvements. One of the principal Six Sigma methodologies is Define,
Measure, Analyse, Improve, and Control (DMAIC). DMAIC comprises [1] [2]:

1) Define: defining the process, objectives and quality goals;
2) Measure: establishing the metrics and measuring the current process performance;
3) Analyse: analysing the measurement results and collected data to determine the

root causes of the process variability and risk;
4) Improve: considering alternatives to eliminate the root causes and determining

and applying the improvement solution to upgrade the process; and
5) Control: continuous monitoring and establishing corrective mechanisms to rectify

the deviations and control the process performance in the future.
It has been well understood for more than a decade now that the root-cause of most

security exposures is in the software itself, and that these vulnerabilities are introduced
during the development process. The software development is an inherently uncertain
process, thus security defects are part of it. Software organisations in the past were not
striving for Six Sigma quality as they had profited from quickly releasing imperfect
software and fix the defects later in the field. In particular for security software, this is
now changing because software security vulnerabilities can be exploited before the se-
curity defects are patched. The “ship, pray and patch” approach is not applicable any-
more so the software organisations should aim Six Sigma quality for security software
[3].

Nowadays, security is one of the most important quality challenges of software sys-
tems and organisations. It is difficult though to keep the systems safe because of the se-
curity evolution. In order to adequately manage the security evolution, it should be
considered for all artefacts throughout the software development lifecycle. The article
published by Felderer et al. elaborated on the evolution of security software engineering
considering the security requirements, architectures, code, testing, models, risks and
monitoring [4].

Falah et al. presented an alternative approach to security software testing. In this pa-
per, the focus is on improving the effectiveness of the categorization of threats by using
Open 10 Web Application Security Project’s (OWASP) that are the most critical web
application security risks in generating threat trees in order to cover widely known se-
curity attacks [5].

A fuzz approach to security testing was presented by Pietikäinen et al. The authors
emphasised the challenges, experiences, and practical ways of utilizing fuzzing in soft-

V. Bubevski

42

ware development, focussing on software security aspects [6].
Software quality is a multidimensional property of a software product including cus-

tomer satisfaction factors such as reliability, functionality, usability, performance, capa-
bility, installability, serviceability, maintainability and documentation. Software proc-
esses are inherently variable and uncertain, thus involving potential risks. A key factor
in software quality is Software Reliability as it is the quality attribute most exposed to
customer observation. In this chapter, the terms “reliability” and “quality” are used in-
terchangeably.

The Orthogonal Security Defect Classification (OSDC) was established and used by
Hunny to assess and improve the quality of security software [7]. OSDC also provides
for applying qualitative analysis to the security software risk management. OSDC is
based on the Orthogonal Defect Classification (ODC), which was elaborated by Chillarege
and implemented by IBM™ (Ref., Chapter 9 in [8]). Chillarege applied the Inflection
S-shaped Software Reliability Growth Model for relative risk assessment.

Software Reliability is a main subject in Software Reliability Engineering (SRE) [8].
The software reliability analytic models have been used since the early 1970s [8]-[10].
The need for a simulation approach to software reliability was recognized in 1993 by
Von Mayrhauser et al. [11]. Subsequently, substantial work on simulation was pub-
lished [12]-[15].

Applications of Six Sigma in software development have been published since 1985
[16]-[22]. Six Sigma software practitioners usually employ analytic models, but it has
been reported that for Six Sigma, simulation models are superior [23]. Nanda and
Robinson published a Six Sigma roadmap for software quality improvements [24]. Ga-
linac & Car [25] elaborated an application of Six Sigma in continuous software proc-
esses’ improvement. In addition, Macke & Galinac [26] applied Six Sigma improve-
ments in software development. A six sigma DMAIC software quality improvement
was presented by Redzic & Baik [27]. Also, Xiaosong et al. [28] used Six Sigma DMAIC
to model the software engineering process.

Some other work related to software quality risk management was published [14], in
which simulation was applied for software reliability assessment. Gokhale, Lyu &
Trivedi [12] [13] developed simulation models for failure behaviour. Also, Gokhale &
Lyu [29] applied simulation for tailoring the testing and repair strategies.

Monte Carlo simulation is a methodology which iteratively evaluates a deterministic
model by applying a distribution of random numbers to account for uncertainty.
Simulation allows the use of probability and statistics for analysis [30] [31].

Security software plays a major role in Information Security and Computer Fraud as
defects in security software promote insecurity and fraud. So, the security software
quality is crucial for improving security and reducing fraud. Considering the losses re-
sulting from insecurity and fraud, nowadays Six Sigma quality of security software
(which practically translates to zero-defects security software) is a necessity. Traditional
security software quality management of ongoing software projects have two observed
deficiencies: 1) structured methods are not utilised to accomplish Six Sigma quality;

V. Bubevski

43

and 2) analytic risk models are applied.
A practical and stochastic method is presented in this paper that is Six Sigma security

software quality management. This method utilises proven-in-practice methodologies
such as Six Sigma Define, Measure, Analyse, Improve and Control (DMAIC), Monte
Carlo simulation and Orthogonal Security Defect Classification (OSDC). The DMAIC
framework is used to tactically enhance the software process which is inherently uncer-
tainin order to accomplish Six Sigma quality. Monte Carlo simulation is used to: 1)
measure software process performance using Six Sigma process capability metrics; 2)
measure and evaluate the quality (reliability); and 3) identifies and quantifies the qual-
ity risk. OSDC provides for considering the qualitative aspects of quality management,
which complements the quantitative analysis.

DMAIC is a recognised structured methodology across industries today for system-
atic process and quality improvements. Analytic risk models are very much inferior to
Monte Carlo simulation, which is a stochastic method. Significant qualitative im-
provements of quality management are provided by OSDC. Therefore, the perceived
deficiencies are eliminated, which significantly improves the security software quality
thus increasing information security and reducing the computer fraud risk. The
method provides for achieving Six Sigma security software quality thus gaining impera-
tive benefits such as savings and customer satisfaction. The method is compliant with
CMMI® (Capability Maturity Model Integration).

