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Abstract 
This paper proposes the evaluation of arteriovenous shunt (AVS) stenosis using a fractional-order 
Fuzzy Petri net based screening system for long-term hemodialysis treatment of patients. The 
screening system uses the Burg method, the fractional-order chaos system, and the Fuzzy Petri net 
(FPN) for early detection of AVS dysfunction. The Burg method is an autoregressive (AR) model 
that is used to estimate the frequency spectra of a phonoangiographic signal and to identify the 
spectral peaks in the region from 25 Hz to 800 Hz. In AVS, the frequency spectrum varies between 
normal blood flow and turbulent flow. The power spectra demonstrate changes in frequency and 
amplitude as the degree of stenosis changes. A screening system combining fractional-order chaos 
system and FPN is used to track the differences in the frequency spectra between the normal and 
stenosis access. The dynamic errors are indexes that can be used to evaluate the degree of AVS 
stenosis using a FPN. For 42 long-term follow-up patients, testing results show that the proposed 
screening system is more efficient in the evaluation of AVS stenosis. 
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1. Introduction 
Chronic kidney disease (CKD) is a worldwide public health problem with high rates of morbidity and mortality 
[1]. According to reports from the Department of Health (DOH), the rate of end stage renal disease (ESRD) in 
Taiwan is 2447 per million [2]. CKD is usually an irreversible and progressive disease and has five stages of 
severity. Patients are treated with hemodialysis, peritoneal dialysis, or a kidney transplant. Hemodialysis is one 
of the treatment choices for these patients and arteriovenous shunt (AVS) is vital for hemodialysis therapy, be-
cause it makes a surgical connection between an arterial anastomosis site and a venous anastomosis site. AVS 
occlusion and failure causes turbulent flow, high wall shear stress, and high blood pressure [3]. In clinical ex-
aminations, for visualization of the vascular access, using angiography is the gold standard for the diagnosis of 
stenosis [4]. Flow rates for arteriovenouse grafts typical range from 600 - 1000 ml/min, which is necessary for 
efficient hemodialysis, but can cause flow transition to a turbulent state that is discernable by a palpable thrill or 
audible bruit [5]. Stenoses are often associated with unusual blood sounds, resulting from turbulent flow over a 
narrowed blood vessel [6]. These auscultatory sounds can be recorded by one or two electronic stethoscopes and 
diagnosis is made or confirmed before and after angiography, which was accompanied by angioplasty [7]-[9]. 
As an early detection tool, phono-angiographic signals provide a non-invasive and low cost technique to monitor 
the sounds of an AVS. 

Studies [10]-[12] have shown that stenosis produces a general increase in sound level and new high frequency 
components in the power spectra. Frequency analysis, such as Fourier transform and wavelet transform, is used 
to preprocess the phonoangiographic signals. The changes in frequency and amplitude are dependent on the ste-
nosis site and its severity, and appear as frequency peaks in the region from 100 Hz to 800 Hz in the sound re-
cording from stenotic vessels. Prior studies have indicated an increase in the high-frequency component (300 Hz 
- 800 Hz) of phono-angiographic signals, following a higher degree of stenosis. Fourier transform is a non-  
parametric method for the estimation of power spectra. However, it is not an optimal method, because it suffers 
from spectral leakage effects due to the size of the sampling window. Wavelet transform [12] is a parametric 
method that provides better frequency resolution than non-parametric methods. Significant features are extracted 
at specific coefficients with different types of wavelets and a trial procedure of wavelet decomposition. The 
Burg method is also a parametric method for the estimation of frequency spectra; this method can use a small 
data set to reduce the number of stored samples and memory requirements [13]-[16]. It produces smoother spec-
tra than the Fourier transform method, but it is susceptible to frequency shifts. Thus, the Burg method is used to 
find the characteristic frequencies from phono-angiographic signals. However, it lacks an automatic diagnosis 
function. 

In addition, heartbeat regulation and blood flow show non-linear characteristics. The morphology of blood 
vessels includes circumferential, longitudinal, and radial deformation. A non-uniform laminar flow causes tur-
bulent flow and anomalous diffusion in the stenosis vessel. This phenomenon can be described as fractional- 
order diffusion [17]-[19]. Fractional-order chaos systems (FOCSs) are used to construct self-synchronization 
error formulation for systems characterized by random signals and to identify a broad range of anomalous phe-
nomena and frequency spectra. Therefore, Chen-Lee based fractional-order chaos system is used to track the 
differences in the frequency spectra between normal condition and AVS stenosis. This approach uses a master 
system (MS) and a slave system (SS). Using a coupling variable, the dynamic error equations are defined as the 
differences between the SS and the MS. These differences are used as indexes for presenting the degree of AVS 
stenosis. The Fuzzy Petri net [20]-[23] is a dynamic and marked graphical system. This system has been ex-
tended to develop an inference algorithm to deal with Fuzzy reasoning problems and multi-criteria decision- 
making applications. It is used for representing Fuzzy inference rules in knowledge based systems, and can per-
form Fuzzy reasoning. The decision-making system developed in this study combines signal processing, frac-
tional-order chaos system, and Fuzzy Petri net to evaluate the degree of AVS stenosis. 

