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Abstract 
This paper presents an efficient liver-segmentation system developed by combining three ideas 
under the operations of a level-set method and consequent processes. First, an effective initial 
process creates mask and seed regions. The mask regions assist in prevention of leakage regions 
due to an overlap of gray-intensities between liver and another soft-tissue around ribs and verte-
brae. The seed regions are allocated inside the liver to measure statistical values of its gray-inten- 
sities. Second, we introduce liver-corrective images to represent statistical regions of the liver and 
preserve edge information. These images help a geodesic active contour (GAC) to move without 
obstruction from high level of image noises. Lastly, the computation time in a level-set based on 
reaction-diffusion evolution and the GAC method is reduced by using a concept of multi-resolution. 
We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired from four pa-
tients (10 different sets per patient) by a 4D-CT imaging system. The segmentation results showed 
86.38% ± 4.26% (DSC: 91.38% ± 2.99%) of similarities to outlines of manual delineation provided 
by a radiologist. Meanwhile, the results of liver segmentation only using edge images presented 
79.17% ± 5.15% or statistical regions showed 74.04% ± 9.77% of similarities. 

 
Keywords 
Liver Segmentation, Level-Set, Geodesic Active Contour, Speed Images, Statistical Thresholds 

 
 

http://www.scirp.org/journal/jbise
http://dx.doi.org/10.4236/jbise.2014.712097
http://dx.doi.org/10.4236/jbise.2014.712097
http://www.scirp.org/
mailto:narkbuakaew.w.aa@m.titech.ac.jp
mailto:longb@isl.titech.ac.jp
mailto:aoki.k.af@m.titech.ac.jp
mailto:y_kubota@gunma-u.ac.jp
http://creativecommons.org/licenses/by/4.0/


W. Narkbuakaew et al. 
 

 
995 

1. Introduction 
Liver image segmentation is an important procedure in the computer-aided diagnosis (CAD) and surgery (CAS). 
For example, it is used to determine the liver’s volume [1] that is essential information of liver surgery for pri-
mary hepatic tumors, metastatic lesions, and transplantation. Liver segmentation in computed tomography (CT) 
images is a challenging topic because of large variations in shapes and sizes. Moreover, gray-intensities of liver 
generally overlap another soft tissue. Occasionally, some CT data sets present high levels of image noises, some 
artifacts, and low image contrast due to the conditions of image acquisition and respiratory status [2]. 

Many algorithms have been proposed to give high efficiency and reduce user involvement as presented in 
[3]-[5]. The level-set method is an interesting solution because it possibly gives high accuracy with small inter-
vention from a user. However, it is normally formulated by a complicated energy-function. This sophisticated 
formulation may slightly improve performance of liver segmentation, but it consumes more computation cost 
due to an additional term. Further, it may require many data sets of manual delineation to produce extraordinary 
information from training data sets.  

Alternatively, improvement in a quality of anatomical representations in a given image can give good seg-
mentation results. For instance, in [6], the level-set speed image was introduced to represent clear boundaries of 
a liver’s volume before performing the segmentation. This method performs well when image noises are sup-
pressed. Thus, an advanced filter may be required to reduce image noise without deterioration in edges of ana-
tomical structures. Further, in [7], liver’s regions were described by a statistical distribution model of gray-in- 
tensities. Nonetheless, this method excludes gradient information that possibly assists in the segmentation. 

Consequently, we are motivated to create an efficient liver-segmentation system from a combination of three 
main ideas. It is intended to perform under the conditions of a level-set method and consequent processes. These 
three ideas are presented to achieve several purposes as follows. 
• The effective initial-process is proposed for excluding all information outside the ribcage and creating seed 

regions in axial images. The exclusion process assists in prevention of leakage regions when a given curve 
moves near ribs and vertebrae. The seed regions are completely allocated inside the liver for measuring sta-
tistical values of gray intensities. Further, it helps to obtain the start and stop indexes of axial images that 
contain liver regions. 

• Liver-corrective images are created to represent statistical regions of the liver and preserve the edge informa-
tion. These liver-corrective images help a level-set method based on reaction-diffusion (RD) evolution and a 
geodesic active contour (GAC) model to cope with high level of image noises. Further, an advanced image- 
filter is unnecessary. 