Published real project data are used to elaborate the method. It should be noted that
the method is presented from practical perspective only providing references for the
reader to explore the theory. The method has been successfully used in practice on
commercial projects gaining significant benefits [32].

The simulation models in the paper were implemented in Microsoft™ Excel® using
the Palisade™ @RISK® add-in.

2. Six Sigma Security Software Quality Management: The Method

This paper is based on author’s published work [32]-[35]. The method elaboration fol-
lows the DMAIC methodology stage-by-stage. The DMAIC stage reference is given in
the topics for understanding.

3. Hypothetical Scenario (DMAIC Define)

The elaboration is based on a real IBM™ software development project using published
data (Ref. Dataset ODC4 in [8]). The project is finished so this case is hypothetical. The
original defects are classified by using the ODC (Ref. Chapter 9 in [8]). In order to
emulate the security software scenario, the original defect classification is remapped to
OSDC based on the ODC-OSDC mapping matrix published by Hunny [7]. So in this
hypothetical security softwarescenario, the security software defects are available for the
entire testing cycle of 15 weeks. The OSDC Defect Types considered are: Security Func-
tionality (SF), Security Logic (SL) and Miscellaneous (Other). Toemulate the scenario
of an ongoing process, the data from the first 12 weeks of testing are used. The data

V. Bubevski

44

from the last three weeks are used to verify the results of the method.

4. Project Definition (DMAIC Define)

The assumption is that the project is within the final testing stage at the end of Week 12
(TI(12)), which is three weeks from the targeted delivery date of the product. The pro-
ject is defined as follows:

Project Objective: Complete final test phase by the end of Week 15 (TI(15)) as
planned and deliver the system on time, whilst achieving the quality goal. The delivery
date is at the beginning of Week 16.

Project Quality Goal: The aim is to ensure that the system is stable and ready for de-
livery. All detected defects should be fixed and re-tested before the end of testing. Also,
the final week of testing (Week 15) should be defect-free for all defect types including
total, i.e. zero defects to match the Six Sigma quality.

Problem Statement: Assess and mitigate the risk to deliver the system on time, whilst
achieving the quality goal.

CTQ: Critical to Quality for the project is the software reliability of the system.

5. Project Metrics (DMAIC Measure)

For the data in details, please refer to the Appendix section. The Failure Intensity Func-
tion (FIF) is used. The Poisson distribution is used to simulate FIF in the model. So, FIF
by Defect-Type need to be approximated. The logarithmic and exponential approxima-
tions were applied. The R-square values for the logarithmic approximations were the
following: 1) SF: R2 = 0.9254; 2) SL: R2 = 0.8981; 3) Other: R2 = 0.7385; and 4) Total: R2 =
0.9604. For the exponential approximation the R-square values were as follows: a) SF:
R2 = 0.8999; b) SL: R2 = 0.9276; c) Other: R2 = 0.7642; and d) Total: R2 = 0.9665. Com-
paring the R-square values, the exponential approximation is more accurate than the
logarithmic approximation. Thus, the exponential approximation of the FIF is used ap-
plying the Musa’s Basic Execution Time Model for simulation.

The aproximation of the transformed FIF by Defect Type (Figure 1) is as follows:

() ()FIFsf 262.33exp 0.274k k= − (1)

() ()FIFsl 179.17 exp 0.217k k= − (2)

() ()FIFother 41.138exp 0.127k k= − (3)

() () () ()FIFtotal FIFsf FIFsl FIFotherk k k k= + + (4)

where, FIFsf, FIFsl, FIFother and FIFtotal are the FIF for SF, SL & Other Defect-Type
and the Total, and k is the time interval (1, 2, ,k n= ).

6. Process Simulation (DMAIC Measure)

In order to analyze the process, the software reliability for the future period of three
weeks, i.e. from TI(13) to TI(15) inclusive, will be predicted (simulated). The simula-
tion model is the discrete event simulation based on Musa’s Basic Execution Time

V. Bubevski

45

Figure 1. Transformed FIF by defect-type.

Model. This model is used to predict the future course of the FIF.

The Poisson distribution is used in the model in order to account for the variability
and uncertainty of reliability. The FIF by Defect-Type are simulated for the three week
period TI(13)-TI(15), thus the mean of the Poisson distribution for every defect type
for TI(13), TI(14) and TI(15) will be equal to the value of the approximated FIF for
TI(13), TI(14) and TI(15) respectively (1 - 3). The Total for TI(13), TI(14) and TI(15) is
simply the sum of defects for all three types for TI(13), TI(14) and TI(15) respectively
(4).

To define the quality target according to the Quality Goal statement, the FIF will be
used. The target is to achieve Six Sigma quality, i.e. paractically zero-defects in Week 15
for all Defect-Types including Total, i.e. the FIF should be equal to zero for all defect
types including total defects in the final week of testing.

In order to define the quality targets in the model, the Six Sigma Target Value, Lower
Specified Limit (LSL) and Upper Specified Limit (USL) will be used: a) Target Value is
zero (0) for all defect types including Total; b) USL is three (3) for all defect types in-
cluding Total; b) LSL should be zero, but for all defect types including Total it will be
set to minus three (−3), i.e. a small negative number, to prevent an error in the Six
Sigma metrics calculations.

The Six Sigma metrics in the model are used to measure the performance of the
process. In this model the following Six Sigma metrics are used: a) Process Capability
(Cp); b) Process Capability Index (Cpk); and c) Sigma Level.