For 42 long-term follow-up patients, the results show that the proposed screening system is more efficient for 
AVS stenosis evaluation. The remainder of this paper is organized as follows: Section 2 addresses the problem 
formulation and Sections 3 and 4 describe the methodology and screening system implementation, respectively. 
In Sections 5 and 6, experimental results and conclusions are provided to show the efficiency of the proposed 
method. 

2. Problem Formulation 
Arteriovenous shunts, including arteriovenous fistula (AVF) and arteriovenous graft (AVG), are the pathological 
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physiology created on a patient’s forearm and upper-arm to facilitate the hemodialysis process in ESRD patients. 
As daily sites for hemodialysis, these vascular accesses must be punctured every two days. The maintenance of 
the proper function and morphology of these vascular accesses is the most important issue for uremic patients. 
After repeated puncturing of the vascular accesses and long-term use, the interior of the accesses can exhibit pa-
thologic changes, including the formation of a thrombus, intimal hyperplasia and changes in the aneurysmal de-
formability of the access, as shown in Figure 1. AVS stenosis is the pathologic change of AVS and most com-
monly occurs in patients receiving long-term hemodialysis therapy. Over 85% of documented reports, the most 
common cause is stenotic lesions at the arteriovenous anastomosis or along the proximal venous limb. 

More than 75% of narrowing of the lumen diameter in the vascular access may result in a need for percuta-
neous transluminal angioplasty (PTA) or surgical revision [7] to clear the residual thrombus and dilate the ste-
notic segment. In clinical practice, Doppler ultrasound, phonoangiography, and angiography (X-ray) are used to 
detect the presence of a stenosis inside these vascular accesses [9] [10]. Stationary instruments provide reliable 
techniques and high accuracy in clinical assessment. However, they are not suitable for early detection or ho-
mecare applications by the patients themselves. 

Clinical physicians also sometimes use a stethoscope to evaluate the condition of vascular accesses. This is a 
simple, non-invasive, and non-expensive technique for monitoring the vascular access functions. The literature 
shows that the phonoangiographic (PCG) signal of AVS stenosis produces higher frequency components in the 
frequency spectra and spectral changes in frequency and magnitude [11]-[13]. As shown in Figure 2, an electric 
stethoscope can be used to record the PCG signals originating from AVF and AVG [8]. Using this information, 
the frequency spectra are used to determine the parameters for stenosis evaluation. Frequency feature extraction 
from PCG signals was obtained using the fractional-order chaos system (FOCS). Finally, Fuzzy Petri net was 
proposed to screen the degrees of AVS stenosis. 

3. Methodology Description 
3.1. Frequency Feature Extraction 
The Burg method was used to estimate the frequency spectra by fitting an autoregressive (AR) model of a given 
specific order to the PCG signals. This was used to estimate the power spectral density function associated with 
the phonoangiographic signals. Each sample of a signal can be expressed as a linear combination of previous 
samples and residual values resi. With a discrete set of n sampling points, K coefficients are used to approximate 
the original data of xi, where i = 1, 2, 3, …, n, presented as [13] [14] 

1

K

i k i k i
k

x x resγ −
=

= − +∑                                      (1) 

where xi represents the signal samples in this study and K is the AR model order, where k = 1, 2, 3, …, K, and γk 
stands for the model coefficients of the AR model. 

This method uses the optimal parameters γk to minimize the square error between the original and the ap- 
 

 
Figure 1. The aneurysmal deformability of the access.                     
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Figure 2. The block diagram of proposed screening system.       

 
proximated data. Forward and backward linear prediction requires the minimization of Fk and Hk, as [15]  
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where wi, i∈[k, n], is a linear weighted combination of k previous known data, and zi, i∈[0, n-k], is a linear 
weighted combination of k next known data. The sum of the residual energies at stage k is Ek = Fk + Hk. The Le-
vinson-Durbin recursion algorithm is used to minimize the total sum of the forward and backward prediction er-
rors for determining the model coefficients [16]. 

The frequency spectra are normalized between zero and one, making it easy to find the characteristic frequen-
cies. The frequency spectra for AVS stenosis and the normal condition are shown in Figure 3(a) and Figure 
3(d), respectively. It can be seen that the characteristic frequencies have the distinguishing peak amplitude of 
central spectra and occupy different frequency bands. These characteristic frequencies provide indices for the 
detection of AVS stenosis and the evaluation of the AVS degree.  

3.2. Self-Synchronization Error Formulation (SSEF) 
Synchronized chaotic systems are widely used in non-linear physical applications and physical informatics. 

Generally, a chaotic system consists of a master system (MS) and a slave system (SS), whose behavior can 
mimic each another [24] [25]. Typical chaos synchronization (CS) system can be described as  

Master System: ( )X A X X=                               (4) 

Slave System: ( )Y A Y Y U= +                              (5) 

where X = [x1, x2, x3]T and Y = [y1, y2, y3]T are state variables, A(X) and A(Y) are termed the coefficient matrices, 
and U = [u1, u2, u3]T is the control input.  
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Figure 3. (a) and (d) Frequency spectra of normal or abnormal AVS, (b) and 
(e) Dynamic errors Φ1, Φ2, and Φ3, with fractional order q = 0.98 and system 
parameters a’ = 1.983, b’ = −3.966, and c’ = −2.9745, (c) and (f) Phase dia-
gram of Φ1 versus Φ2, with fractional orders q = 0.90 - 0.98.                

