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Abstract 
This paper presents new half rate Quasi Cyclic Low Density Parity Check (QC- 
LDPC) codes formed on the basis of combinatorial designs. In these codes, circulant 
matrices of the parity check matrix are formed on the basis of subsets in which the 
difference between any two elements of a subset is unique with all differences ob-
tained from the same or different subsets. This structure of circulant matrices guar-
antees non-existence of cycle-4 in the Tanner graph of QC-LDPC codes. First, an ir-
regular code with girth 6 constituted by two rows of circulant matrices is proposed. 
Then, more criteria will be considered on the structure of subsets with the mentioned 
feature aiming to represent a new scheme of regular QC-LPDC codes with girth at 
least 8. From simulations, it is confirmed that codes have similar to or better perfor-
mance than other well-known half rate codes, while require lower complexity in their 
design. 
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1. Introduction 

Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes are represented as reputable 
structured-type LDPC codes, which are considered in the current and next generations 
of broadband transmission and storage systems [1] [2]. This is mainly because of their 
high error correcting performance in different channels, low-complex encoding and 
parallel iterative decoding conducted on the constituted circulant matrices. QC-LDPC 
codes are conventionally implemented as high rate and long length codes, while short 
cycles (in particular cycle-4) are prohibited in structure of their parity check matrix1. 
On the other hand, half rate of these codes with girth 6 and short lengths has been in-

 

 

1In this letter, codes with rates greater than half and length greater than 1000 are categorized as high rate and 
long-length codes. 
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terested in some applications such as multirate transmission systems affected by fading 
phenomenon [3]. For short to medium block length codes, an algorithm was proposed, 
which removes harmful structures of the code’s graph and improves the performance at 
the medium to high signal to noise ratios. Indeed, this improvement provides a lower 
error floor for the code.  

It is also possible to have half rate of QC-LDPC codes with girth greater than 6 to 
produce the error floor at lower bit error rates (BERs). These codes are initially de-
signed as a regular code with girth 6 based on approximate cycle extrinsic message de-
gree (ACE) algorithm [4] or arithmetic progression (AP) sequence [5]. Then, a masking 
technique is accomplished on their parity check matrix to prohibit existence of cycle-6 
and form an irregular code with girth at least 8. QC-LDPC codes can be implemented 
based on progressive edge growth algorithm (PEG). In PEG algorithm, check nodes are 
formed so as to produce the maximum distance possible from the considered variable 
code [6]. This structure will lead to construct cycles with the long length and conse-
quently provides a code with the high girth. Error correcting capability of these codes 
can be improved by selecting those edges that provide the best performance for its iter-
ative decoder [7]. 

Alternatively, half-rate QC-LDPC codes with the high performance are constructed 
based on circulant permutation matrices (CPMs). In one method, CPMs with an arbi-
trary column and row weights are designed based on greatest common divisor (GCD) 
concept. In addition, a proper masking technique is applied to construct a code with 
girth at least 8 [8]. A modification on the GCD-based structure of CPMS was proposed 
aiming to reduce the encoding complexity. In this case, information part of parity 
check matrix is only formed by the greatest common divisor concept [9]. A criterion is 
defined for construction of this part of the parity check matrix to prohibit existence of 
cycles 4 and 6. Then, a quasi-diagonal structure is applied on the parity check matrix to 
maintain girth 8 for the code. Similarly, a suitable masking technique is applied to in-
crease girth of the code. 

CPM-based parity check matrix of QC-LDPC codes is possibly formed by combina-
tion of finite fields and combinatorial designs. In this case, circulant matrices are ob-
tained by combination of two arbitrary subsets of elements from a defined field. Finally, 
an appropriate masking technique is applied on the obtained CPM-based matrix to 
construct QC-LDPC codes with girth 8 or higher [10].  