To apply the Poisson distribution, the @RISK® Poisson distribution function was
used. To calculate Standard Deviation, Minimum Value and Maximum Value, the cor-
responding @RISK® fuctions for Standard Deviation, Minimum Value and Maximum
Value were used. To calculate the Six Sigma process metrics Cp, Cpk and Sigma Level,
the @RISK® Cp, Cpk and Sigma Level functions were respectively used. For the Six

V. Bubevski

46

Sigma Target Value, USL and LSL, constants were specified. It should be noted that the
Six Sigma Cp, Cpk and Sigma Level metrics are calculated from the resulting probabil-
ity distribution from the simulation.

The Six Sigma process simulation results on Figure 2 show that the Total’s distribu-
tion in the final week of testing TI(15) totally deviates from the process target specifica-
tions (LSL, Target Value and USL are marked on the graph). Also, there is a 0.9 (90%)
probability that the Total in TI(15) would be in the range 11 - 24; 0.05 (5%) probability
that the Total would be more than 24; and 0.05 (5%) probability that the Total would be
less than 11.

Table 1 shows the predicted mean (µ) total number of defects by Defect-Type in the
final week of testing TI(15) including the Total. Also, the associated Standard Deviation
(σ) and Minimum and Maximum Values obtained from the simulation are shown.

The predicted Total in TI(15) is 17, with Standard Deviation of 4.17 defects. This
strongly indicates that the product will not be stable for delivery at the end of Week 15.

Figure 2. Total defects probability distribution for week 15.

Table 1. Predicted FIF for week 15.

Process µ σ Min value Max value

SF 4 2.08 0 15

SL 7 2.63 0 21

Other 6 2.48 0 18

Total 17 4.17 4 35

V. Bubevski

47

The Six Sigma metrics by Defect-Type for Week 15 is given in Table 2. The Cp met-
ric is extremely low for all defect types including the Total, so the chances that the
process will deliver the desired quality are extremely low. Also, the Cpk metric for all
defect types incl. total defects is negative, which confirms that the quality target won’t
be met. Finally, the Sigma Level is almost zero for all defect types including the Total.
Thus, there are no chances that the process will perform as expected. For example, the
process Sigma Level metrics is 0.50, 0.11 and 0.18 for SF, SL and Other defects respec-
tively. Finally, Sigma Level for total defects is practically zero (i.e. 0.0001), which con-
firms that the process will not perform at all, so it will not deliver the desired Six Sigma
quality at the end of Week 15.

7. Sensitivity Analysis (DMAIC Analyse)

The Six Sigma simulation sensitivity analysis can show what factors have the most in-
fluence on the process variability and risk. It also can quantify this influence. It is actu-
ally used to identify the Critical-To-Qualities (CTQs) of the software process. The pre-
sented correlation and regression sensitivity analysis is performed on the predicted
(simulated) data distribution for TI(13)-TI(15) only in order to determine the influence
of the change of a particular Defect-Type to the change of Total Defects for all Defect
Types.

On the regression coefficients graph (Figure 3) it can be seen that the top risk CTQ
is the SL Defect-Type with correlation coefficient to the Total of 0.63; the less risky
CTQ is the Other Defect-Type with correlation coefficient to the Total of 0.59; and the
minimal risk CTQ is the SF Defect-Type with correlation coefficient to the Total of
0.50.

Also, on the regression mapped values graph (Figure 4) the quantitative parameters
of the influence of the CTQs if they change by one Standard Deviation can be seen.
Thus, if the SL defects increase by one Standard Deviation, the Total will increase by
2.64 defects; if the Other defects increase by one Standard Deviation, the Total will in-
crease by 2.45 defects; and if SF defects increase by one Standard Deviation, the Total
will increase by 2.10 defects.

8. Analysis Conclusion and Recommendation (DMAIC Analyse)

The conclusions from this Six Sigma analysis: a) The testing process will not perform at
all as shown by the considered Six Sigma metrics. Therefore, the system would not be
ready for delivery as the Six Sigma quality goal will not be met at the beginning of Week

Table 2. Process six sigma metrics for week 15.

Process Cp Cpk Sigma level

SF 0.4805 −0.2056 0.5024

SL 0.3801 −0.4962 0.1064

Other 0.4034 −0.4199 0.1757

Total 0.2396 −1.1432 0.0001

V. Bubevski

48

Figure 3. Regression coefficients of total defects by defect-type.

Figure 4. Regression mapped values of total defects by defect-type.

V. Bubevski

49

16 if the project maintains the current situation; and b) The CTQ to deliver the system
is the software reliability, i.e. the predicted Total in TI(15) is 17 defects, versus the tar-
get value of sero defects.

Analysis Recommendation: In order to deliver the system on time and achieve the
quality goal, immediately undertake an improvement project to improve the process
and enhance the software reliability to accomplish the Six Sigma quality, which is the
CTQ.

9. Improvement Simulation (DMAIC Improve)

In order to undertake the recommended action, the software process needs to be ana-
lysed again. The purpose of this Six Sigma simulation is to quantitatively determine the
solution for improvement, which is an example of Six Sigma Design of Experiments
(DOE). For this purpose, all the escaped defects will be predicted, i.e. the defects that
are believed to be in the system but they are not captured. Therefore, the software reli-
ability for the future period will be simulated to predict when the reliability goal will be
achieved, i.e. in which time interval (week) there will be zero defects in total.

It was identified that the Six Sigma quality target could be met in Week 35. Hence
again, the discrete event simulation is applied based on Musa’s Basic Execution Time
Model to predict the future course of the FIF. All the parameters of this simulation
were exactly the same as the parameters of the previous simulation. FIF by Defect-Type
was simulated for the future period of 23 weeks, i.e. from Week 13 to Week 35.

As Figure 5 shows, the Total’s distribution in Week 35 of testing fits in the process

Figure 5. Total defects probability distribution for week 35.