 
Many phenomena and human physiologies demonstrate chaotic behaviors, fractional-order dynamics and 

non-linear characteristics. A non-uniform laminar flow causes turbulent flow and murmurs in the coronary ar-
tery, stenosis vessel, involving high-pitch stenosis murmurs [26]-[29]. The fractional-order differentiator has 
been proposed to track the differences of frequency spectra between normal and abnormal AVS. According to 
the definition by Grünwald-Letnikov [18] [19], the fractional rate of change of frequency spectra can be ex-
pressed as 

( )
( )

12
2xD x xα αε ε

α
−Γ

≈
Γ −

                                 (6) 

where x is the relative frequency spectrum for all α, and ε is any real number. If parameter α is taken as 1, then 
the rate of change is like a slope. The choice of the parameter α determines the phenomena that are modeled. By 
selecting α for the range 0 to 1, the Equation (4) can be referred to as the fractional rate of changes, and ano-
malous phenomena can be described.  

The Chen-Lee system exhibits good symmetrical behavior and is widely used in CS applications [24] [25]. It 
is a simplified mathematical model of a chaotic attractor. The master system and the slave system with a control 
term can be represented as 
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where a, b, and c are system parameters. In order to track self-synchronization errors, the control term u1 = u2 = 
u3 = 0, is used. The errors are defined as e1 = (x1 − y1), e2 = (x2 − y2), and e3 = (x3 − y3), e = [e1, e2, e3]T, and Equ-
ation (8) is subtracted from Equation (7), so the dynamics of error system can be represented as 

3
1 3 1 2

3
2 3 2

3 3
2

0
0
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0 0 0

1 0 00
3

a e
De a e e

e
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                      (9) 

In order to express the fractional-order diffusion, a fractional-order error system is used, and the ordinary dif-
ferential system (9) can be modified by fractional-order derivatives as follows [29] [30]: 
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where q = (1 − α) is the fractional order that satisfies 0 < q ≤ 1, α is the even value rounded up to the nearest in-
teger 1, and Γ(•) is the Gamma function (Γ(1) = Γ(2) = 1). This is the definition of usual derivatives when the 
order q = 1 (α = 0). System (9) acts as a chaotic attractor, satisfying [29] [30] 
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where the system parameters, a’, b’, and c’, are nonzero constants. The phase trajectories show various dynamic 
behaviors when the fractional order is q.  

For computer implementation, discrete fractional-order chaos system is proposed to detect AVS and to eva-
luate the outcome of a surgical operation. Let the error states be e1[i] = x[i] − y[i], e2[i] = x[i + 1] − y[i + 1], and 
e3[i] = x[i + 2] − y[i + 2], i = 1, 2, 3, …, n − 2, so the self-synchronization error formulations, Φ1[i], Φ2[i], and 
Φ3[i] are defined, as 
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where x[i], x[i + 1], and x[ i + 2] represent the data sequence of the frequency spectra using the reference/base- 
line data after/before percutaneous transluminal angioplasty (PTA) treatment, y[i], y[i + 1], and y[i + 2] represent 
the data sequence of undergoing further collection of data based on routine examinations, and n is the integer 
number of the frequency.  

The self-synchronization error formulations have three dynamic errors and they change their values depend-
ing on the error states, e1, e2, and e3. With the maximum values, max{Φ1[i]}, Φ1∈Rn-2, max{Φ2[i]}, Φ2∈Rn−2, 
and max{Φ3[i]}, Φ3∈Rn−2, we evaluate the degree of AVS stenosis using the index, Ψ, as in [30] 

[ ]{ }( ) [ ]{ }( ) [ ]{ }( )2 2 2

1 2 3max max maxi i iΨ = Φ + Φ + Φ                    (15) 



W.-L. Chen et al. 
 

 
264 

It is expected that the vibration and turbulent flow caused by stenosis produce different central spectra and 
frequency bands. Refer to Figure 3(a) and Figure 3(d), the dynamic errors, Φ1[i], Φ2[i], and Φ3[i], i = 1, 2, 
3, …, n − 2 (n = 800), can be calculated using the system parameters a = 2, b = −4, and c = −3, in Equation (11). 
When the fractional order q = 0.98, the dynamic errors are also identified using the system parameters a’ = 
1.983, b’ = −3.966, and c’ = −2.9745, as shown in Figure 3(b) and Figure 3(e). Using fractional orders, the dy-
namic behaviors of a FOCS become relatively broad, and a broad range of features is identified. Figure 3(c) and 
Figure 3(f) show the phase diagram for Φ1 versus Φ2 with fractional orders q = 0.90 - 0.98. The self-synchroni- 
zation errors seem similar and stable, and the scaling factors, a’, b’, and c’, control the phase trajectories of the 
chaotic motion and could be bounded within a limited region. We hypothesize that the origin is a stable point 
under a normal condition and that the phase trajectories increase as the stenosis become more serious. 

