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ABSTRACT 

This work presents the dynamical modelling of cardiac 
electrical activity using bidomain approach. It focuses 
on the effects of variation of the ionic model parame- 
ters on cardiac wave propagation. Cardiac electrical 
activity is governed by partial differential equations 
coupled to a system of ordinary differential equations. 
Numerical simulation of these equations is computa- 
tionally expensive due to their non-linearity and stiff- 
ness. Nevertheless, we adopted the bidomain model 
due to its ability to reflect the actual cardiac wave 
propagation. The derived bidomain equations cou-
pled with FitzHugh-Nagumo’s ionic equations were 
time-discretized using explicit forward Euler method 
and space-discretized using 2-D network modelling to 
obtain linearized equations for transmembrane po- 
tential Vm, extracellular potential ϕe and gating vari-
able w. We implemented the discretized model and 
performed simulation experiments to study the effects 
of variation of ionic model parameters on the propa- 
gation of electrical wave across the cardiac tissue. 
Time characteristic of transmembrane potential, Vm, 
in the normal cardiac tissue was obtained by setting 
the values of ionic model parameters to 0.2, 0.2, 0.7 
and 0.8 for excitation rate constant ϵ1, recovery rate 
constant ϵ2, recovery decay constant γ and excitation 
decay constant β respectively. Changing the values of 
ϵ1, ϵ2 to 0.04 and 0.28 respectively, the obtained Vm 
showed a time dilation at 0.04 indicating cardiac ar- 
rhythmia but no significant change to Vm was ob- 
served at 0.28. Also, changing β to 0.3 and 1.1 and γ to 
0.4 and 1.2 sequentially, there was no significant 
change to the time characteristic of Vm. The obtained 
results revealed that only decrease in є1, є2 impacted 
significantly on the cardiac wave propagation. 

Keywords: Dynamical Modelling; Cardiac Electrical 
Activity; Bidomain Model, Ionic Model Parameters;  
Discretization; Transmembrane Potential 

1. INTRODUCTION 

Cardiovascular disease is the number one leading cause 
of death and disability globally. According to Kwunife 
and Aguwa [1], in Nigeria, cardiovascular diseases alone 
accounted for 9.2% of the total deaths (WHO, 2001), 
killing even more than malaria (WHO, 2002). The global 
status report on non-communicable diseases by the World 
Health Organisation (WHO) [2] revealed that 80% of the 
17 million deaths due to cardiovascular disease occur in 
low and middle income countries. 

Cardiac arrhythmia is a name for a large family of 
cardiac behaviour that shows abnormalities in the elec- 
trical behaviour of the heart [3] and has been consid-
ered the main source of sudden cardiac death, prevent-
ing blood flow to different parts of the body. Prompt 
diagnosis and appropriate treatment can remedy the de- 
vastating physiological consequences due to cardiac 
arrhythmia. 

Mathematical modelling and simulation of cardiac 
electrical activities can play a vital role in diagnosing 
cardiac electrical abnormalities by providing valuable 
information about the functional status of the heart. 
Mathematical models of the heart can be used to simulate 
heart conditions and the effects of certain drugs designed 
to treat them [4]. The development of drugs for treatment 
of cardiovascular and other diseases is often very expen- 
sive. Computer simulation can reduce this cost by re- 
ducing the number of physical experiments needed in 
designing a drug [5] as well as offer an easy way of as- 
sessing the medical well-being of patients and detecting 
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any potential side effects of drugs on cardiac rhythms. It 
is a cost effective method for understanding the func- 
tioning of not only heart, but also other human diseases 
and biological systems. Usually, models of cardiac elec- 
trical activities are governed by differential equations 
consisting of partial differential equations (PDEs) cou- 
pled to a system of ordinary differential equations (ODEs) 
[6,7]. While the PDEs describe the propagation of the 
electrical signal through the cardiac tissue, the ODEs 
describe the electrochemical reaction in the cell. 

Cardiac wave propagation within the cardiovascular 
system is a multiscale problem with the electrical activity 
through ion channels of the individual cells driving a 
wavefront over the whole cardiac tissue, the heart. The 
model that gives complete description of such a complex 
process is the anisotropic bidomain model [6]. It consists 
of a system of two non-linear partial differential equa- 
tions coupled to a system of ordinary differential equa- 
tions. 