V. Bubevski

50

target specifications (LSL, Target Value and USL are marked on the graph). Also, there
is a 0.90 (90%) probability that the Total in TI(35) would be in the specified target
range 0 - 2 defects; and 0.05 (5%) probability that the Total would be more than two
defects. The probability that there will be zero defects in total is approximately 0.56
(56%).

According to this prediction, the process can achieve the Six Sigma quality goal (i.e.
zero defects in total) in Week 35 if the project maintains the current situation. The con-
fidence levels of the predicted Total for Week 35 are around: 1) 56%, for zero defects; 2)
32%, for one defect; and 3) 10% for two defects. Thus, this indicates that the system will
be stable for delivery at the end of the prolonged testing achiving the Six Sigma quality
goal.

The simulation results for Week 35 are presented in Table 3. The predicted number
of defects for all types, including the Total, is within the specified target range. The
Standard Deviation for all types including the Total is low, i.e. nearly zero defects.

The process Six Sigma metrics at the end of Week 35 are given in Table 4. The Cp
metric is greater than one for all defect types including the Total, so the chances that
the process will deliver the desired quality are extremely good. Also, the Cpk metric for
all defect types incl. total defects is greater than one, which confirms that the quality
target will be met. Finally, the Sigma Level is very high for all defect types including the
Total. Thus, there are very good chances that the process will perform as expected.
For example, the process Sigma Level metrics is 16.91, 7.28 and 3.17 for SF, SL and
Other defects respectively. Finally, Sigma Level for total defects is almost three (i.e.
2.97), which confirms that the process will certainly perform well, so it will deliver the
desired Six Sigma quality at the end of Week 35. Compared with the Six Sigma metrics
of the preceding Six Sigma simulation in Table 2, the metrics in Table 4 are exception-
ally better.

All three Six Sigma metrics suggest that there are very realistic chances that the proc-
ess will perform and deliver the desired Six Sigma quality at the end of Week 35. This is

Table 3. Predicted FIF for week 35.

Process µ σ Min Value Max Value

SF 0 0.13 0 2

SL 0 0.31 0 2

Other 0 0.70 0 5

Total 0 0.78 0 5

Table 4. Process six sigma metrics for week 35.

Process Cp Cpk Sigma Level

SF 7.6031 7.5590 16.9116

SL 3.2710 3.1673 7.2756

Other 1.4273 1.1953 3.1747

Total 1.2875 1.0300 2.9677

V. Bubevski

51

also strongly supported by the very low Standard Deviation, that is 0.13, 0.31, 0.70 and
0.78 for SF, SL, Other and Total defects respectively in Week 35, which is practically
zero defects.

10. Improvement Recommendation (DMAIC Improve)

The following defines and quantifies the solution for the improvement. The predicted
total numbers of defects by Defect-Type including the Total for the future periods are
shown in Table 5.

The predicted defects for Week 13 - 15 are expected to be detected and removed by
the current project until the end of Week 15. The predicted defects expected to be
found in the system from Week 16 to Week 35 are unaccounted for. These defects need
to be detected and removed until the end of Week 15 in order to achieve the quality goal.

Therefore, the process improvement recommendation is: Immediately undertake an
improvement project to deliver the system quality improvements as required to achieve
the quality goals. It is very important to assign a Surgical Team to accomplish the im-
provement [36]. The objectives of this project are:

1) Reanalyse the unstable defects applying Casual Analysis and Resolution (CAR);
2) Consider and prioritise defects by type as identifid in the sensitivity analysis (Ref.

Sec. Sensitivity Analysis) to complement the quantitative analysis with qualitative
analysis provided by OSDC;

3) Determine the quality improvement action plan, establishing an additional tactical
test plan;

4) Execute the tactical test plan to additionally test the system and detect and repair
the escaped defects, i.e. the defects that is believed are in the system but have not been
detected. According to the simulation above, there are 82 predicted escaped defects in
total (TI(16)-TI(35), Table 6);

Table 5. Predicted defects per defect-type for future periods.

Time Period SF SL Other Total

TI(13)-TI(15) 17 27 21 65

TI(16)-TI(35) 11 28 43 82

TI(13)-TI(35) 28 55 64 147

Table 6. Results comparison by week.

Week 13 Week 14 Week 15

(Actual)
Predicted

Error %
(Actual)

Predicted
Error %

(Actual)
Predicted

Error %

SF (6) 7 16.67 (7) 6 −14.29 (4) 4 0

SL (14) 11 −21.43 (7) 9 28.57 (15) 7 −53.33

Other (8) 8 0 (3) 7 133.33 (1) 6 500

Total (28) 26 −7.14 (17) 22 29.41 (20) 17 −15

V. Bubevski

52

5) The additional testing, detection and correction of the escaped defects should be
completed by the end of Week 15 to achieve the quality goal.

11. Improvement Definition (DMAIC Improve)

It should be stressed that the process improvement is a new testing project, which is to-
tally independent of the current testing in progress. For project planning purposes, it is
needed to determine the desired performance of the improvement testing process dur-
ing the future three weeks. There are only three weeks available to accomplish the im-
provement, as the quality goal needs to be met at the end of testing (i.e. at the ond of
Week 15).

Within the last stage of DMAIC it is required to monitor the process performance
and variances, and implement corrective measures if deviations from the desired per-
formance are found in the future. For this purpose, keeping one week as the time in-
terval for observation is not good because it provides for only two future check points.
Thus, the time interval for observation will be reduced to one day, which provides for
five check points per week.

The three weeks available for the project is equivalent to 15 working days. Thus, the
proposed schedule for the testing improvement project during the next 15 Days is: 1)
one day to start the project and appoint the staff; 2) three days to complete the required
analysis and test plans; and 3) 11 days of testing where the escaped defects will be de-
tected and fixed.