3.3. Fuzzy Petri Net (FPN) 
A set of Fuzzy IF-THEN rules is commonly used to represent linguistic inference rules. Let inference rule R = 
{R1, R2, R3, …, Rr, …, RNr}, where the form of the rth rule be presented as 

Rr: IF Ψr THEN C (CF = µr)                         (16) 
where Ψr and C are propositions, each proposition is a real value, and µr is the value of the certainty factor (CF), 
µr∈ [0,1]. The CF can indicate the grade of membership of µr r = 1, 2, 3, …, Nr, in the Fuzzy set, including tri-
angular, trapezoid, and Gaussian membership function. A Gaussian membership function can be parameterized 
by a mean and a standard deviance, σr. It is a nonlinear classifier and is defined by 

( )2

2

mean
exp r

r
r

ψ
µ

σ

 −
= − 

  
                                                              (17) 

The larger the value of µr, and the more confidence is confirmed. 
We can use a Fuzzy Petri net (FPN) to represent the Fuzzy IF-THEN rules of a rule-based system. The FPN is 

a marked graphical system, containing two types: places (P) and transitions (T), where circle symbols represent 
places, and bar symbols represent transitions. Each transition is associated with a CF value between zero and 
one. In this study, the definition of the FPN is as follows [20]-[23]: 

ΦΠΝ=(Π, Τ, ∆, ψ, Χ, µ, θ, β, Ω)                                                   (18) 

Π∩Τ∩∆=∅  〈νδ |Π|=|∆| 

where P = {p1, p2, p3, …, pNp} is a finite set of places, T = {t1, t2, t3, …, tNt} is a finite set of transitions, D = {d1, 
d2, d3, …, dNp} is a finite set of propositions, ψ = {ψ1, ψ2, ψ3, …, ψNr} is the input function, a mapping from 
transitions to desired places, C = {C1, C2, C3, …, CNc} is the output function, a mapping from transitions to de-
sired places, µ = {µ1, µ2, µ3, …, µ Nr} is a membership function, defined in [0,1] from inputs to transitions, θ = 
{θ1, θ2, θ3, …, θNt} is a membership function, defined in [0,1] from places to transitions, β is a weighted value 
from transitions to desired places, and W is a weighted value from transitions to desired outputs. The structure of 
FPN can be represented by a rule connectivity graphical system, as shown in Figure 4. According to this theory, 
inference functions contain “AND” or “OR” operators with min and max composite operations, which is known 
as “multivalued logic (Boolean rule of C. G. Looney [31])”. In this study, indexes Ψ, provide key information 
for making decision rules for an FPN based screening system. 

4. Screening System Implementation 
4.1. Signal Preprocessing 
Long-term hemodialysis treatment of patients was chosen for clinical investigation at the Department of Surgery, 
National Cheng Kung University Hospital (Tainan City, Taiwan). Phonoangiographic signals were recorded us-
ing an electronic stethoscope (3M™ Littmann 4100 Series, Minnesota, USA) with a 4 KHz sampling rate at 
measurement sites. A band pass filter with cut off at frequencies from 40 Hz and 800 Hz to prevent the base line 
from wandering and maintain the characteristic frequencies at the signal preprocessing stage [11] [12]. Fre-
quency spectral evaluation was then used to find the characteristic frequencies using the Burg AR method with a 
given AR order of P = 8 [30]. The frequency region, <800 Hz, was chosen in this study. The self-synchroniza-  
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Figure 4. Fuzzy Petri net (FPN) based screening system.        

 
tion error formulations were used to calculate dynamic errors. Depending on the dynamic errors, indexes Ψ, the 
status of AVS can be identified. 

4.2. Preliminary Diagnosis and Classification 
In clinical cases, following multiple PTA treatment, the vessel can develop severely fibrous soft tissue and scle-
rosis, leading to graft thrombosis, or loss of the available graft puncture area [32]. For example, polytetrafluo-
roethylene graft failure results in thrombosis, either at the graft-vein anastomosis or in proximal vein. In clinical 
research, the degree of narrowing of the normal vessel is an index, the so-called degree of stenosis (DOS). This 
index was confirmed the specific degree from images examinations, which are defined as in [33] 

2

2% 1 100%dDOS
D

 
= − × 

 
                                                           (19) 

( )% % %pre postDOS DOS DOS∆ = −                                                     (20) 

where D is the diameter of the normal graft or vessel in the direction of the blood flow, d is the diameter of the 
stenosis lesion, DOSpre% is the DOS% before PTA, and DOSpost% is the DOS% after PTA. The examination re-
sults have been classified into three classes by clinical physicians, as shown in Table 1. When the DOS% is 
greater than 50%, PTA or surgical revision is required to dilate the stenotic lesion or to remove the thrombus. 
The parameter ∆DOS% is the reduction degree of residual AVS stenosis from before and after PTA. This gives 
us the following two hypotheses: 
 AVS has still residual stenosis, such as elastic recoil or graft thrombosis, etc., after PTA as small values, 

∆DOS% and index Ψ.  
 AVS has stenosis upon monthly examination when the DOS% and index Ψ are increasing. 

