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ABSTRACT 
Recently, biological technology and computer science are of great importance in medical 
applications. Since one’s breath biomarkers have been proved to be related with diseases, it 
is possible to detect diseases by analysis of breath samples captured by e-noses. In this pa-
per, a novel medical e-nose system specific to disease diagnosis was used to collect a 
large-scale breath dataset. Methods for signal processing, feature extracting as well as fea-
ture & sensor selection were discussed for detecting diseases on respiratory, metabolic and 
digestive system. Sequential forward selection is used to select the best combination of sen-
sors and features. The experimental results showed that the proposed system was able to 
well distinguish healthy samples and samples with different diseases. The results also 
showed the most significant sensors and features for different tasks, which meets the rela-
tionship between diseases and breath biomarkers. By selecting best combination of different 
sensors and features for different tasks, the e-nose system is shown to be helpful and effec-
tive for diseases diagnosis on respiratory, metabolic and digestive system. 

 

1. INTRODUCTION 
Traditional diagnosis methods include blood, urine tests and some other methods. Nowadays, bio-

logical technology and computer science are playing their roles in medical applications. Technic develop-
ments in bioimaging [1], biochips [2] and biosensors [3] have brought new aids in disease diagnosis. 

Breath analysis is a way to detect some diseases by the examination of certain compounds in human 
breath, which is largely composed of oxygen, carbon dioxide, water vapor and nitric oxide, as well as less 
than 100 ppm (parts per million) of mixture with over 500 kinds of components. The components include 
carbon monoxide, methane, hydrogen, acetone and numerous volatile organize compounds (VOCs) [4, 5]. 
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Table 1 summarizes the concentrations of typical compositions from human breath [6]. 
A breathing process includes three stages. The first stage is the exchange of gases between the outside 

air and the alveoli and between the alveoli and the blood in pulmonary capillary. The second is the ex-
change between oxygen and carbon dioxide in blood during gas transportation in the blood. The third is 
the exchange of gases between blood and tissue cells. During this process, endogenous molecules produced 
by metabolic processes are separated from blood and enter into the alveolar air via the alveolar pulmonary 
membrane [6-8] and thus into the exhaled breath. Variation in the concentration of these molecules can 
suggest various diseases or at least changes in metabolism [9]. For instance, nitric oxide in breath can be 
measured as an indicator of asthma or other conditions characterized by airway inflammation [10]. In-
creased pentane and carbon disulfide have been observed in the breath of patients with schizophrenia [11]. 
Breath concentration of volatile organic compounds (VOCs) such as cyclododecatriene, benzoic acid, and 
benzene is much higher in lung cancer patients than in control groups [12]. Acetone has been found to be 
more abundant in the breath of diabetics [13, 14], and breath ammonia is significantly higher in patients 
with renal diseases [15]. These molecules are considered as biomarkers of the presence of diseases and 
clinical conditions. Much can be learnt from them about the overall state of an individual’s metabolism or 
physical condition. 

Compared with these methods, breath analysis has many advantages [16]. Firstly, breath analysis is a 
non-invasive method, and it causes least harm to both the subjects and the personnel who collect the sam-
ples. Secondly, its result can be obtained immediately. Thirdly, the sample collection is quite easy for a 
subject, since the only requirement to collect a breath sample is that the subject must be breathing. There-
fore, increasing interest has been expressed about the applications of breath analysis in medicine and clin-
ical pathology [17, 18]. However, most of the existing trials [19] on breath diagnosis only focus on very 
limited kinds of diseases. The reason may be complicated. Lack of specific breath analysis system and me-
thod, as well as a large enough dataset will all block the process of research. Also, some of the diseases may 
not be so related to the breath system, which will not give a satisfactory result. Basing on the process of gas 
exchange in breath, we can see that diseases of respiratory system and metabolic system will strongly affect 
one’s exhaled breath. On the other hand, since the respiratory passage is connected to digestive system, it 
may be possible to detect diseases of digestive system by breath analysis. We thus collected a breath analy-
sis dataset with both healthy samples and samples with different kinds of diseases of respiratory, metabolic 
and digestive system by a specific e-nose system. Experiments were organized on the collected dataset to 
discover a proper method of breath analysis for disease diagnosis. 