The predicted distribution of the escaped defects by Defect-Type including the Total,
which need to be detected and fixed during the testing period of 11 days, i.e. TI(1)-
TI(11), is: 1) SF: 11 Defects; 2) SL: 28 Defects; 3) Other: 43 Defects; and 4) Total: 82
Defects.

12. Alternative (DMAIC Improve)

Alternatively, if the project maintains the status quo situation, the system will be ready
for delivery in Week 35. Thus, testing needs to continue until Week 35 inclusive, i.e. 23
weeks more than initially planned. The confidence level is 56% that the Six Sigma qual-
ity requirements will be met.

13. Simulation for Monitoring (DMAIC Control)

It should be emphasized that in order to manage the quality risk, it is imperative to es-
tablish continuous monitoring in order to discover any variances in the process per-
formance, and determine and implement the appropriate corrective actions to elimi-
nate the deviations. This will ultimately mitigate the risk and allow for the delivery of
the product on time and the achievement of the quality goals.

In order to deliver the product on time and meet the quality goals, the control phase
should be applied to both the current and the improvement testing process. It is rec-
ommended to create two additional Six Sigma simulation models and to apply them
regularly on a dayly basis to both processes until the end of the projects. The Six Sigma

V. Bubevski

53

simulation models for monitoring of the improvement testing process will be very
similar to the models presented above.

Considering the fact that we have no original failure (defect) data for the purpose of
monitoring, it will be speculative to craft the data to demonstrate the DMAIC Control
phase.

14. Verification of Results

The experimental results, i.e. the predictions, are compared with the actual available
data for verification. It should be underlined that there are no data available from Sys-
tem’s Operation. Thus, it is impossible to verify the predictions for improvments and
predictions for control.

Three comparisons are performed as presented below: 1) Comparison by Week; 2)
Partial Data Comparison; and 3) Overall Data Comparison.

Comparison by Week: The results are verified by comparing the predicted total
number of defects per Defect-Type by week including the Total, versus the corre-
sponding actual defects for period TI(13)-TI(15). This comparison is presented in Ta-
ble 6.

The SF defects and the Total are reasonably predicted. The SL defects are underesti-
mated for two weeks and overestimated for one week with moderate errors. The Other
defects are precisely predicted for one week and badly overestimated for two weeks.
Overall, these prediction results are tolerable.

Partial Data Comparison: The results are verified by comparing the predicted total
number of defects by Defect-Type including the Total for the three weeks period
TI(13)-TI(15), versus the corresponding actual defects. The software reliability MTTF
is also compared (Table 7).

Here, the SF defects and the Total are exactly predicted. The SL defects are underes-
timated with a moderate error. The Other defects are substantially overestimated.
Overall, these prediction results are acceptable.

Overall Data Comparison: The results are verified by comparing the actual and pre-
dicted total number of defects by Defect-Type including the Total for the entire period
TI(1)-TI(15), with the corresponding actual defects; The MTTF is also compared. The
period of observation is 15 weeks. This comparison is presented in Table 8.

Again, the SF defects and the Total are accurately predicted. The SL defects are un-
derestimated with a minimal error. The Other defects are slightly overestimated. Thus,

Table 7. Partial data comparison.

Process
Defects MTTF (Weeks)

Actual Pred. Error % Actual Pred. Error %

SF 17 17 0 0.8824 0.8824 0

SL 36 27 −25 0.4167 0.5556 33.3333

Other 12 21 75 1.2500 0.7143 −42.8571

Total 65 65 0 0.2308 0.2308 0

V. Bubevski

54

Table 8. Overall data comparison.

Process
Defects MTTF (Weeks)

Actual Pred. Error % Actual Pred. Error %

SF 907 907 0 0.0165 0.0165 0

SL 712 703 −1.2640 0.0211 0.0213 1.2802

Other 251 260 3.5857 0.0598 0.0577 −3.4615

Total 1870 1870 0 0.0080 0.0080 0

these prediction results are very good.

Considering the calculated errors in Tables 6-8, the experimental results are satis-
factorily verified. It should be emphasized that the DMAIC-Simulation analysis is more
reliable compared to the conventional models. This is because the variability and un-
certainty in the software quality process are catered for by applying probability tools.
This substantially increases the confidence in the DMAIC-simulation decision support,
which is very important for the project.

15. Conclusions

The quality of security software is one of the crucial contributing factors to Information
Security and Computer Fraud. So, efficient and comprehensive security software qual-
ity management is a necessity to improve the quality, enhance information security and
reduce the risk of computer fraud. Considering the importance of Information Security
and Computer Fraud today, the demand for security software is Six Sigma quality, i.e.
practically zero-defects security software.

The conventional security software quality management of ongoing projects has two
major weaknesses: 1) analytic risk models are used; and 2) structured methodologies
for process and quality improvements are not systematically applied. The proposed
practical method applies Six Sigma DMAIC, Monte Carlo simulation and OSDC
methodologies. Simulation is superior to analytic risk models and DMAIC is a proven
and recognized methodology for systematic process and quality improvements. OSDC
provides for qualitative analysis offering qualitative improvements. This synergetic
method eliminates the observed limitations of the conventional approach.