Several researches have been conducted to describe 
the electrical characteristics of human heart using an ef- 
ficient mathematical model such as the bidomain model 
[8-12]. Despite the versatility of the model to give realis- 
tic simulation of the electrical wave propagation across 
the cardiac tissue, its implementation is still considered a 
demanding scientific computing problem due to the re- 
quirement of very fine computational grids size. One of 
the remedies to these computational challenges is the use 
of the monodomain model. This model consists of a sin- 
gle non-linear partial differential equation coupled with 
the same system of ordinary differential equations for the 
ionic currents. Although, it has been reported that the 
central processing unit requirements are reduced when 
simplifying the bidomain model to a monodomain model, 
but both models still encounter computational difficulties 
because of the need for fine meshes and small time-steps 
[13]. To lessen the computational requirements of the 
bidomain model, the present work takes advantage of 
discrete simplification of the model where the cardiac 
tissue is represented by interconnected network of cells, 
each individually described by a given system of ionic 
model.  

This work presents dynamical modelling of cardiac 
electrical activity using bidomain approach. The main 
focus is on studying the effects of variation of the ionic 
model parameters on the propagation of electrical wave 
across the cardiac tissue. The rest of this article is organ- 
ised as follows. The mathematical model of the cardiac 
electrical activity is derived and explained in Section 2. 
In Section 3, the numerical simulation of the model is 
presented. This is followed by the simulation results and 
discussion in Section 4. The article ends with a conclu- 
sion in Section 5. 

2. MODELLING OF CARDIAC  
ELECTRICAL ACTIVITY 

Three fundamental electrical laws govern the physics of 
the electrical field model that describes the wave propa- 
gation in the thoracic volume [6,7,14]: 
 The electrical charge conservation law;  
 The electrical conduction law (Ohm’s Law); 
 The consequence to the electromagnetic induction 

law. 
Using these laws together with the divergence theorem 

and by treating thoracic volume as the volume of good 
conductors, the following fundamental equations emerge 
[15-17]: 

0j                  (1) 

j E                 (2) 

E                  (3) 

j                    (4) 

where j is the current density in A/m, σ is the conductiv-
ity in S/m, E is the electric field in V/m and ϕ is the 
electric potential in V. 

Equations (1) to (4) are respectively called electrical 
charge conservation law, Ohm’s law, consequence to 
electromagnetic induction law and modified Ohm’s law. 
In order to fully adapt Equations (1) to (4) to this work, 
the bidomain model assumes the cardiac tissue as a ho-
mogenized two-phase ohmic conducting medium with 
one phase representing the intracellular space and the 
other, extracellular space. The phases are linked by a 
network of resistors and capacitors representing the ion 
channels and the capacitive current driven across the cell 
membrane due to a difference in potential respectively as 
shown in Figure 1 [18]. 

Considering a post homogenization process, the intra- 
cellular and extracellular domains can be assumed to be 
superimposed to occupy the whole heart volume ΩH  
[6,19-21] and this also applies to the cell membrane. 
Hence, the average intracellular and extracellular current 
densities, i  and e , conductivity tensors ij j   and e  
and electric potentials i  and e  are defined in ΩH .  
 

 

Figure 1. Schematic model of the bidomain space; 
the intracellular and extracellular domains are 
separated by cell membrane [18]. 
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Application of Equation (1) to the heart volume gives 
Equations (5) and (6) respectively: 

i e mj j mI                   (5) 

  0i ej j                  (6) 

where ji is the intracellular current density in A/m2, je is 
the extracellular current density in A/m2, m  is the 
surface-to-volume ratio of the cell membrane per meter 
(m–1), and mI  is the cell membrane current in ampere 
(A). 

The use of Equation (4) in Equation (5) yields: 

  e e i i         

e

         (7) 

The transmembrane potential, mV , defined as differ- 
ence in potential between intracellular and extracellular 
spaces is represented by: 

def

m iV                   (8) 

where i  is the intracellular electric potential in volt (V), 
and e  is the extracellular electric potential in volt (V). 

Expressing Equation (7) in terms of the transmem- 
brane potential Vm, we obtain: 

    e e i m iV                  (9) 

This becomes: 

     ini e e i mV           H    (10) 

By extending the cell model formulated by Hodgkin 
and Huxley in 1952 as reported in Matthias [18] with its 
electric circuit equivalence diagram as shown in Figure 
2 to the context of bidomain, we obtain Equation (11) 
which together with Equations (5) and (8) gives another 
fundamental equation of bidomain model represented by 
Equation (12). 

 ,m m m ion m appI C V t I V w I            (11) 

 

 

Figure 2. Cell model equivalent circuit diagram; ionic 
currents are parallel-connected to membrane capacitor 
[18]. 

where m  is the membrane capacitance in per area unit, 
Im is the membrane current in ampere (A), Iapp is the ex-
citation current in ampere (A) and Iion is the ionic current 
in ampere (A). 