• We use a concept of multi-resolution to combine with the RD-GAC based level-set method in order to re-
duce computation time. 

We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired from four patients by 
using a 4D-CT imaging system. The 10 different sets of 3D CT data were collected in a free-breathing cycle for 
each patient. In addition, we compared the proposed system with the liver-segmentation methods using only 
edge or statistical-region representation. 

The rest of paper is organized as follows. Section 2 briefly describes related methods, and Section 3 explains 
details of the proposed system. Next, the experimental results are illustrated and discussed. Finally, we conclude 
this study in the last section. 

2. Related Methods 
2.1. A Liver-Segmentation Approach Based on Edge Images 
This approach transforms given images into edge images before performing liver segmentation. We refer to Lee, 
J. et al. [6], who proposed a liver-segmentation method based on level-set speed images (LSSI). It contains two 
main processes as shown by a simple diagram in Figure 1. First, boundaries of anatomical structures are ex-
tracted. It begins with noise reduction by using a modified curvature diffusion filter [8]. Next, a speed image  
(SI) is constructed from a gradient magnitude image ( ) ( )GMI ,x, y I x y= ∇  and a sigmoid formulation as 

( ) ( )
1

GMI ,
SI , 1 exp ,

x y
x y

β
α

−
 − 

= + −     
                          (1) 
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            Figure 1. A diagram of liver segmentation based on the LSSI technique.                    
 
where ( )I ,x y  is a given image. The parameter β  and α  present center and width of the sigmoid function,  
respectively. By choosing proper β  and α , it is possible to make pixels inside the homogeneous regions to 
be towards 1.0 and pixels beside edges to be around zero, respectively. Next, a threshold T is required to gener- 
ate an inverted binary image called seed region growing as ( )SRG , 1x y =  if ( )SI ,x y T≤ . After SRG images  
are constructed from all axial-images, a level-set method is applied to segment the liver’s region in each axial 
image. 

However, this approach is inappropriate for the curve propagation in an inward direction. Thus, it is necessary 
to create an initial region for constructing a zero level-set function (LSF) inside the liver’s region. Further, for 
3D CT data, liver regions in axial images expand from the top to around the middle; then, they shrink to small 
regions at the bottom of the volume. Consequently, each 3D CT data set needs to be divided at least two sections 
in z-axis (top-to-bottom) for placing initial curves inside the liver’s regions. Then, the first image in each section 
requires manual drawings of seed regions to initialize the zero LSF. In addition, complexity of edge information 
is reduced by using a segmentation result of previous image slice as an initial curve for a consecutive image. 
Further, the narrow bands are applied to limit areas of the curve propagation. 

2.2. A Liver-Segmentation Approach Based on Statistical Regions 
This approach statistically describes liver regions by measuring mean µ and standard deviationσ of its gray in-
tensities. These measures were mentioned in [7] [9] and we called them the statistical thresholding (ST) tech-
nique. According to those papers, this method starts from using a mean-shift filter [10] to reduce image noise. 
Next, statistical regions of liver are extracted when gray-intensities are in a range of ( )kµ σ+ . The variable k is 
a constant that identifies a distribution rate. Subsequently, connected component labeling is applied and liver re-
gions are selected. Next, these regions are refined by an active contour method. However, this approach needs 
good sampled regions to obtain the statistical values. Thus, liver segmentation based on the ST technique is per-
formed as shown in Figure 2. The seed regions produced by our proposed system (Section 3.4) are used to 
measure statistical values. Then, the statistical regions of liver are extracted by a range of ( )5 ,µ σ+  and these 
statistical regions are used to segment a liver’s volume by using the level-set method. 