The method fully follows the DMAIC framework including the five phases: define,
control, analyse, improve and control. The elaboration of the method is outlined below.
1) DMAIC Define:
a) The hypothetical security software scenario was expalined highliting that:
A. The published real project was finished;
B. The testing data were claisified by using ODC;
C. To emulate the scenario of security software, the ODC classification was remapped

to OSDC by using ODC-OSDC mapping matrix;
D. The data were available for the entire testing cicle of 15 weeks; and
E. The OSDC defect types used were SF, SL and Other.
b) The project was defined from Six Sigma DMAIC perspective including:

V. Bubevski

55

A. The assunption that the testing stage was at the end of Week 15
B. The objective to complete the testing in Week 15 and deliver the product in Week

16 achieving the quality target;
C. All defects should be fixed by the end of testing;
D. The quality goal is that the final week of testing (i.e. Week 15) should be defect-free;
E. The problem statement is to assess and mitigate the risk to deliver the product on

time achieving the quality goal; and
F. The Six Sigma CTQ is the software reliability.
2) DMAIC Measure:
a) The project metrics was elaborated focusing on the testing data:
A. The original FIF was transformed in order to be used;
B. The transformed FIF was approximated;
C. The exponential approximation was sellected based on the R-square values;
D. Poisson distribution was used to simulate FIF; and
E. The Poisson distribution parameters were determined for the simulation.
b) Monte Carlo Simulation was run with data from the first 12 weeks;
c) Simulation results strongly indicated that the product would not be able to meet its

due-date with the desired zero-defects quality.
3) DMAIC Analyse: Simulation sensitivity analysis was performed to identify and

quantify the influence of the individual defect types, on the total defects:
a) The Regresstion Coefficients determined the coefficients of: 0.63 for the top risk SL

defects; 0.59 for the less risky Other defects; and 0.50 for the minimal risk SF defect
type.

b) Regression Mapped Values quantified the influence to the Total defects in terms of
standard deviation if individual defect types change for one standard deviation. So
the Total will increase as follows: 2.64 defects for SL; 2.45 defects for Other; and 2.10
for the SF defect type.

4) DIMAIC Improve:
a) Monte Carlo Simulation was run with data from the first 12 weeks to predict when

the zero-defects would be achieved;
b) Simulation results indicated that the product would achieve the desired zero-defects

quality in week 35 with confidence level of 56%;
5) DIMAIC Improve: Improvement recommendation was determined as follows:
a) Immediately undertake an improvement project to deliver the system with zero-

defects on time;
b) Assign a Surgical Team to accomplish the improvement;
c) The objectives are:
A. Reanalyse the unstable defects applying Casual Analysis and Resolution (CAR);
B. Consider and prioritise defects by type as identifid in the sensitivity analysis (#3

above) to complement the quantitative analysis with qualitative analysis provided by
OSDC;

C. Determine the quality improvement action plan, establishing an additional tactical

V. Bubevski

56

test plan;
D. Execute the tactical test plan to additionally test the system and detect and repair the

escaped defects, i.e. there are 82 predicted escaped defects in total (TI(16)-TI(35);
E. The additional testing, detection and correction of the escaped defects should be

completed by the end of Week 15 to deliver the product on time and achieve the
quality goal.

6) DIMAIC Improve: Improvement Definition:
a) There are only three weeks available to accomplish the improvement, i.e. 15

working days;
b) Tthe proposed project schedule is:
A. One day to start the project and appoint the staff;
B. Three days to complete the required analysis and test plans; and
C. 11 days of testing where the escaped defects will be detected and fixed.
c) The predicted escaped defects which need to be detected and fixed was:
A. SF: 11 Defects;
B. SL: 28 Defects;
C. Other: 43 Defects; and
D. Total: 82 Defects.
7) DIMAIC Improve: Alternatively:
a) If the project continues as is, the product would achieve zero-defects in Week 35;
b) Testing needs to continue until Week 35 inclusive, i.e. 23 weeks more than initially

planned;
c) Product would be delivered in Week 36;
d) Probabilty could be 56% that the Six Sigma quality requirements would be met.
8) DIMAIC Control:
a) It is vital to continuously monitor the 11 days of testing on daily bases;
b) Two additional Six Sigma simulation models need to be applied for monitoring to

provide for measuring and analysis of the testing process;
c) As there are no original defects data for the purpose of monitoring, the control stage

is not demonstrated.
The method results were satisfactorily verified. Comparing the simulation results

with the actual data, the results were found to be accurate within −3.5% to +1.3%.
The method is compatible with CMMI® and can substantially help software projects

to deliver the product on time and achieve the Six Sigma quality goals. It tactically uses
the synergy of the three applied methodologies, i.e. Six Sigma DMAIC, Monte Carlo
Simulation and OSDC, which provides for strong performance-driven software process
improvements and achieves important benefits including savings, quality and customer
satisfaction.

In comparison with the conventional methods, the stochastic approach is more reli-
able and comprehensive as the inherent variability and uncertainty are accounted for,
allowing for probability analysis of the risk. Therefore, the confidence in the method’s
decision support is substantial, which is of mission-critical importance for software

V. Bubevski

57

projects.

Acknowledgements

I would like to acknowledge Lyu, Michael R. [8] for publishing the real software pro-
jects data. I have used these data to experiment with the new method and additionally
prove the concept on external commercial projects. This substantially increased the
confidence in the new approach and allowed me to publish my work. Very special and
warm thanks to my daughter, Ivana Bubevska, for reviewing the manuscript and sug-
gesting very relevant improvements. She has also substantially helped with the editing
and formatting of the text. Her contribution has been essential for the successful publi-
cation of this work.

References
[1] Siviy, J.M., Penn, L.M. and Stoddard, R.W. (2007) CMMI® and Six Sigma: Partners in Proc-

ess Improvement (SEI Series in Software Engineering). Addison-Wesley Professional, Bos-
ton.

[2] Borror, C.M. (2009) The Certified Quality Engineer Handbook. 3rd Edition, ASQ Quality
Press, Milwaukee, 321-332.