QC-LDPC codes can also be designed on the basis of cyclic difference sets (CDF) in 
which every specific number of elements defined in the subsets of a group occurs only 
once [11] [12]. Subsets with this feature conventionally define constituent circulant 
matrices of the parity check matrix with the girth 6. Despite CDF, it is not necessary to 
have difference of elements in a subset as an element of the subsets. This simplifies 
formation of subsets and consequently provides more flexibility in design of codes. Re-
cently, new QC-LDPC codes with girth 6 and rates greater than half were proposed by 
difference sets concept [13]. In this method, the elements of the first subset are option-
ally selected so as the difference between any two elements is unique. Then, elements of 
other subsets are determined based on elements of the first subset, while the difference 
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between any two elements of a subset is also unique. This guarantees non-existence of 
cycle-4 in Tanner graph of the code. Codes implemented by this technique demonstrate 
high error correcting performance so as they are compared by QC-LDPC codes with 
girth 8. 

In this letter, we apply concept of difference sets in constructing two new schemes of 
QC-LDPC codes. Despite the method presented in [13], codes have half rate and sub-
sets are defined by unequal lengths. Based on this feature of circulant matrices, an irre-
gular QC-LDPC code with girth 6 is proposed. Subsets defined with the abovemen-
tioned structure will also apply to represent a regular QC-LDPC code with girth 8. For 
the regular code, instead of utilizing a masking technique, circulant matrices are inte-
ractively designed with each other to prohibit existence of cycles with lengths 4 and 6 in 
the Tanner graph of the parity check matrix. Simulation results express that the newly 
proposed codes have low error floors. In addition, these demonstrate performances 
similar to or better than other well-known half-rate QC-LDPC codes, while a lower 
complexity in their design is applied. 

The rest of paper is organised as follows: Section 2 explains how subsets with unique 
differences between their elements are formed. Section 3 presents structure of an irre-
gular QC-LDPC code based on subsets defined in section 2. Moreover, it explains how 
subsets with different lengths are applied to form a regular QC-LDPC code with col-
umn weight 3 and girth 8. Section 4 gives simulation results of the newly designed 
codes and compares their performance with half-rate QC-LDPC codes constructed by 
other methods and masking techniques. Finally, Section 5 summarises the paper and 
gives suggestions for the further work. 

2. Subsets with Different Lengths and Unique Differences 
between Elements 

For given ,n t∈ , we define sets { }0iS ⊂ ∪ , 1 i n≤ ≤ , by strictly increasing 
sequences { }, 1i j j t

α
≤ ≤

, which satisfy the following conditions: 

1) 1,1 0α =  and for every 1 , , ,j j k k t′ ′≤ ≤  we have 

1, 1, 1, 1,j k j kα α α α′ ′− ≠ −                         (1) 

where ( ) ( ), ,j k j k′ ′≠ , j k>  and j k′ ′> .  
2) For 2 i n≤ ≤ , ,1 0iα =  and there exist { }\ 1p∈  and { }\ 0r∈  with p r>  

such that  
, 1,:i j i jp rα α −= −                             (2) 

for every 2j t≤ ≤ . 
Based on this condition, non-zero elements of iS , 2 i n≤ ≤  can be directly deter-

mined from non-zero elements of 1S . The relationship between jth element of ith sub-
set and its correspondence at subset 1S , is obtained by:  

2
1

, 1,
0

i
i w

i j j
w

p p rα α
−

−

=

= − ⋅∑                        (3) 

where { }\ 1p∈ , { }\ 0r∈ . 
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3) For every 1 , , ,j j k k t′ ′≤ ≤ , which j k> , j k′ ′>   

, , , , ,i j i k i j i kα α α α′ ′ ′ ′− ≠ −                        (4) 

where 1 ,i i n′≤ ≤  and i i′ ≠ .  
For the given m∈ , we define sets { }

1
0iA ⊂ ∪ , 11 i m≤ ≤ , by { }1i

β , where 

1β ∈  and there exist { }\ 1q∈  and { }\ 0d ∈  with q d>  such that  

1 1 1: ,i iq dβ β −= −                          (5) 

for all 12 i m≤ ≤ . 
For every 1 i n≤ ≤ , 11 i m≤ ≤  and 1 ,j k t≤ ≤ , which j k>   