C
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The ionic variable w satisfies a system of ODE of the 
type given by: 

 d d , inmw t g V w H              (13) 

where g is a vector-valued function. 
Hence, the bidomain equations describing the cardiac 

electrical activity within the cardiovascular system are 
summarised as: 

     ini e e i mV    H            (10) 

   
  

   

, in

i m i e

m m m ion m app H

V

C V t I V w I

  



    

     
 (12) 

 d d , inmw t g V w H              (13) 

The bidomain model described by Equations (10), (12) 
and (13) depicts a non-linear elliptic equation for the 
extracellular potential e  coupled with the parabolic 
differential equation for the transmembrane potential Vm 
as well as an ordinary differential equation representing 
the ionic current w. While Equations (10) and (12) give 
the description of the electrical propagation through the 
cardiac tissue, Equation (13) describes the electrochemi- 
cal reaction in the cell. For complete definition of bido- 
main model, it must be coupled with an ionic model and 
appropriate initial and boundary conditions. 

2.1. Ionic Model 

Various ionic models exist for use in cardiac modelling 
problems. However, of importance to this work is Fitz- 
Hugh-Nagumo’s ionic model and is of the form given by 
Equations (14) and (15) [22]: 

 3
11 3ion m mI V V w            (14) 

 2 mg V w               (15) 

where 1 2, , ,    are positive constant parameters re- 
spectively called excitation rate constant, recovery rate 
constant, recovery decay constant and excitation decay 
constant. It was considered principally in this work be- 
cause of these essential parameters it contains making 
our dynamical analysis of cardiac electrical activity using 
bidomain approach a comprehensive study apart from its 
straightforwardness and wider theoretical and computa- 
tional applications. 
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2.2. Initial and Boundary Conditions 

The bidomain equations described by Equations (10), 
(12), and (13) are subjected to the initial conditions given 
by Equation (16): 

       , , 0 , ,0 ,o o
m mV x V x w x w x x   H  (16) 

The boundary conditions imposed on this system of 
Equations (10), (12) and (13) is that of a sealed boundary 
where no current flows across the boundary between the 
intracellular and extracellular domains, that is: 

oni i e en n                (17) 

where n is the normal vector to the domain boundary. 

3. NUMERICAL SIMULATION 

With the complete system of differential equations de-
scribing the cardiac electrical activity fully derived, we 
describe in this section the numerical implementation for 
solving ϕe, Vm and w (the main variables of bidomain 
equations) using Equations (10), (12), (13), (14) and (15), 
and the initial and boundary conditions in Equations (16) 
and (17). 

3.1. Discretization 

Discretization of boundary value problems often lead to 
solving system of linear equations with matrices having 
bound, block or sparse forms [23]. The bidomain equa- 
tions are both time and space dependent and the process 
of discretization has to be dealt with separately. Various 
explicit and implicit time discretization techniques have 
been explored for use in many modelling works involv- 
ing differential equations, though, implicit method offers 
greater stability than explicit method but the latter is a 
very simple and straightforward method and problem of 
instability can be reduced by making the time step size 
very small. On this account, we employed explicit for-
ward Euler time discretization scheme to linearize Equa- 
tions (12) and (13), which contain time derivatives and 
for the space-discretization of Equations (10) and (12), 
2-D discrete (network) modelling was adopted making it 
possible for us to replace Del operators with intracellular 
and extracellular admittances Gi and Ge. The final discre-
tized equations are given by Equations (18) to (20). 

   

1

3

1

   

1

3

n
m

n
mn n n n n

m m i m e a

V

V
V t V w G V I



  
               
 pp

 

(18) 

with m  and m  assumed unity; Gi, the intracellular 
admittance matrix equivalent to 

C

i   , and t , time 
step size. 

1
2

n n n n
mw w t V w             (19) 

  1n n
e i e i mG G G V               (20) 

where Ge, the intracellular admittance matrix equivalent 
to e   . 

Gi and Ge were constructed by considering node arrays 
Nx-by-Ny defined in the 2-D network domain to be linked 
by network of resistors arranged along x- and y-direction 
with ηex, ηey, ηix, and ηiy representing the extracellular and 
intracellular resistance values along these directions. 
These resistors arrays were then transformed into matri-
ces in the implementation code. This procedure is illus-
trated here using 2 by 3 nodes in Figure 3 as an example 
and the result was generalized to the Nx by Ny nodes con-
sidered in this work. 