[3] Wysopal, C. (2008) Building Security into Your Software-Development Lifecycle. SC Maga-
zine, USA, Article 104705.
http://www.scmagazine.com/building-security-into-your-software-development-lifecycle/a
rticle/104705/

[4] Felderer, M., et al. (2014) Evolution of Security Engineering Artifacts: A State of the Art
Survey. International Journal of Secure Software Engineering, 5, 48-98.
http://dx.doi.org/10.4018/ijsse.2014100103

[5] Falah, B., Akour, M. and Oukemeni, S. (2015) An Alternative Threat Model-Based Ap-
proach for Security Testing. International Journal of Secure Software Engineering, 6, 50-64.
http://dx.doi.org/10.4018/IJSSE.2015070103

[6] Pietikäinen, P., Kettunen, A. and Röning, J. (2016) Steps towards Fuzz Testing in Agile Test
Automation. International Journal of Secure Software Engineering, 7, 38-52.
http://dx.doi.org/10.4018/IJSSE.2016010103

[7] Hunny, U. (2012) Orthogonal Security Defect Classification for Secure Software Develop-
ment. PhD Thesis, Queen’s University, Kingston.

[8] Lyu, M.R. (1996) Handbook of Software Reliability Engineering. IEEE Computer Society
Press, Washington DC.

[9] Kan, S.H. (2002) Metrics and Models in Software Quality Engineering. Addison-Wesley
Professional, Boston.

[10] Xie, M. (1991) Software Reliability Modelling. World Scientific, Singapore.
http://dx.doi.org/10.1142/1390

[11] Von Mayrhauser, A., Malaiya, Y.K., Srimani, P.K. and Keables, J. (1993) On the Need for
Simulation for Better Characterization of Software Reliability. Proceedings of 4th Interna-
tional Symposium on Software Reliability Engineering, Denver, 3-6 November 1993, 264-
273. http://dx.doi.org/10.1109/issre.1993.624296

[12] Gokhale, S.S., Lyu, M.R. and Trivedi, K.S. (1997) Reliability Simulation of Fault-Tolerant
Software and Systems. Proceedings of Pacific Rim International Symposium on Fault-Tol-

http://www.scmagazine.com/building-security-into-your-software-development-lifecycle/article/104705/
http://www.scmagazine.com/building-security-into-your-software-development-lifecycle/article/104705/
http://dx.doi.org/10.4018/ijsse.2014100103
http://dx.doi.org/10.4018/IJSSE.2015070103
http://dx.doi.org/10.4018/IJSSE.2016010103
http://dx.doi.org/10.1142/1390
http://dx.doi.org/10.1109/issre.1993.624296

V. Bubevski

58

erant Systems, Taipei, 15-16 December 1997, pp. 167-173.
http://dx.doi.org/10.1109/prfts.1997.640143

[13] Gokhale, S.S., Lyu, M.R. and Trivedi, K.S. (1998) Reliability Simulation of Component-
Based Software Systems. Proceedings of Ninth International Symposium on Software Reli-
ability Engineering.

[14] Tausworthe, R.C. and Lyu, M.R. (1996) Chap. 16. Software Reliability Simulation. In: Lyu,
M.R., Ed., Handbook of Software Reliability Engineering, IEEE Computer Society Press and
McGraw-Hill Book Company, 661-698.

[15] Lakey, P.B. (2002) Software Reliability Prediction is not a Science… Yet. Chillarege Press,
Denver.

[16] Tayntor, C.B. (2002) Six Sigma Software Development. Auerbach, Boca Raton.

[17] Mandl, R. (1985) Orthogonal Latin Squares: An Application of Experiment Design to
Compiler Testing. Communications of the ACM, 28, 1054-1058.
http://dx.doi.org/10.1145/4372.4375

[18] Tatsumi, K. (1987) Test Case Design Support System. Proceedings of International Con-
ference on Quality Control, Tokyo, 1987, 615-620.

[19] Brownlie, R., Prowse, J. and Phadke, M.S. (1992) Robust Testing of AT&T PMX/StarMAIL
Using OATS. AT&T Technical Journal, 71, 41-47.
http://dx.doi.org/10.1002/j.1538-7305.1992.tb00164.x

[20] Bernstein, L. and Yuhas, C.M. (1993) Testing Network Management Software. Journal of
Network and Systems Management, 1, 5-15. http://dx.doi.org/10.1007/BF01026825

[21] Murugappan, M. and Keeni, G. (2003) Blending CMM and Six Sigma to Meet Business
Goals. IEEE Software, 20, 42-48. http://dx.doi.org/10.1109/MS.2003.1184165

[22] Zhao, X.S., He, Z., Z.M., Wang, J. and Yu, D.N. (2008) Process Integration of Six Sigma and
CMMI. Proceedings of 6th International Conference on Industrial Informatics (INDIN),
Daejeon, 13-16 July 2008, 1650-1653.

[23] Ferrin, D.M., Miller, M.J. and Muthler, D. (2002) Six Sigma and Simulation, So What’s the
Correlation? Proceedings of the 2002 Winter Simulation Conference, San Diego, 8-11 De-
cember 2002, 1439-1443. http://dx.doi.org/10.1109/wsc.2002.1166415

[24] Nanda, V. and Robinson, J.A. (2011) Six Sigma Software Quality Improvement. McGraw-
Hill Professional, New York.