1, , .i j i k iα α β− ≠                              (6) 

Based on the above constructions, there exists an additive group  

{ }0,1, , 1 ,ν ν= −                            (7) 

such that for all 1 i n≤ ≤ , 11 i m≤ ≤  and 1 ,j k t≤ ≤ , j k≠ , ( ), ,i j i k ν
α α−  and 

( )1i ν
β±  are repeated only once in this group and ν  is the minimum value, which sa- 

tisfies this property2. 
For example, let { }1 0,3,10S = , { }2 0,5,19S = , { }3 0,9,37S = , { }4 20S =  and 

{ }5 17S =  defined in 41  ( )41ν = . Non-zero elements of 2S  and 3S  can be ob-

tained from (3), where 2p =  and 1r = . In this case, { }
1

3,7,10,38,34,31Sδ = , 

{ }
2

5,14,19,36,27,22Sδ = , { }
3

9, 28,37,32,13,4Sδ = , { }
4

20,21Sδ =  and { }
5

17,24Sδ =  

are sets of differences between elements of 1S , 2S , 3S , 4S  and 5S , respectively. It is 
concluded that difference between any two elements of a subset is unique with other 
differences obtained from the same or other subsets. Note that 41ν =  is the minimum 
value that provides this condition for the given subsets. 

3. Construction of Half Rate QC-LDPC Codes Based on Subsets 
with Different Lengths 

In this section, two new schemes of half rate QC-LDPC codes are presented. In the first 
method, an irregular code with girth 6 is constructed based on two rows of circulant 
matrices. In the second method, structure of a regular code with girth 8 formed by 
more than three rows of circulant matrices is discussed. 

3.1. Irregular Half Rate QC-LDPC Codes with Girth 6 

Irregular half rate ( )2 ,   QC-LDPC code is constructed by the parity check matrix 
having the below form: 

1 1 3

2 2 4

|
,

|
C I C O
I C O C
 

=  
 

H                         (8) 

where   is an even value, iC , 1 4i≤ ≤  are 
2 2
×
   circulant matrices with column  

2It is possible to have greater ν and provide all given conditions. 
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weight 3, 1I  and 2I  are 
2 2
×
   circulant matrices with column weight 1 and O  

represents the 
2 2
×
   zero matrix. 

The above matrix can be viewed as two ×   matrices and one of these matrices 
should be full rank to obtain the generator matrix of the code. 

Positions of 1 in circulant matrices are based on elements of subsets defined in 
Equations (1)-(7), where ν= . Indeed, elements of each subset give positions of 1 in 
the first row of a circulant matrix. Other elements of the first row of circulant matrices 
are zero. By 1−  cyclic shifts of the first row, other rows of the circulant matrix will 
be obtained. That means, there exist { }0, ,i i iS p rα α= − , 1 4i≤ ≤ , which define Cis. 
Similarly, there exist { }1 1A β=  and { }2 1A q dβ= − , which define 1I  and 2I , 
respectively. In the given parity check matrix, { }1 0A =  is considered. 

As differences between position of 1s in a circulant matrix with column weight 3 are 
unique, a cycle-4 will not be obtained from Cis, 1 4i≤ ≤  [13]. Based on { }1 0A =  and 

{ }2 1A q dβ= − , position of one 1 in 1I  and 2I  does not lead a cycle-4 in these 
circulant matrices. Similarly, combination of 1C , 3C  and 1I  will not produce more 
than one common 1 in every two rows or two columns of H . In order not to have 
cycle-4 from circulant matrices positioned in two rows of H , position of 1 in 2I , 
should be different with differences between position of any two 1s of 1C  and 2C  as 
well as position of 1 in 1I . Note that existence of zero matrices will also conclude no 
cycle-4 from combination of 3C  or 4C  with the left ×   submatrix of H . 