For the surgical results among 42 patients (IRB, under contract number: ER-99-186), the overall DOS% of 
patients is greater than 80% before PTA, [28] which is regarded as the reference level, and in three groups 
(>50%, 30% - 50%, <30%) after PTA. In statistics, there is no statistical significance between the groups in ar-
terial anastomosis sites (A-sites) and venous anastomosis sites (V-sites), p > 0.05. Therefore, the correlation 
between ∆DOS% and index Ψ at the V-sites is closer than for the A-sites, as shown in Table 1 [30]. We can use 
exponent regression to model the relationship between ∆DOS% and index Ψ, as well as DOS% and index Ψ, 
respectively. The prediction model is fitted a non-linear curve that passes directly through all of the experimen-
tal data, as shown in Figure 5(a). It can be seen the correlation between ∆DOS and the Index, Ψ, at the V-site, 
as 

( ) 2% 0.1914 esp 0.2333 , 0.3802DOS R∆ = × Ψ =                     (21) 
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(a) 

 
(b) 

Figure 5. (a) The ∆DOS% versus index Ψ at V site, (b) Order of severity for 
the evaluation of AVS stenosis.                                       

 
Table 1. The correlation results of DOS%, ∆DOS% and Index Ψ at A-site and V-site [30].                              

Parameter 
(No) 

Class I 
(8) 

Class II 
(8) 

Class III 
(26) p value 

DOSpre% 81 - 97 87 - 100 81 - 99 

 DOSpost% > 50 30 - 50 <30 

∆DOS% 23 - 42 45 - 66 55 - 88 

Ψ at A-site 4.25 ± 1.08 4.37 ± 1.07 5.03 ± 0.43 0.051 

Ψ at V-site 3.63 ± 1.46 4.80 ± 0.62 4.90 ± 0.50 0.129 

 
The exponential regression was used to perform a least square curve fit, which minimizes the sum of the 

squares of the deviations of the experimental data from the prediction model. Thus, the examination criteria can 
be obtained for a prediction approach. As shown in Figure 5(b), the specific ranges, including Class I: Ψ < 3, 
Class II: 3 < Ψ < 5, and Class III: Ψ > 5, are used to evaluate the residual stenosis after PTA. We also compare 
the index Ψ before and after PTA at a monthly examination and suggest the specific ranges for evaluating AVS 
stenosis, order of severity, including Class III: Ψ < 3, Class II: 3 < Ψ < 5, and Class I: Ψ > 5. 
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4.3. Fuzzy Petri Nets Based Screening System 
According to Table 1 and Figure 5, a Gaussian membership function can be parameterized by means (mean = 
0.00 - 6.00) and a standard deviance (σ1 = σ2 = σ3 = … = σr = 0.3802) using Equation (17). Figure 6 illustrates 
the Gaussian membership functions for three classes. In this way, we have 7 membership functions µr, r = 1, 2, 
3, …, 7, with specific ranges Ψr. The CF of each input in the different ranges is distributed in the range of [0, 1]. 
The FPN can perform Fuzzy inference to evaluate the degree of AVS stenosis of each proposition specified by 
the clinical physician, as shown in Table 2. Assume the degree of proposition Cm (Class I - Class III), m = 1, 2, 
3, place pm is associated with the proposition dm = θm(pm), m = 1, 2, 3. Thus, the FPN based screening system can 
be determined, as shown in Figure 4. The FPN performs max operations (OR operator) to generate the goal 
proposition C, C = max{C1, C2, C3}. The FPN algorithm is summarized as follows: 

Step 1) IF Ψr THEN tr, CF = µr, where tr = µr(Ψr), r = 1, 2, 3, …, 7 (Nr = 7). 
Step 2) IF (µ1 or µ2 or … or µr) THEN pm, pm = max{(µ1 × β), (µ2 × β), …, (µr × β)}, m = 1, 2, 3, …, Nr (Nr = 

7).  
Step 3) Compute the proposition dm = θm(pm), m = 1, 2, 3 (Np = 3). 
Step 4) IF (d1 or d2 or … or dm) THEN Cm, Cm = max{θ1(p1) × W, θ2(p2) × W, …, θm(pm) × W}, m = 1, 2, 3 (Nc 

= 3). 
Step 5) Final output C = λm × max{C1, C2, C3}. 

 

 
                        Figure 6. Gaussian membership functions for three classes.      
 
Table 2. Inference rules of Fuzzy Petri nets.                                                                   

Input GMF Transition Place Proposition Output 

Ψ1 µ1 t1 = µ1 

p1 = max{(t1 ×β1), (t2 × β2), (t3 × β3), (t4 × β4)} 
β1 = β2 = β3 = β4 = 1.0 d1 = θ1(p1) 

Goal Proposition:  
Cm = max{d1× W, d2 × W, d3 × W} 

 
 

Final Output: 
C = λm × max{C1, C2, C3} 

Ψ2 µ2 t2 = µ2 

Ψ3 µ3 t3 = µ3 

Ψ4 µ4 t4 = µ4 

Ψ4 µ4 t4 = µ4 

p2 = max{(t4 ×β4), (t5 × β5), (t6× β6)} 
β4 = β6 = 0.4,β5 = 0.8 d2 = θ2(p2) Ψ5 µ5 t5 = µ5 