2.3. A RD-GAC Based Level-Set Method  
Generally, a level-set method requires a re-initialization process to preserve an accurate numerical-solution, but 
this process consumes high computation cost as mentioned in [11]-[14]. The reaction-diffusion (RD) evolution 
[12] was introduced to remove this re-initialization process. Further, it supports a variety of forces for control-
ling the curve propagation. In summary, the RD technique requires two main steps for propagating the curve 
under a concept of two-step splitting method [15]. In the first step, the level-set evolution (LSE) equation is used  
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            Figure 2. A diagram of liver segmentation based the ST technique.                        
 
to produce the reaction term. If a geodesic active contour (GAC) model [16] is applied, the reaction term is 

( ) R GAC GAC 2

1, div , ,
1

R i i k E E g vg g
G I

φφ φ φ
φ

  ∇
= + = ∇ + =    ∇ + ∇ ∗  

                  (2) 

where Rk  is a constant that gives the reaction time-step. The variable GACE  denotes the LSE based on the 
GAC model. The ( )div ⋅  is a divergence operator, coefficient v  is a constant, and g  is an edge detector 
function. The variables I  and G  denote an image and a Gaussian smooth filtering, respectively. Afterwards, 
a diffusion term is required to regularize the level-set function into a piecewise constant. Further, its result is 
updated into the level set function. This process is explained as ( )( )1 Di i R ikφ φ φ+ = + ∆ , where Dk  is a constant 
for diffusion time-step. Next, the updated result of the LSF is backwards sent to the first step. The iteration 
process is terminated when a stop condition is satisfied. 

3. Proposed System 
The proposed system (see Figure 3) is organized from five different processes and two types of combinations. 
These processes are: removal of information outside the ribcage, creation of liver-corrective images, multi-res- 
olution RD-GAC based level set, creation of seed regions in axial images, and post processing. The first combi-
nation called an initial process includes the first four processes. Meanwhile, the second combination is used to 
segment liver’s regions in axial images, and it is created from integration of the second, third, and fifth pro- 
cesses. 

3.1. Removal of Information outside the Ribcage 
To exclude all information outside the ribcage, we create a mask region for each axial image by performing the 
following procedures. First, a median filter is used to reduce noise. Then, a two-stage multi-thresholding Otsu’s 
(TSMO) method [17] improved by our proposed range constraint is applied to a filtered image. The result of the 
thresholding presents five segments containing background, three levels of soft tissues, and hard-tissue regions. 
Next, the hard-tissue regions represent ribs and vertebrae, and a template of seed points is created to cover these 
regions (see Figure 4). Subsequently, we move these seed points to boundaries of hard-tissue regions, and use 
straight lines to connect these points together in order to generate a mask region. However, regions of ribs and 
vertebrae are not always clearly displayed in some axial images (see a red arrow in Figure 4). Thus, we use a 
combination of soft-tissue regions instead of hard-tissue regions. In fact, this combined region is often larger 
than a boundary of the ribcage. Therefore, morphological erosion is required to shrink this combined region af-
ter connecting all seed points together. 

Indeed, the original TSMO method [17] was introduced to accelerate computation without changing the re-
sults of a traditional Otsu’s method [18]. Conversely, these results are not good to present hard-tissue regions in 
our data sets as shown in Figure 5. Therefore, we need a range-constraint to improve the results. Indeed, an as-
signment of a range-constraint is often mentioned [19]-[21], but it depends on a specific pattern of gray-inten- 
sities in a given image. In this study, we present a simple idea to define a range constraint by cutting gray inten-
sities below the water (0 HU). The CT images describe gray intensities as CT standard numbers in the Houns- 
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            Figure 3. An overview of a proposed liver-segmentation system.                          
 

 
Figure 4. An example of mask-region creation. (a) and (d) Two sample images, (b) and (e) 
templates of seed points, (c) and (f) mask regions.                                      

 

 
Figure 5. An example of five-class clustering on a 16-bits CT image (a) using TSMO method 
(b) and including a proposed range-constraint (c).                                       

 
field unit (HU) computed from the linear attenuation coefficient of materials [22]. Further, CT numbers of liver 
and bone are higher than the water.  