3.2. Regular Half Rate QC-LDPC Codes with Girth 8 

As another scheme of half rate QC-LDPC code, the parity check matrix is formed by 
more than two rows of circulant matrices. This matrix is generally expressed by:  

[ ]0 1 ,H H=H                               (9) 

where Hγ , 0 1γ≤ ≤ , are ×   matrices defined by:  

,1 ,1

,2 ,2

,3

, 1 , 1

, ,

: .

u u

u u

C I O O O
O C I O O
O O C O O

H

O O O C I
I O O O C

γ γ

γ γ

γ
γ

γ γ

γ γ

− −

 
 
 
 

=  
 
 
 
  







     





                      (10) 

,aCγ , 0 1γ≤ ≤ , 1 a u≤ ≤ , and ,bIγ , 1 b u≤ ≤ , are 
u u
×
   sparse circulant matrices 

with column weights 2 and 1, respectively. Moreover, O  presents 
u u
×
   zero matrix. 

Note that,   is a multiple of u.  

Similar to our first scheme, elements of ( )
( ){ }1 ,20,

ui
γα +  and ( ){ }i

γβ , 1 i u≤ ≤ , give 

positions of 1 in ( ), 1 uiCγ +  and ,iIγ , respectively. All these subsets follow the properties 
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defined in Equations (1)-(7) with ν= . Other elements in the first row of these 
circulant matrices are zero. By construction, at least one of Hγ  s is full rank to achieve 
code’s generator matrix from H . The matrix given in (9) expresses existence of two 
circulant matrices in its every column. This introduces a regular LDPC code with 
column weight 3. 

Lemma 1 The parity check matrix given in Equation (9) with ( )
( )
( )

,2

0 0
1 ui iβ α +< , 

( )
( )
( )

,2

1 1
1 ui iβ α +>  and ( ) ( )1 0

i iβ β>  has cycle-4 if the below condition is satisfied:  

( ) ( )
( )
( )

,2

0 1 1
1 ui i iβ β α += −  

Proof. ( )0, 1 uiC +  has 1 at its zeroth column of the zeroth row. Hence, by ( )0
iβ  cyclic 

shifts of the zeroth row of ( )0, 1 uiC + , the ( )0
iβ  th row of this matrix has 1 at ( )0

iβ  th 

column. Similarly, the ( )
( )
( )

,2

1 1
1 ui iβ α +−  th row of ( )1, 1 uiC +  has 1 at ( )1

iβ  th column. As

( ) ( )
( )
( )

,2

0 1 1
1 ui i iβ β α += − , the ( )0

iβ  th row of ( )0, 1 uiC +  and ( )1, 1 uiC +  has 1 at the ( )0
iβ  th and 

( )
( )
( )

,2

1 1
1 ui iβ α +−  th columns, respectively. On the other hand, the zeroth rows of 0,iI  

and 1,iI , which represent ( )1i −   th row of H , also have 1 at the ( )0
iβ  th and 

( )
( )
( )

,2

1 1
1 ui iβ α +−  th columns, respectively. This means that two rows of H  have two 

common 1 and consequently a cycle-4 is formed for the given H . 
By the same argument presented in Lemma 1, it is possible to have other conditions 

for the existence of a cycle-4, which are dependent on elements of subsets applied in 
construction of parity check matrix of QC-LDPC code. Table 1 gives criteria for the exis-
tence of cycle-4 based on the relationships existed between elements of different subsets. 

 
Table 1. Cycle-4 condition based on definition of subsets applied for construction of parity check 
matrix given in (9). 