Ψ6 µ6 t6 = µ6 

Ψ5 µ5 t5 = µ5 

p3 = max{(t5 ×β5), (t6 × β6), (t7× β7)} 
β5 = 0.4,β6 = β7 = 1.0 d3 = θ3(p3) Ψ6 µ6 t6 = µ6 

Ψ7 µ7 t7 = µ7 
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The index, λm, is a real number, and is defined as 
 residual stenosis evaluation: λ1 = 1 for Class I, λ2 = 2 for Class II, and λ3 = 3 for Class III,  
 AVS stenosis evaluation: λ1 = 3 for Class III, λ2 = 2 for Class II, and λ3 = 1 for Class I. 
The goal proposition C indicates the possible degree of AVS senosis. Therefore, function θm(pm) is a nonli-

near approximator, and is defined by 

( )( )exp 1 ,0 1m m mpθ θ= − − < <                                                   (22) 

where value pm, 0 ≤ pm ≤ 1, can determine the output of function θm (Nt = 3), and the larger value, the more 
likely it is the output goal proposition will occur. Its solution list is monotonically decreasing, and the degree 
can be divided into three classes. 

5. Experimental Results and Discussion 
The proposed screening system with the signal processing, Burg AR method, self-synchronization error formu-
lations, and Fuzzy Petri nets was developed on a PC AMD Athlon II × 2 245 2.91 GHz with 1.75 GB RAM and 
Matlab software. To demonstrate the effectiveness of the proposed model for AVS stenosis evaluation, 42 sub-
jects were tested. There were 23 females and 19 males with a mean age of 63 ± 10.2 years (49 to 81 years). The 
AVS types included 22 arteriovenous grafts (AVGs) and 20 arteriovenous fistulas (AVFs) to surgically connect 
the artery and vein. The participants’ mean duration of long-term hemodialysis therapy was 48 ± 31 months. 
Preliminary diagnosis results confirmed the specific degrees by ultrasonic image examination and observation 
by clinical physicians. Two case studies, residual stenosis after PTA and long-term/monthly examinations were 
used to validate the proposed screening system, as detailed below. 

5.1. Residual Stenosis Evaluation after PTA 
The records of the 42 subjects were divided into three groups. The overall testing results are shown in Figure 7, 
and the accuracy (90.47%) and sensitivity (92.30%) are greater than 90% with 4 failures. Each subject used at 
least 2 records for 8 seconds at the venous anastomosis site before PTA and after PTA. We classified the AVS 
stenosis according to three main degrees, as “Class I”, “Class II”, and “Class III”, corresponding to monotoni 
cally decreasing curves that define the level to quantify the similarity in each class. The output function of θm, m 
= 1, 2, 3, itself can be an arbitrary curve, and we can define it as a function that must vary between 0.3679 and 
1.0000 for Class I, 0.7358 and 2.0000 for Class II, 1.1037 and 3.0000 for Class III, respectively. Nonlinear 
Gaussian classifiers are used to screen possible classes from the three groups. Then, the place pm can determine 
the similarity level more likely to be close to each nonlinear approximator. If place pm is similar to any proposi-
tion, its value spreads between 0 and 1. It can be seen the function of AVS can be evaluated by the proposed 
screening system. 
 

 
Figure 7. Feasibility screening results of residual stenosis 
evaluation after PTA (42 tests).                        
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In order to demonstrate the effectiveness of the proposed method, 10 patients were also randomly selected to 
verify the residual stenosis evaluation, as shown in Table 3. A clinical physician verified that these subjects had 
a high degree of DOS% before PTA. PTA treatment or surgical revision is used to dilate the stenotic lesion and 
to enlarge the focal site with balloon expansion. Then, the proposed screening system has high confidences for 
early detection to decide the degree of residual stenosis, and has a non-invasive means of measurement and an 
automatic diagnostic algorithm for monitoring AVS conditions. According to this examination, we recommend 
increasing surveillance and confirmation analysis, especially in “Class II and III”. This confirms the FPN based 
screening system provides promising results for residual stenosis evaluation at the venous anastomosis site. 

5.2. Long-Term Monthly Examinations 
As an example, a female hemodialysis patient, aged 54, AVG type (Right Forearm Loop), agreed to participate 
in the long-term examination and allowed further data collection through monthly observation from June 25, 
2011 to November 12, 2012. In a routine monitoring cycle, a monthly examination was used to evaluate the 
AVG function, as shown in Table 4. On September 6, 2011, the patient had severe AVG occlusion, DOS% = 
92%, and received PTA treatment. After multiple PTA procedures, the vessel became severely fibrous and scle-
rotic. An immediate elastic recoil can occur after PTA treatment, which contributes to blood flow resistance 
from the outflow to the total occlusion condition. On November 12, 2011, using the ultrasonic image examina-
tion, were found this type of recoil at the venous anastomosis site. This type of case can fall into one of the two 
following scenarios: 
 
Table 3. Results of residual stenosis evaluation at venous anastomosis site (V-site).                                   