3.2. Creation of Liver-Corrective Images 
We perform the following steps to represent statistical regions of liver and preserve edge information in a given 
image. First, some samples of liver regions are measured their means µ and standard deviations σ  of gray in-
tensities in a liver’s volume. Then, binary regions are extracted by thresholding in a range of 5µ σ± . Next, 
these binary regions are refined by morphological operations, such as dilation, erosion, opening, and hole-filling. 
This refinement helps to separate regions of liver from another tissue. Afterwards, connected-component labe-
ling is applied, and we select one region that can represent the liver. Further, if the selected region dramatically 
differs from the segmented region in the previous image, this selected region will be improved by merging or 
intersecting with the previous segmented-region. Then, if the selected region is denoted by L and a given image 
is represented by ( ),I x y , the liver-corrective image (LCI) will be 

( ) ( )
( )

if , 1,
LCI ,

, otherwise.
L x y

x y
I x y
µ == 


                           (3) 

Moreover, we use the selected region to construct a zero LSF ( )0 ,x yφ  for starting the level-set segmenta- 
tion, that is ( )0 0,x y cφ = −  if ( ), 1L x y = ; otherwise, ( )0 0,x y cφ =  where 0c  is a positive constant. 

3.3. Multi-Resolution RD-GAC Based Level-Set Segmentation Method 
As for the RD-GAC based level-set method in Section 2.3, we combine it with a concept of multi-resolution as 
shown in Figure 6. In this study, three levels of 25%, 50%, and 100% of the original resolutions were performed. 
First, the edge detector function and the zero LSF are obtained at the original resolution. Then, they are scaled  
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Figure 6. A concept of multi-resolution RD-GAC based level-set method.     

 
down to the lowest resolution. Next, the level-set method is operated. Afterwards, the result is used to construct 
the zero LSF in the higher resolution. Meanwhile, the edge detector function at the original resolution is scaled 
down to the desirable resolution. Then, the level-set method is repeatedly calculated to continue propagating the 
given curve from the lower resolution. Similarly, the process of segmentation is repeated until a final contour at 
the original resolution is released. 

3.4. Creation of Seed Regions in Axial Images 
After we remove all regions outside the ribcage (Section 3.1) in a given 3D CT volume, coronal images are re-
constructed by cutting the 3D CT volume in x-z planes (see Figure 7). Then, coronal images at the middle of the 
3D data are sampled. Next, we define the region of interest (ROI), and create the liver-corrective images (Sec-
tion 3.2) from these samples of coronal images. Afterwards, the multi-resolution level-set method (Section 3.3) 
is performed. The segmentation results represent the liver’s regions in coronal-image planes. Thus, if we com-
pute the parallel projection of these segmentation results onto vertical axes of the coronal images, we will be 
able to obtain the start and stop indexes of axial images that include liver’s regions. Further, if these results are 
cut in horizontal planes (x-y planes), we will get seed regions in axial images. 

3.5. Liver Segmentation in Axial Images 
This process contains three main operations. First, we use seed regions produced by the process in Section 3.4 to 
create liver-corrective images (Section 3.2) in axial-image planes. Afterwards, the multi-resolution level-set 
method (Section 3.3) is utilized to segment a liver’s volume. 

3.6. Post Processing 
From the segmentation results in Section 3.5, they are refined by applying a Gaussian smooth filter to coronal 
and sagittal image planes. In addition, we use a hole-filling method to get outside boundaries of the liver regions. 
However, we can preserve hole-regions by intersecting these hole-filling regions with regions of holes. 

4. Experiments and Results 
4.1. Data Sets 
We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired from four patients by a 
4D-CT imaging system (a GE Discovery ST machine and a Varian RPM system) in a cine mode. In each patient, 
10 different sets of 3D CT data corresponded to a breathing cycle, which were counted from 0% to 90% phases 
of a breathing cycle with an equal different time phase. These data sets are provided by the MIDAS community, 
http://midas.kitware.com/community/view/47. Each 3D-CT data set includes 136, 120, 150, and 120 slices of 
16-bits axial-images for patient A, B, C and D. The size of each axial image is 512 × 512 pixels with resolution 
0.98 square millimeters, and slice thickness is 2.5 millimeters. 

4.2. Parameter Setting for the Level-Set Method 
When we used a GAC model to control the curve propagation and allocated the boundaries of the zero LSF in-
side the liver, the following three conditions were used to adjust parameters. First, the reaction factor of the RD 
method (Section 2.3) should be large enough to move a given curve in the outward direction. However, if this 
reaction factor were over defined, the curve would easily move outwards from boundaries of liver. We set it to  

http://midas.kitware.com/community/view/47
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Figure 7. An example of some steps in creation of seed regions in axial images from coronal 
images.                                                                       

 
be 0.005 and 0.03 for coronal and axial images, respectively. Next, the diffusion factor should be D0 0.25k≤ ≤  
as mentioned in [12]. Further, it should be a small value to get an accurate result when a given image includes 
high level of image noise. We assigned D 0.002k = . Lastly, if we need a given curve to propagate outwards, the 
coefficient of area term has to be a negative value; for example, we defined 0.5v = −  for all experiments. 