Each resistor was represented by five indices; the xi 
and yi indices of one the nodes to which the resistor was 
connected, the xj and yj indices of the other nodes to 
which the resistor was connected and resistor value η. 
These two indices were then converted into a single in- 
dex (encircled numbers in Figure 3) which now repre- 
sented the first node  ix  to which the resistor was 
connected and the second node  jy  to which the re- 
sistor was connected. It is these two single-indexed num- 
bers that were stored in the matrices of Gi and Ge to rep- 
resent the positions pij where the resistors are to be 
placed in the admittance matrices. 

Scanning through the network of resistors in Figure 3 
from left to right and right to left, it was observed that 
the resistor values were equal in both directions, that is, 
η12 is equal to η21 and so on. Based on this, the admi- 
tance matrices Gi and Ge (6 by 6 matrices) are as shown 
in the matrix given by Equation (21). 

,

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

x y

x x y

0

0

x y
i e

y x

y x x

y x

g g

g g g

g g
G

g g

g g g

g g

 
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 
 

  
 
 
  
 

     (21) 

 

1,1 1,2 1,3

2,1 2,2 2,3

ηx ηx 

ηx ηx 

ηy ηy ηy

1 2 3

4 5 6  

Figure 3. Network of resistors connecting the nodes. 
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where gx is 1 x  and gy is 1 y The intracellular and 
extracellular admittance matrices Gi and Ge finally ob-
tained represent homogeneous but anisotropic system 
since the resistors appeared the same everywhere but 
current flows in the two different directions x and y due 
to difference in the resistances in the x and y directions 
were different. 

because of its enriched mathematical library and well 
designed Graphical User Interface (GUI) for displaying 
graphical representation of results. Another benefit of 
Java is its portability across various operating systems. 
The portability however comes with price of slow per- 
formance in comparison to C/C++. A flow chart for the 
implementation algorithms is shown in Figure 4 below. 
Simulation experiments were carried out on a 4GB RAM, 
Intel (R) Core (TM) i7 CPU M620 @ 2.67GHz and 
32-bit operating system computer. Running time of one 
simulation experiment ranged between 3 and 5 minutes 
for unchanged and changed parameters. 

3.2. Implementation 

The discretized equations were implemented in Java 
programming language (Java 6.0 version). Java is an 
object-oriented programming language. We adopted Java  
 

 Start 

Input parameters 

Sum matrices Gi and Ge 

Invert the sum of matrices Gi and Ge 

Construct the right hand side of Equaion 20 

Solve for e  at timestep n in Equation 20 

Solve for Vm at timestep n+1 in Equaion 18 

Stop 

Next timestep 

Impose initial conditions on Vm and w 

Define arrays 

Construct admittance matrices Gi and Ge Keep matrix Gi 

Plot results Vm against Time 

Solve for w at timestep n+1in Equaion 19 

 

Figure 4. Flow chart for the bidomain implementation code. 
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4. SIMULATION RESULTS AND  

DISCUSSION 

The simulations carried out in this work were grouped 
into two categories, namely; 
 Simulation using the standard values of the basic 

parameters. 
 Simulation using the varying values of the basic 

parameters. 

4.1. Simulation Using the Standard Values of the 
Basic Parameters 

We performed simulation experiment using the devel-
oped 2-D Java programme based on the linearized bido-
main Equations (18), (19) and (20) and the parameters in 
Table 1. 

The selected cells 4, 6, 8, 10 of the 50-by-50 nodes 
(cells) specified in 2-D network domain produced the 
propagated electrical waves in the normal cardiac tissue 
as shown in Figures 5(a) to (d) respectively with depo-
larization, partial repolarization, plateau, repolarization 
and resting membrane potential phases identified using 
the values 0, 1, 2, 3, and 4 in Figure 5(d) for clarity. 
This electrical signal produced is called the action poten-
tial, with the highest period observed in this work around 
600 ms. Figures 5(a) to (d) are typically of the same 
wave pattern, consistent with the theoretical standard and 
the experimental findings from other researchers [3,24, 
25]. 

4.2. Simulation Using the Varying Values of the 
Basic Parameters 

Here we present the results of simulations we performed 
to study the effects of the variation of the parameters є1, 
 
Table 1. Values of basic parameters [22]. 