Patient 
Number Index Ψ 

DOS% 
∆DOS% Class 

CF (p, θ) Before PTA After PTA 
1 

AVF 5.42 88 18 70 III 
(0.3027, 1.4938) 

2 
AVF 5.33 91 24 67 III 

(0.4782, 1.7803) 
3 

AVG 5.04 96 8 88 III 
(0.9892, 2.9678) 

4 
AVG 4.29 95 47 48 II 

(0.4525, 1.1568) 
5 

AVG 3.83 87 42 45 II 
(0.6578, 1.4203) 

6 
AVG 3.65 95 47 48 II 

(0.3489, 1.0429) 
7 

AVG 3.60 96 27 69 II 
(0.2706, 0.9644) 

8 
AVF 2.89 89 58 31 I 

(0.9213, 0.9243) 
9 

AVG 2.41 92 60 32 I 
(0.3202, 0.5574) 

10 
AVG 1.36 95 72 24 I 

(0.4156, 0.5574) 
 
Table 4. Results of long-term monthly examination at venous anastomosis site (V-site).                                

Data 
2011 

Stenosis 
condition 

Characteristic frequency 
Index Ψ Class 

CF (p, θ) 1st 2st 3rd 

06/25 Inflow 96 378 650 0.82 III 
(0.8029, 2.4634) 

08/06 Inflow 113 409 661 1.58 III 
(0.3027, 1.4938) 

09/06 Outflow 187 396 631 5.04 I 
(0.9892, 0.9893) 

10/13 Outflow 103 333 - 4.28 II 
(0.4704, 1.1776) 

11/02 Occlusion 36 - - 5.28 I 
(0.5879, 0.6623 
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 From inflow to outflow stenosis condition: with focal increase in velocity, the main characteristic fre-
quency gradually shifts from low frequency components to high frequency components, such as the 1st 
characteristic frequency could increase from 96 Hz to 187 Hz in three-months of observation.  

 From outflow to total occlusion condition: the 1st and 2nd characteristic frequencies return to their pre-
vious levels, but the frequencies of the 2nd and 3rd characteristic disappear.  

Thus, the index Ψ gradually increases as the stenosis gradually becomes severe. For example, index Ψ = 5.04, 
the diagnostic procedures of the FPNs are: 

Step 1) Compute the CFs of µr(fr), then transition T = [t1, t2, t3, …, t7] = [0.0000, 0.0000, 0.0000, 0.0000, 
0.0007, 0.9892, 0.0019]. 

Step 2) Perform OR operations with 3 combinations of transitions, and then place P = [p1, p2, p3] = [max{(t1 × 
1), (t2 × 1), (t3 × 1), (t4 × 1)}, max{(t4 × 0.4), (t5 × 0.8), (t6 × 0.4)}, max{(t5 × 0.4), (t6 × 1), (t7 × 1)}] = [0.0000, 
0.3957, 0.9892]. 

Step 3) Compute the proposition D = [d1, d2, d3] = [0.3679, 0.5465, 0.9893]. 
Step 4) Perform OR operations with 3 combinations of three groups of places, and then the goal proposition 

max[(d1 × 1), (d2 × 1), (d3 × 1)] = max[C1, C2, C3] = 0.9893. 
Step 5) Final output C = λ3 × max[C1, C2, C3] = 0.9893 (λ3 = 1). 
Overall results of one routine monitoring cycle were shown in Table 4. These results confirm that the pro-

posed screening system can also be used to evaluate the degree of AVS stenosis for monthly examinations. 

5.3. Performance Tests and Discussion 
Table 5 shows comparison performances using the proposed screening method, a support vector machine (SVM) 
[11] and a probabilistic neural network (PNN) [34]. After collecting recorded data, 40-sets of training data from 
input-output pairs were used to train a PNN and a SVM, as shown in Figure 8(a) and Figure 8(b). So the struc-
tures of multi-layer networks can be determined using input-output training data, and be built with a network 
topology 1 × 3 × 3 for SVM and a topology 1 × 40 × 4 × 3 for PNN. Updating of network parameters was per-
formed after the network structure had been determined. For adaptive applications, traditional optimization me- 
 

 
Figure 8. (a) Training data for support vector machine 
(SVM); (b) Training data for probabilistic neural network 
(PNN).                                           
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Table 5. Comparison of performances between the proposed method and other methods.                               

Method 
task 

FPN 
PNN 
[34] 

SVM 
[11] 

Network architecture 7-3-3-1 1-40-4-3 1-3-3 

Training data - 
40 

Input-output pair 1: [Ψ, ∆DOS%] 
Input-output pair 2: [Ψ, DOS%] 

Activation 
function 

Gaussian membership function (GMF): 
Equations (17), (22) 

Gaussian Function [11] [34]  

Inference/ 
learning 

algorithm 

Multivalued logic 
Max operation 

•Least mean square algorithm 
•Gradient descent method 

•Particle swarm optimization (PSO) algorithm 

Parameter assignment 

•Means and standard 
deviances of GMFs 

•Weighted values, β, 
from transitions to desired places 

•Weighted values, W, 
from transitions to 

desired outputs 

•Population size: G = 20 - 40 [34] 
•Inertia weight: ω 

•Acceleration parameters 
•Uniformly random numbers 

•Maximum number of allowable 
iteration: gmax, g = 1, 2, …, gmax = 50 

Adjustable 
parameter 

- σk 
τk, σk, bias, 

constrain: 0 < τk < 1 

Iteration training - < 50 20 - 40 

Convergent condition - MSEF < 10-2 MSEF < 0.2 

Accuracy (%) 95.0 95.0 65.0 

Note: Activation function: (1) PNN [34]: 
( )( )2

2
exp

2k

k

k
H

σ

 Ψ − Ψ
 = −
  

 (2) SVM [11]: ( ) ( )( )2

2
1

exp
2

K

k
k k

k
f biasτ

σ=

 Ψ − Ψ
 Ψ = − +
  

∑  where Ψ is the 

input testing data, and Ψ(k), k = 1, 2, 3, …, K (K = 40), is the training data. 
 