[25] Galinac, T. and Car, Z. (2007) Software Verification Improvement Proposal Using Six
Sigma. In: Münch, J. and Abrahamsson, P., Eds., Product-Focused Software Process Im-
provement, Springer, Berlin, 51-64. http://dx.doi.org/10.1007/978-3-540-73460-4_8

[26] Macke, D. and Galinac, T. (2008) Optimized Software Process for Fault Handling in Global
Software Development. In: Wang, Q., Pfahl, D. and Raffo, D.M., Eds., Making Globally
Distributed Software Development a Success Story, Springer, Berlin, 395-406.
http://dx.doi.org/10.1007/978-3-540-79588-9_34

[27] Redzic, C. and Baik, J. (2006) Six Sigma Approach in Software Quality Improvement. Pro-
ceedings of 4th International Conference on Software Engineering Research, Management
and Applications (SERA), Seattle, 9-11 August 2006, 396-406.
http://dx.doi.org/10.1109/sera.2006.61

[28] Zhao, X., He, Z., Gui, F. and Zhang, S. (2008) Research on the Application of Six Sigma in
Software Process Improvement. Proceedings of 4th International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP), Harbin, 15-17 August
2008, 937-940. http://dx.doi.org/10.1109/iih-msp.2008.63

http://dx.doi.org/10.1109/prfts.1997.640143
http://dx.doi.org/10.1145/4372.4375
http://dx.doi.org/10.1002/j.1538-7305.1992.tb00164.x
http://dx.doi.org/10.1007/BF01026825
http://dx.doi.org/10.1109/MS.2003.1184165
http://dx.doi.org/10.1109/wsc.2002.1166415
http://dx.doi.org/10.1007/978-3-540-73460-4_8
http://dx.doi.org/10.1007/978-3-540-79588-9_34
http://dx.doi.org/10.1109/sera.2006.61
http://dx.doi.org/10.1109/iih-msp.2008.63

V. Bubevski

59

[29] Gokhale, S.S. and Lyu, M.R. (2005) A Simulation Approach to Structure-Based Software
Reliability Analysis. IEEE Transactions on Software Engineering, 31, 643-656.
http://dx.doi.org/10.1109/TSE.2005.86

[30] Bratley, P., Fox, B.L. and Schrage, L.E. (1983) A Guide to Simulation. Springer-Verlag, New
York. http://dx.doi.org/10.1007/978-1-4684-0167-7

[31] Rubinstein, R.Y. and Kroese, D.P. (2008) Simulation and the Monte Carlo Method. John
Wiley & Sons, Hoboken.

[32] Bubevski, V. (2013) A Novel Approach to Software Quality Risk Management. Journal of
Software: Testing, Verification and Reliability, 24, 124-154.
http://dx.doi.org/10.1002/stvr.1488

[33] Bubevski, V. (2013) A Stochastic Approach to Security Software Quality Management. 2013
European Modelling & Simulation Symposium, Athens, September 2013.

[34] Bubevski, V. (2010) An Application of Six Sigma and Simulation in Software Testing Risk
Assessment. 2010 3rd International Conference on Software Testing, Verification and
Validation (ICST), Paris, 6-10 April 2010, 295-302. http://dx.doi.org/10.1109/ICST.2010.23

[35] Bubevski, V. (2009) A Simulation Approach to Six Sigma in Software Development. Pro-
ceedings of the 2009 Summer Computer Simulation Conference, Istanbul, 13-16 July 2009,
125-132.

[36] Brooks Jr., F.P. (1995) The Mythical Man-Month (Essays on Software Engineering, Anni-
versary Edition). Addison-Wesley, Boston.

[37] Conover, W.J. and Iman, R.L. (1981) Rank Transformations as a Bridge Parametric and
Nonparametric Statistics. The American Statistician, 35, 124-129.

http://dx.doi.org/10.1109/TSE.2005.86
http://dx.doi.org/10.1007/978-1-4684-0167-7
http://dx.doi.org/10.1002/stvr.1488
http://dx.doi.org/10.1109/ICST.2010.23

V. Bubevski

60

Appendix

The elaboration is based on a real IBM™ software development project using published
data (Ref. Dataset ODC4 in [8]). The project is finished so this case is hypothetical. The
original defects are classified by using the ODC (Ref. Chapter 9 in [8]). In order to
emulate the security software scenario, the original defect classification is remapped to
OSDC based on the ODC-OSDC mapping matrix [7]. So in this hypothetical security
software scenario, the security software defects are available for the entire testing cycle
of 15 weeks.

Therefore, the pretended security software defects found in testing are given in Table
A1. Considered are the OSDC Defect Types of Security Functionality (SF), Security
Logic (SL) and Miscellaneous (Other). The time interval of observation is one week.

In order to demonstrate the method, it is assumed that the project is at the end of the
week 12. So, the data from week 1 - 12 is used for analysis, shown in Black in Table A1.
The data from the final three weeks of testing (week 13 - 15) shown in Blue, in Table
A1, will be used to verify the method’s results. The time interval of analysis start with
week one and ends with week 12, that is the start Time Interval TI(1), etc., and the end
Time Interval TI(12).

The Failure Intensity Function (FIF) cannot be derived from raw data. So we apply
Rank Transformation [37] to get a smooth FIF, which will be approximated for the
analysis. The entire time period of our observation is 15 weeks based on selected data
available from the first 12 weeks.

Table A1. Security software defects count data.

Week SF SL Other

1 23 93 23

2 25 33 23

3 240 43 21

4 37 20 7

5 147 98 23

6 203 36 22

7 27 64 18

8 30 112 23

9 107 43 13

10 24 93 23

11 16 20 32

12 11 8 6

13 4 15 1

14 7 7 3

15 6 14 8

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	A Six Sigma Security Software Quality Management
	Abstract
	Keywords
	1. Introduction
	2. Six Sigma Security Software Quality Management: The Method
	3. Hypothetical Scenario (DMAIC Define)
	4. Project Definition (DMAIC Define)
	5. Project Metrics (DMAIC Measure)
	6. Process Simulation (DMAIC Measure)
	7. Sensitivity Analysis (DMAIC Analyse)
	8. Analysis Conclusion and Recommendation (DMAIC Analyse)
	9. Improvement Simulation (DMAIC Improve)
	10. Improvement Recommendation (DMAIC Improve)
	11. Improvement Definition (DMAIC Improve)
	12. Alternative (DMAIC Improve)
	13. Simulation for Monitoring (DMAIC Control)
	14. Verification of Results
	15. Conclusions
	Acknowledgements
	References
	Appendix