In addition, we simply defined the maximum number of iterations to stop the curve propagation as 300 itera-
tions. However, if we segment liver’s regions in axial images, it will be possible to reduce the number of itera-
tions. We automatically adjusted the number of iteration by performing parallel projection of liver-segmentation 
results in coronal images onto the vertical axes of coronal images. Actually, a position on the vertical axis is 
equivalent to the index of axial image. If the projection data at the position i  is denoted by ( )Proj i  and the 
total number of axial images is m , the maximum number of iterations in each axial image is 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) { }max

1

Proj 3001max , , , , 1, , .
max Proj 1 , , Proj

m

i

i
N i N A i N A i A i i m

m m=

×
= = = ∈∑ 



          (4) 

4.3. Results and Discussion 
In this study, we validated similarities between the segmentation results of the proposed system and liver’s vo-
lumes delineated by a radiologist. Further, these segmentation results were compared with the liver-segmenta- 
tion methods based on the level-set speed image (LSSI) and statistical thresholding (ST) techniques, which were 
implemented in accordance with diagrams in Section 2.1 and Section 2.2, respectively. 

4.3.1. Qualitative Comparison 
In Figure 8, an accumulated error from previous images and an overlap of gray-intensities between liver and 
another soft tissue caused some over-segmentations in all methods as shown in the first row. Liver segmentation 
based on the LSSI technique met a problem of the curve propagation in thin regions (see a yellow arrow in the 
second row). The given curve was unable to move into the remaining part of the liver’s region as indicated by a 
blue arrow. From observation, this problem occurred after a liver’s region in a given image was separated into 
two parts by edges in a speed image of the LSSI technique, and an initial region of the zero LSF was created in-
side the only one part. When we compared our proposed method with the LSSI and ST techniques, the proposed 
method achieved the best fitting boundaries of liver’s regions. These comparisons are illustrated in the remaining 
rows. However, these results did not clearly display hole-regions as shown in the outlines of manual delineation. 

Next, Figure 9 shows examples of liver’s boundaries in coronal and sagittal images. The under-segmentation 
was a major problem of the proposed method as indicated by yellow arrows. This problem arises when an initial 
process creates extremely small seed-regions. Next, the results of liver segmentation based on the LSSI tech-
nique contained over or under-segmentations when some boundaries of anatomical structures were not extracted 
well in the speed images. Moreover, a critical problem of liver segmentation based on the ST technique is to 
cause a kind of over-segmentation as shown by blue arrows. In our opinion, this problem occurs when data sets 
include large variation in averages of gray-intensities among different axial-images. Further, sizes and locations 
of seed regions used in statistical measures occasionally fail to give good approximate liver’s regions. 

4.3.2. Quantitative Measures 
This study validated the segmentation results by using relative absolute volume similarity (RAVS), volume 
overlapped coefficient (VOC) and dice similarity coefficient (DSC) [23]. Moreover, the quantities of over-and  
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Figure 8. Six examples of liver-segmentation results in axial-images of patient A (phase 0 
slice 66), B (phase 20 slices 73 and 83), C (phase 0 slices 94 and 100), D (phase 50 slice 50), 
which are presented from top to bottom.                                              

 
under-segmentations are measured by false positive rate (FPR) and false negative rate (FNR) [24], respectively. 