2. LITERATURE REVIEW  
2.1. Breath Biomarker and Diseases 

Nowadays, the concentration of some biomarkers in breath has been proven to be related with certain 
diseases. For example, lung diseases may alter volatile organic compounds (VOCs) in breath because both 
Mycobacteria and oxidative stress resulted from Mycobacterial infection generate distinctive VOCs. And 
digestive system diseases will reflect in hydrogen of ones’ exhaled breath because sugar could not be fully 
digested and would be decomposed or fermented and produce more hydrogen. By selecting proper sensors 
that can respond to the components, it is possible to analyze a person’s breath odor and thus his or her 
health state. A few examples will further prove these points. The level of nitric oxide can be used as a di-
agnostic for asthma [20]. Patients with renal disease have higher concentrations of ammonia [21]. The 
concentration of VOCs, such as cyclododecatriene, benzoic acid, and benzene is much higher in lung can-
cer patients [22]. Table 2 lists the relationship between biomarkers and some typical diseases. 

2.2. Breath Analysis with E-Nose 

Currently, the measurement of exhaled breath is usually performed by two common gas analysis ap-
paratuses, gas chromatography (GC) [26] or electronic nose (e-nose) [27]. GC can separate and identify 
molecules that are responsible for typical odors occurring in specific diseases, which is very accurate for  
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Table 1. Typical compositions of human breath. 

Concentration Molecules 
percentage oxygen, water, carbon dioxide 

parts-per-million 
acetone, carbon monoxide, methane,  

hydrogen, isoprene, benzenemethanol 

parts-per-billion 

formaldehyde, acetaldehyde, 1-pentane, ethane, ethylene,  
other hydrocarbons, nitric oxide, carbon disulfide, methanol,  

carbonyl sulfide, methanethiol, ammonia, methylamine, dimethyl  
sulfide, benzene, naphthalene, benzothiazole, ethane, acetic aide 

 
Table 2. Breath biomarkers and related diseases. 

Diseases Breath Biomarkers 
diabetes [6] acetone 

kidney disease [23] ammonia 

lung disease [12] 
benzene,1,1-oxybis-, 1,1-biphenyl,2, 
2-diethyl, furan,2,5-dimethyl-, etc. 

Respiratory disease [24] pentane, nitric oxide, carbon monoxide 
digestive system disease [25] hydrogen 

 
disease identification. But this kind of apparatus is expensive and not portable. Its sampling and assaying 
processes are complicated and time consuming (about one hour for one sample), and its results require 
expert’s interpretation [28]. Therefore, it is hard to use such apparatus as a domestic or clinical tool.  

Electronic noses, or e-noses, are devices that “smell” or detect odor. An e-nose consists of a mechan-
ism for chemical detection, such as an array of electronic sensors, and a mechanism for processing. Using 
e-nose is a less expensive and more portable way for breath analysis. Recently, e-nose has gradually been 
used in medicine for the diagnosis of renal disease [29], diabetes [30], lung cancer [31], and asthma [32]. 
Though all of these methods work satisfactorily in breath analysis, their results could possibly be im-
proved. That is because, commercial e-noses, with their marketing concerns, have to provide versatility in 
applications, such as coffee, wine, and fragrances identification. The versatility, however, limits their per-
formance in disease detection since their sensor selection has to match broad applications. 

The idea of e-nose is inspired by the mechanisms of human olfaction. In general, basic elements of an 
e-nose system include an “odor” sensor array, a data preprocessor, and a pattern recognition engine [33]. 
Among them, the sensor array, like signal receptors, is the key part of e-nose. The application of sensor 
array on odor recognition was demonstrated firstly by Persaud and Dodd in 1982 [34]. Currently, e-nose 
has been much developed and used to fulfill a large number of industrial needs, such as food, chemistry, 
fragrances, security, and environment [35]. Recently, the feasibility of using e-noses for monitoring the 
health of human and diagnosing diseases in an early stage has been demonstrated [36]. 

As early as 1997, Wang et al. [37] designed an e-nose with one SnO2 thin film sensor for diabetes di-
agnosis. The authors tested their device by using the breath samples collected from 18 patients and 14 
healthy persons. The concentration of blood sugar of the subjects was used as reference. The results 
showed that the e-nose was able to diagnose diabetes with a sensitivity of 77.8% and a specificity of 35.7%. 