Structure of subsets Cycle-4 condition 

( )
( )
( )

,2

0 0
1 u

i iβ α +<  

( )
( )
( ) ( )

,2

1 1 0
1 u

i iiβ α β+− =  ( )
( )
( )

,2

1 1
1 u

i iβ α +>  

( ) ( )1 0
i iβ β>  

( )
( )
( )

,2

0 0
1 u

i iβ α +>  
( )

( )
( ) ( )

( )
( )

,2 ,2

1 1 0 0
1 1u u

i ii iβ α β α+ +− = −  
( )

( )
( )

,2

1 1
1 u

i iβ α +>  

( )
( )
( )

,2

0 0
1 u

i iβ α +<  
( )
( ) ( )

( )
( ) ( )

,2 ,2

1 1 0 0
1 1u u

i ii iα β α β+ +− = −  
( )

( )
( )

,2

1 1
1 u

i iβ α +<  

( )
( )
( )

,2

0 0
1 u

i iβ α +>  

( )
( )
( ) ( )

,2

0 0 1
1 u

i iiβ α β+− =  ( )
( )
( )

,2

1 1
1 u

i iβ α +<  

( ) ( )0 1
i iβ β>  
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Figure 1. Existence of a cycle-4 based on combination of four circulant matrices. 

 
As an example, Figure 1 shows structure of H  constituted by u rows of ×   

circulant matrices ( )3u ≥ . In this H , 0,1C , 1,1C , 0,1I  and 1,1I  are formed by 
{ }1 0,1 0, 4S B= = , { }2 1,1 0,1S B= = , { }1 0, 2uA B= =  and { }2 1, 3uA B= = , respectively. 

In this case,   is an arbitrary value, which satisfies conditions in (1)-(7). The second 
column of 0,1C  has 1 in its second row obtained from two cyclic shifts of the zeroth 
row. By equal number of shifts conducted on the zeroth row of 1,1C , its third column 
of the second row is also 1. In the zeroth row of 0,uI  and 1,uI , the second and third 
columns are 1. This means that the second and zeroth rows of 0,1C  and 0,uI  have 
common 1 in their second column, respectively. Existence of common 1 also exists in 
the second and zeroth rows of 1,1C  and 1,uI . As a result, combination of the 
mentioned circulant matrices will conclude a cycle-4 for the matrix constructed by the 
utilized circulant matrices. 

Lemma 2 In a circulant matrix with length λ  and column weight 2, let 0 and ρ  
be positions of 1 in the zeroth row, where 0 1ρ λ< ≤ − . The matrix has cycle-6 if and 
only if  

3 , 2
2 3 , 2
λ ρ ρ λ
λ ρ ρ λ
= <

 = ≥
                           (11) 

Proof. By [10], a circulant matrix has cycle-6, if a 3 3×  submatrix of the main 
matrix includes two identical terms in its determinant expansion. This means, in every 
three rows of the circulant matrix, any row pair should have one and only one 1 in 
common and position of this common-1 must be different with positions of common-1 
in other row pairs. Figure 2(a) shows all possible shapes of cycle-6 in a circulant matrix. 

At ρth row of a circulant matrix with column weight 2 and length λ , positions of 1 
will be at ρth and ( )2

λ
ρ  th columns. Similarly, by ( )λ ρ−  cyclic shifts of the zeroth 

row, positions of 1 will be at ( )λ ρ−  th and zeroth columns. Considering structure of  
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Figure 2. Expression of cycle-6. (a) All possible shapes of cycle-6 (b) existence of cycle-6 in the 
parity check matrix given in 9. 

 
cycle-6 mentioned in above, the first and ρth rows with ( )λ ρ−  th row can form a 
cycle-6 if ( ) ( )2

λ
ρ λ ρ= − . This means 3λ ρ=  for 2ρ λ<  and 2 3λ ρ=  for 

2ρ λ≥ . 

Proposition 1 The girth of parity check matrix given in (9) with ( )
,23 au
γα≠

  for 

( )
,22 a u
γα <

  and ( )
,2a
γα  for ( )

,22 a u
γα ≥



, 3u > , is at least 8. 

Proof. In the given H , each ,aCγ , 0 1γ≤ ≤ , 1 a u≤ ≤ , has two 1s in every row and 
column. This matrix is free of cycle-4 because circulant matrices are formed on the 
basis of conditions given in (1)-(7). In addition, in circulant matrices with column 
weight 2, position of 1s in their first row do not provide the condition mentioned in 
Lemma 1. 