S M S M S M

M S M S M

S S M M S M

M M

2
1 100, 100, 100

100, 100,

V V V V V V
RAVS VOC DSC

V V V V V

V V V V V V
FPR FNR

V V

    −
= − × = × = ×         +     

− −
= × = ×

 



 

        (5) 

where SV  represents a segmented volume and MV  denotes a manual-drawing volume. In summary, the pro-
posed method gave the highest accuracy of 86.38 ± 4.26 percent on average of similarities, which was measured 
by RAVS, VOC, and DSC from all 40 sets of 3D CT data. Meanwhile, liver segmentation based on the LSSI 
and ST techniques presented 79.17 ± 5.15 percent and 74.04 ± 9.77 percent of similarities, respectively. These 
results are shown in Table 1. The under-segmentation was a major problem of the proposed method, and this 
problem mostly appeared in the data sets of the patient B as reported in Table 2. However, the segmentation re-
sults of the proposed method showed fewer lost-regions than the results of liver-segmentation based on the LSSI 
technique in the data sets of the remaining patients. Further, liver-segmentation based on the ST technique 
showed the largest values of over-segmentations. 

4.3.3. Computation Time 
The proposed system was operated under MATLAB environment on 3.40 GHz Intel(R) Core(TM) i7 2006 CPU. 
It spent around seven minutes 35 seconds to compute in the effective initial process. Further, liver segmentation 
in axial images consumed about 16 minutes and six seconds. Thus, the proposed system required around 23 mi- 
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Figure 9. Eight examples of liver-segmentation results: (Top) outlines in coronal images, and 
(bottom) outlines in sagittal images. The results show at slice 160 in patient A (phase 70), B 
(phase 30), C (phase 50), and D (phase 90).                                           

 
Table 1. Comparison of average similarities and errors measured in all 40 data sets (unit: %).                           

Measure Types 
Proposed LSSI ST 

Average STDEV Average STDEV Average STDEV 
RAVS 83.51 4.90 73.95 7.07 63.84 16.14 
VOC 84.25 4.89 76.78 5.12 73.68 7.81 
DSC 91.38 2.99 86.77 3.24 84.61 5.37 
FPR 5.01 1.80 10.96 7.18 32.49 17.32 
FNR 11.47 6.08 15.09 3.33 3.67 2.17 

 
Table 2. Comparison of average similarities and errors measured in patient A, B, C, and D (unit: %).                     

Measure 
Types 

Patient A Patient B Patient C Patient D 
Proposed LSSI ST Proposed LSSI ST Proposed LSSI ST Proposed LSSI ST 

RAVS 84.36 66.03 50.68 76.62 71.55 75.75 86.50 74.64 56.31 86.58 83.58 72.59 
VOC 85.24 71.80 67.48 77.24 74.00 79.99 87.11 77.32 69.27 87.43 84.01 77.99 

DSC 92.02 83.57 80.29 87.09 85.04 88.73 93.11 87.20 81.84 93.28 91.29 87.59 
FPR 5.93 20.08 46.53 2.76 9.38 17.66 4.76 11.72 42.03 6.60 2.66 23.76 

FNR 9.71 13.89 2.79 20.62 19.07 6.59 8.75 13.64 1.65 6.82 13.75 3.65 
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nutes and 41 seconds to segment a liver volume from 3DCT data that consists of 120 - 150 axial-image slices. 

5. Conclusions 
This study proposes an efficient liver-segmentation system based on a level-set method and consequent 
processes. The proposed system is composed of three main ideas. First, an effective initial process prevents the 
leakage of regions outside the ribcage when a given curve propagates near ribs and vertebrae. Further, it gene-
rates seed regions completely inside a liver’s volume for measuring statistical values of gray-intensities. Second, 
liver-corrective images are created to represent statistical regions of liver and preserve the edge information. The 
objective of these images is to improve accuracy of liver-segmentation. Lastly, computation time in the RD- 
GAC based level-set method is reduced by using a concept of multi-resolution.  

We applied the proposed system to 40 sets of 3D CT-liver data, which were acquired by a 4D-CT imaging 
system from four patients. For each patient, 10 different sets of 3D CT were collected in different time phases of 
a breathing cycle. The segmentation results were compared with livers’ volumes, which were manually deli-
neated by a radiologist. An average of similarity measures presented around 86.38 ± 4.26 percent. Further, the 
proposed system showed the highest accuracy compared with the liver-segmentation methods based on edge or 
statistical region information. However, the major problem found in the proposed method is a kind of under- 
segmentation. It appeared when liver’s regions were small and dirty edge information was produced by some ar-
tifacts. Thus, this problem will be addressed in the future work. 
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