In 2001, Lin et al. [36] reported a study about the application of e-nose with six quartz crystal sensors 
to detect renal diseases. Discriminant Analysis (DA) was carried out to analyze the sensor signals. The 
clinical test result showed that the e-nose could discriminate the breath samples from 30 normal subjects, 
83 uremia patients, and 61 chronic renal disease patients with a total correct classification of 86.78%. 
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In 2009, Ogorodnik et al. [38] analyzed VOCs from a breath sample of a patient with different lung 
diseases by using an e-nose with ten MOSFET sensors and four SnO2 sensors. In total, 66 individuals – 23 
with asthma, 3 with chronic obstructive pulmonary disease (COPD), 12 with pneumonia, 13 with lung 
cancer, 4 in the past operation state (removed lung cancer), and 11 healthy volunteers were tested at two 
different times and ANN analysis was employed to classify the samples of cancer and other lung diseases. 
The results showed that the e-nose could identify lung cancer with 100% accuracy, healthy subjects with 
100% accuracy, and asthma with 82.6% accuracy. 

In 2010, Guo et al. [39] proposed a method of monitoring the blood glucose levels of diabetics via 
measuring the concentration of breath acetone. A SVM classifier was used to evaluate the accuracy of clas-
sifying the samples into the groups with different blood glucose levels. The results indicated that the sys-
tem was not only able to distinguish between breath samples from patients with diabetes and healthy sub-
jects, but also to represent the fluctuation of blood glucose of diabetics. In the same year, Guo et al. [40] 
improved accuracy of diabetes condition monitoring by using a SRC method. Coupled with SRC, the sys-
tem was able to classify these levels with a much better accuracy than the accuracy reported in [41]. 

In 2017, Yan et al. [42] proposed a domain learning method using domain features and independence 
maximization. A logic regression classifier was used to evaluate the accuracy on diabetes, chronical kidney 
disease and cardiopathy. The results showed that the method can improve the classifying performance by 
reducing the instrumental variation and time-varying drift.  

Table 3 concludes some existing trials on medical breath analysis with e-noses. 

3. BREATH ANALYSIS 
3.1. Breath Dataset 

To evaluate the performance of our device, a large-scale breath dataset was collected. We cooperated 
with Guangzhou Hospital of Traditional Chinese Medicine and collected data from inpatient volunteers 
with a specific e-nose device [43].  

In the device, there were 12 different odor sensors selected based on the relationship between breath 
biomarkers and diseases into consideration. The sensors in the device should be sensitive to the VOCs, 
carbon dioxide, humidity, and temperature. Thus, a sensor array with 11 sensors was optimized for the 
purpose of detecting one’s breath. The sensor array included six ordinary metal oxide semiconductor 
(MOS) sensors, three temperature modulated MOS sensors, a carbon dioxide sensor, and a tempera-
ture-humidity sensor. Specifically, the temperature-humidity sensor had two input channels for tempera-
ture and humidity respectively. Therefore, there were, in total, 12 input channels. The model, manufactur-
er and function of the sensors are listed in Table 3. The suffix “-TM” indicates a temperature-modulated 
sensor. 

For each sample, we first collected the patient’s breath and recorded the signals. The diagnosis was 
then given by an authoritative doctor as the classification labels. Then some biochemical indicators, such 
as blood glucose, blood pressure and blood lipids were collected. Finally, in this dataset, there were in total 
over 10,000 samples of 47 classes, including 1491 healthy samples and samples of 46 different kinds of dis-
eases. In this paper, a subset of healthy samples and samples for six kinds of diseases are selected for expe-
riments, including breast disease, cardiopathy, diabetes, lung disease, kidney disease and gastritis. Table 4 
shows the number of each class used in selected subset.  

All the samples were collected from hospitals in Guangzhou. However, since most of the healthy 
samples were provided by medically-examined young people while disease samples by elder patients, it is 
difficult to make age-matched subsets, which is a limitation of this dataset.  

3.2. Preprocessing 

Before analyzing data, original signals should be preprocessed so as to be transformed into standard 
samples. Four steps were taken: faulty signal removal, de-noising, baseline manipulation and normaliza-
tion. 
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Table 3. Trials on medical breath analysis with e-noses. 

Year Researcher Disease Data size Accuracy 
1997 Wang et al. Diabetes 32 77.8% 
2001 Lin et al. Kidney 174 86.78% 
2009 Ogorodnik et al. Lung cancer 66 100% 

2011 Guo et al. 
Diabetes 225 87% 

Kidney disease 218 86% 
Digestive disease 218 70% 

2017 Yan et al. 

Diabetes 431 85.29% 
Chronical kidney  

disease (CKD)  
340 80.18% 

Cardiopathy 97 91.67% 
 
Table 4. Number of samples in each class. 