thods, such as the gradient descent method and the least-square algorithm, were used to choose the optimal net-
work parameters. As seen in Table 5, an adaptive mechanism design with updating the parameters, σk, and was 
adopted to minimize the mean squared error function (MSEF) between the actual output and desired output [34] 
[35]. However, traditional optimization methods have two bottlenecks: 1) MSEF is a non-linear function and its 
partial differential equation is difficult to obtain, and 2) It cannot guarantee convergence to a global optimal so-
lution as the iteration computing and the number of training data increase. 

The particle swarm optimization (PSO) algorithm is an evolutionary optimization technique, which provides 
more efficiency in solving multiple optima, high dimensionality, featuring non-linearity, and nondifferentiability 
problems [36]. For the same training data, the evolution computations of this technique were used to minimize 
the MSEF, as shown in Figure 9. It can be seen the solution list of the PNN classifier is monotonically decreas-
ing, but the MSEF could not reach the convergent condition (MSEF < 10−2).  

In addition, only slight improvement in the optimal parameters was obtained by increasing the number of ite-
ration training and population sizes (G = 20 - 40). 

A SVM can find an optimal hyper-plane for linearly or non-linearly separable patterns, as shown in Figure 
8(a), and also can transfer input data into higher dimensional space. A specific function, kernel-based transfor-
mation, transfers the input space into higher dimensional space by non-linear transformation and tuning the pa-
rameters, τk, σk, and bias. For the same training data, the solution list of the SVM classifier can rapidly reach the 
convergent condition, as shown in Figure 9. However, its solution list involves vibration convergence and is 
trapped to the local optimal solution due to updating of three parameters at each iteration computation. With a 
non-linear SVM mechanism, it is not suitable to train a classifier under low-dimensional pattern space. Its accu-
racy is only 65% (with 14 failures), which less than PNN. 
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Figure 9. The mean square error versus the number of 
iteration training.                                   

 
The multi-layer networks provide promising solutions to perform classification tasks, but the algorithms are 

difficult implement in hardware devices. The proposed screening system provides a rule-based mechanism and 
automatic weighted Fuzzy reasoning. A flexible and intelligent approach requires no iteration computation for 
updating network parameters. Thus, it can overcome the complexity of adjustable mechanism design, and the 
prototype device can be implemented with fundamental mathematic operations and logical operation functions 
as needed in a short design cycle, as seen in Appendix.  

Some advantages of the proposed screening system are summarized as follows: 
 Burg autoregressive (AR) method is used to identify the characteristic frequencies. 
 Self-synchronization error formulation (SSEF) is used to track the differences of frequency spectra bet-

weennormal and abnormal conditions. 
 Fractional-order dynamic error can be used to scale the equal difference values within the specific ranges. 
 Fuzzy Petri net (FPN) requires no assignation of a specific objective function and no iteration computing to 

update parameters. 

6. Conclusion 
In Taiwan, more than 66 thousand people need to receive the hemodialysis treatment and this number is in-
creasing year by year. For long-term use, AVF or AVG accesses must be punctured every two days. Mainten-
ance of proper AVS function is the most important issue for end stage renal disease patients. The proposed 
screening system has developed an early detection tool for evaluating AVS condition. With the noninvasive 
phonoangiographic signals, the Burg AR method was used to estimate the characteristic frequency spectra. Us-
ing fractional calculation with fractional orders, 0.90 < q < 0.98, the self-synchronization error formulations are 
used to compute the fractional-order dynamic errors, which are orthogonal components bound to the limit values 
in the first quadrant. Thus, the norm of the dynamic errors is used to specify the degrees of the stenosis. Then, 
we implemented human diagnosis work to present a Fuzzy Petri net based inference algorithm for a rule-based 
screening system, and the degree subdivides into three classes to screen the residual stenosis and occlusion le-
vels. We used 42 case studies for “residual stenosis evaluation” and 10 case studies for “long-term monthly ex-
amination” to verify the feasibility of the proposed screening system. It can provide early detection in homecare 
applications and is easy to implement with a portable medical monitor. 
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Appendix 
The authors designed a prototype of arteriovenous shunt (AVS) stenosis screening system using the LabWIEW 
graphical programming (National Instruments™ Corporation, Austin, Texas, USA), as shown in Figure A1. It 
includes phonoangiographic (PCG) signals recording, signal processing, feature extraction, and Fuzzy Petri net. 
The proposed screening system has developed an assistant tool for residual stenosis evaluation and AVS stenosis 
evaluation. It also allows applications for the detection of arterial occlusive diseases and coronary artery diseas-
es. 
 

 

 
Figure A1. Main human-computer interface.                  
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