By the same argument in Lemma 2, in the structure of every ,aCγ , in every three 
rows, any row pair does not have one common 1 in a unique position as differences 
between positions of 1 are unique and length of circulant matrices does not satisfy 
conditions of the lemma. This structure is not even observed in ,bIγ  s because in their 
every row or column only one 1 exists. 

The given H  can also have cycle-6, when combination of circulant matrices forms 
one of the shapes shown in Figure 2(a). Indeed, circulant matrices in these graphs are 
interpreted as nodes of graph. Hence, in order to have cycle-6, it is essential to have six 
non-zero circulant matrices positioned in three different rows and columns of H , 
while in every row and column, there are exactly two of these circulant matrices. Figure 
2(b) shows two possible cycle-6 formed by combination of six circulant matrices. 
Considering structure of H , cycle-6 is prohibited, when H  is constructed by more 
than three rows of circulant matrices ( )3u > . It is observed that in every three rows, 
any row pair does not have two non-zero matrices in one column. Thus, combination 
of circulant matrices will also not produce cycle-6 and the girth of the given H  is at 
least 8. 
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4. Simulation Results 

The performance of proposed QC-LDPC codes is verified for additive white gaussian 
noise (AWGN) channel. Codes are modulated by Binary Phase Shift Keying (BPSK) 
modulation and decoded by Sum Product Algorithm (SPA). Maximum 100 iterations 
are considered for iterative decoding. Figure 3 shows performance of codes with 
lengths 128 and 255. 

Parity check matrix of the irregular (256, 128) QC-LDPC code is formed by two rows 

of circulant matrices given in Equation (8). For 4.5 dBb

o

E
N

<  proposed code with  

girth 6 has close performance to two other (256, 128) codes having girth 8. However,  

for 4.5 dBb

o

E
N

≥ , it outperforms them. This is evident at 710BER −≈ , when it shows  

0.25 dB improvement compared to PEG QC-LDPC code [6]. It is also concluded that 
the error floor of the proposed irregular code will be occurred at 910BER −≤ . For code 
with and length 255L = , parity check matrix is constructed by five rows of the 
circulant matrices and satisfies conditions of the proposition 1. This concludes a half- 
rate regular code with girth at least 8. Again, results express that the new code 
outperforms PEG code, while it has very similar performance to the QC-LDPC code 
with girth 8 and an optimised iterative decoding performance. Result of regular (1032, 
516) QC-LDPC code is shown in Figure 4. The parity check matrix of this code is 
formed by six rows of circulant matrices. This code has very similar performance with 
(1016, 508) and (1010, 505) codes, which require more steps in construction of their 
parity check matrix as masking technique is applied. In comparison with irregular code, 
regular codes demonstrate better performance than PEG code. This is because of  
 

 
Figure 3. Performance of the half rate QC-LDPC codes with lengths 128 and 255. 
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Figure 4. Bit error rate (BER) and block error rate (BLKER) performance of the half 
rate QC-LDPC codes with lengths 128, 255 and 516. 

 
non-existence of cycle-6 in structure of regular code, which deteriorates effect of 
harmful trapping sets on the error correcting performance of codes. The results 
obtained from simulations demonstrate that the error floor of the newly designed codes 
with girth 8 will be for 810BER −≤ . 

The figure also gives the block error rate (BLKER) performance of the constructed 
QC-LDPC codes. In general, no error floor is observed for 510BLKER −≥ . 

5. Conclusions and Future Work 

The paper presented new schemes of half rate QC-LDPC codes with girth 6 or 8. They 
are designed on the basis of difference set property of subsets, which determine struc-
ture of constituent circulant matrices. Based on defining new criteria in structure of 
subsets and proper combination of circulant matrices, regular QC-LDPC codes with 
girth 8 were obtained. This concluded a high girth code without applying a masking 
technique. Simulation results confirmed that newly proposed codes have similar per-
formance to other well-known half rate codes, while are designed with the lower com-
plexity. In future work, the performance of constructed codes in the error floor region 
will be verified by trapping sets analysis and determining their minimum weight. 
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