Type Class Data size 
Healthy Healthy 1291 

Respiratory system 
Lung 498 

Respiratory 130 

Metabolic system 
Diabetes 585 
Kidney 473 

Digestive system Stomach 310 
 

A faulty signal is a common problem in devices with sensors. In our system, causes of faulty signals 
were complicated, including mis-operation, bad connection and device damage. In order to make the sys-
tem more robust, these signals should be removed before analysis.  

De-noising aims to remove the noise from the original signals by utilizing a low-pass filter since the 
signal is mainly interfered by high-frequency noise. 

The purpose of baseline manipulation is to compensate baseline drift. The baseline value is the aver-
age response in the baseline stage of each sensor. The value is then subtracted from the whole response 
curve to eliminate the interference of background noise of the sensors [44]. Assume that for each sensor 
transient of each sample, there are k dimensions, where k = 1, …, Nk, and b dimensions in the baseline 
stage, where b = 1, …, Nb. The response at time tk is denoted as ( )kR t . The baseline response is ( )bB t . 
Then baseline manipulation can be computed as: 

( ) ( ) ( )1
1 b

b

NB
k k bt

b
R t R t B t

N == − ∑                             (1) 

Normalization is used to compensate for sample-to-sample variations caused by analyte concentra-
tion. ( )B

kR t  is a sample after the baseline manipulation step, and the normalized response ( )BN
kR t  

can be defined as: 

( ) ( )
( )( )max

B
kBN

k B
k

R t
R t

R t
=                                 (2) 
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3.3. Feature Extraction 

To reduce the dimension of the origin features, principal component analysis (PCA) can be used. 
PCA projects high-dimensional data into a low-dimensional subspace while keeping most of the data va-
riance. 

Some low-dimensional geometric features can also be extracted from the origin response curves. One 
of the traditional features of gas sensors is steady state response. When a gas sensor is used to sense a gas 
sample, its response will reach a steady state in a few minutes. The steady state response has a close rela-
tionship with the concentration of the measured gas. Therefore, the 9D feature vector contains most of the 
information needed for disease screening. 

However, additional useful information is carried in the transient responses [45]. Transient responses 
are often related to the change of gas flow (injection/purge) or temperature (for TM sensors). The feature 
set includes magnitude, difference, derivative, second derivative, integral, slope and phase features, as well 
as features in frequency domain such as fast Fourier transformation (FFT) and wavelet. The extracted fea-
tures in both space domain and frequency domain are described in Table 5. 

4. EXPERIMENTS 
4.1. Feature Selection for Different Diseases  

For each class, the first 50 samples collected by the first device were chosen as the labeled training sets 
and the rest were test samples. Logistic regression method was adopted as the classifier. Sequential forward 
selection (SFS) method was used to optimize the features. SFS method is a greedy strategy. In each itera-
tion, one feature was selected from all features that could achieve the best classification accuracy together 
with the features already selected. Figure 1 shows the results of forward selection in different disease di-
agnosis tasks. For each graph, the horizontal axis represents the number of features used and the vertical 
axis represents the classification accuracy. We will find the peak point of each curve and record which 
features are selected in the peak points. 

In Table 6, we concluded the best combination of features and sensors selected for each task (the 
peak points in each curve of Figure 1). It can be found that wavelet features contributed most in all the 
tasks. Pca feature, MeanMag feature, phase feature and derivative feature differed in different tasks. Other 
features did not improve the performance of the system. The sensors that contributed most to meeting the 
relationship between diseases and breath biomarkers in each task are listed in Table 2 and Table 7. S7 
(TGS2602) contributes most to metabolic diseases. 

4.2. Multi-Disease Diagnosis 

To further evaluate the performance of the system, we built a classification tree to deal with the mul-
ti-disease diagnosis problem. Synthetic Minority Over-sampling Technique (SMOTE) [46] was used in the 
experiment. SMOTE method is an over-sampling approach in which the minority class is over-sampled by 
creating “synthetic” examples rather than over-sampling with replacement. 

Figure 2 shows the result of the classification tree. When an unknown sample comes, it will first be 
tested if it is diabetes. Then check if it is healthy or kidney disease in turn. Finally, if the sample belongs to 
none of these classes, it may be disease in lung, stomach or respiratory system. Accuracy of each level of 
the classification tree is 90%, 75%, 63% and 76%, respectively. It can be seen that metabolic diseases are 
easier to be separated out than diseases of respiratory system or digestive system.  

However, this is only for one-label samples. For those patients with more than one disease, mul-
ti-labeled methods should be considered.  

5. CONCLUSIONS  
This paper discussed breath analysis method for diseases on respiratory, metabolic and digestive system.  
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Figure 1. Forward selection result of six binary-classification tasks. For 
each graph, the horizontal axis represents the number of features used and 
the vertical axis represents the classification accuracy. 

 

 
 

Figure 2. The optimal classification tree for multi-diseases diagnosis. 
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Table 5. Summary of the transient features. PCA: principal component analysis. 

Feature Characteristics 

Space 

PCA Reduced dimension of the origin features with PCA method. 

Magnitude 

Down-sampled values of the curve’s magnitude M. 
The maximum magnitude.  
Down-sampled values of the normalized magnitude M/max (M). 
Mean values of the magnitude. 

Derivative 
Down-sampled values of the curve’s derivative D. 
The maximum and minimum derivative. 

Second  
derivative 

The maximum and minimum second derivative in both the injection and purge 
stage. 

Integral 
The integral of the five intervals of the curve; the intervals are the same with the 
difference feature. 

Slope 
The slope of the five intervals of the curve; the intervals are the same with the 
difference feature. 

Phase  
Feature 

The phase feature is proposed in [44]. First, the response is transformed to the 
phase space, which is spanned by its magnitude and derivative. Then, the phase 

feature is defined as ( )
( )1i

i

M t

M t
DdM+∫  

Frequency 
FFT Fast Fourier tranformation 

Wavelet Wavelet transformation 

 
Table 6. Experimental results on different disease diagnosis tasks. 

Task (vs Healthy) Accuracy Features 

Respiratory system 

Lung 0.698 
Pca of S9, 

Wavelet of S4 

Rerspiratory 0.717 
Derivative of S8, 

Wavelet of S6 

Metabolic system 

Diabetes 0.913 
phase of S7,  

Wavelet of S4 

Kidney 0.779 
Derivative of S10, 

Wavelet of S7 

Digestive system Stomatch 0.717 
Maxmag of S4, 

Slope of S6 
Wavelet of S6 
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Table 7. Summary of the sensor array VOCs: volatile organic compounds; ppm: parts per million; 
TM: temperature-modulated. 

Channel Model Manufacturer Function Sensitivities (ppm) 
1 TGS4161 Figaro Inc., Japan CO2 350 - 10,000 
2 TGS826 Figaro Inc., Japan VOCs, NH3 30 - 5000 
3 QS01 FIS Inc., Japan VOCs, H2, CO 1 - 1000 
4 TGS2610D Figaro Inc., Japan H2, VOCs 500 - 10,000 
5 TGS822 Figaro Inc., Japan VOCs, H2, CO 50 - 5000 
6 TGS2602-TM Figaro Inc., Japan VOCs, NH3, H2S 1 - 30 
7 TGS2602 Figaro Inc., Japan VOCs, NH3, H2S 1 - 30 
8 TGS2600-TM Figaro Inc., Japan H2, VOCs, CO 1 - 100 
9 TGS2603 Figaro Inc., Japan NH3, H2S 1 - 10 
10 TGS2620-TM Figaro Inc., Japan VOCs, H2 50 - 5000 
11 

HTG3515CH Humirel Inc., France 
Temperature  

12 Humidity  
 
The sensors, features and signal preprocessing methods were introduced, and a specific medical dataset 
was collected. Experiments were taken on the new collected datasets to discover the best selection of sen-
sors and features for different diseases with an SFS method. A classification tree is built on the collected 
data for the multi-class task. 

The experimental results showed that better accuracy could be achieved by an optimal combination of 
features and sensors for different tasks. Wavelet feature is the most significant feature in majority of dis-
ease diagnosis tasks, while different sensors contribute differently. The most significant sensors for differ-
ent diseases are just in accord with the relationship of diseases and biomarkers listed in Table 2. The mul-
ti-class classification tests also produced a satisfactory output. Metabolic diseases are more likely to be di-
agnosed correctly than other diseases by means of breath analysis.  

However, there is still more to work on how to find other diseases that may be detected from human 
breath, as well as multi-labeled diagnosis. Moreover, discovering the deeper relationship between one’s 
breath and the body states such as blood glucose, blood fat, blood press and other biochemical indicator is 
also worthy of studying. 
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