Parameter Value 

Excitation rate constant (є1) 0.2 

Recovery rate constant (є2) 0.2 

Excitation decay constant (β) 0.7 

Recovery decay constant (γ) 0.8 

Time step size (Δt) 0.01 

Extracellular resistance in x-direction (ηex) 1.0 

Extracellular resistance in y-direction (ηey) 3.0 

Intracellular resistance in x-direction (ηix) 1.0 

Intracellular resistance in y-direction (ηiy) 3.0 

Resting transmembrane potential ( ) o

mV –1.2 

Initial value of ionic variable (wo) –0.62 

 
(a) 

 
(b) 

 
(c) 

0

1

2

3 

4 

 
(d) 

Figure 5. Electrical wave propagation in the normal cardiac 
tissue: (a) at cell 4, (b) at cell 6, (c) at cell 8, (d) at cell 10. 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



A. O. Ibrahim et al. / J. Biomedical Science and Engineering 6 (2013) 598-608 604 

є2, β and γ that characterizes the adopted FitzHugh-Na- 
gumo’s ionic model on the electrical wave propagation 
in the normal cardiac tissue. The standard values consid- 
ered for these parameters as presented in Table 1 are 0.2, 
0.2, 0.7 and 0.8 respectively. 

4.2.1. Effects of Variation of є1 and є2 on the  
Cardiac Electrical Wave Propagation 

The parameters є1 and є2 basically control the dynamics 
between the transmembrane potential Vm and gating 
variable w. In this work, the two parameters had been 
considered identical. With the value of є1, є2 as 0.2, the 
electrical wave propagation in the normal cardiac tissue 
presented in Figure 5 above was obtained. However, 
when the value of є1, є2 was changed to 0.04 and 0.28 
respectively, some differences were observed. At є1, є2 

equals 0.04, the electrical wave obtained for cells 4, 6, 8 
and 10 have near-infinite slope values when the electrical 
potential peaks and relaxes. Time dilation effect where 
the cardiac excitation cycle extends beyond the normal 
time was also observed. Figures 6(a)-(d) show this ef- 
fect of decrease value of є1 and є2 on the normal cardiac 
electrical wave. Comparing Figure 5 and Figure 6, it 
was observed that each signal in Figure 6 had an ex- 
tended time for relaxation (resting state) over the corre- 
sponding signal in Figure 5. The implication of this time 
dilation effect is that the cardiac tissue has a delayed 
repolarization, which is an indication of high risk of ar-
rhythmia (abnormal cardiac electrical behaviour). If this 
delay persists, it may result in sudden cardiac death. 

With the value of є1, є2 changed to 0.28, no significant 
differences were observed in terms of excitation time 
before resting state and shape of signal obtained as com- 
pared to those of Figure 5. However, it was observed 
that the signal dwelled more into negative potential be- 
fore resting. This situation can be regarded as normal 
since the cell may still be excitable and conduction 
through the cardiac tissue may not be delayed. Figures 
7(a)-(d) show the electrical wave patterns for є1, є2 hav- 
ing value 0.28. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Electrical wave propagation in the cardiac tissue for 
є1 = є2 = 0.04: (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at 
cell 10. 

4.2.2. Effects of Variation of β on the Cardiac  
Electrical Wave Propagation 

In order to study the effect of variation of β on the nor- 
mal cardiac electrical wave presented in Figure 5, the 
value of β was changed to 0.3 and 1.1 respectively from 
the considered value 0.7. It was observed during the 
simulation that variation in the value of β did not impact 
any significant effect on the signal at 0.3 and 1.1 respec- 
tively. The cardiac electrical signal for β equals 0.3 and 
1.1 respectively are shown in Figures 8 and 9. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Electrical wave propagation in the cardiac tissue for: 
є1, є2 = 0.28 (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at cell 
10. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Electrical wave propagation in the cardiac tissue for 
β = 0.3 (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at cell 
10. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Electrical wave propagation in the cardiac tissue for 
β = 1.1 (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at cell 10. 

4.2.3. Effects of Variation of γ on the Cardiac  
Electrical Wave Propagation 

The effect of variation in the value of γ is similar to that 
of variation in the value of β. When the value of γ was 
changed from 0.8 to 0.4 and 1.2 respectively, it was ob- 
served that variation in the value of γ did not impact any 
significant effect on the electrical signal as presented in 
Figures 10 and 11.  

Summarily, the results of these simulations showed 
that of the parameters whose effects of variation on the 
cardiac electrical wave propagation were studied, it was 
only decrease in є1, є2 that impacted significantly on the 
cardiac wave propagation while increase in є1, є2, de- 
crease or increase in β and γ merely had subtle effect on 
normal cardiac electrical wave propagation. 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 10. Electrical wave propagation in the cardiac tissue for 
γ = 0.4 (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at cell 10. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Electrical wave propagation in the cardiac tissue for 
γ = 1.2 (a) at cell 4, (b) at cell 6, (c) at cell 8 and (d) at cell 10. 

5. CONCLUSION 

In this work, dynamical modelling of cardiac electrical 
activity using bidomain approach was presented. Apart 
from the fact that this work has been able to provide 
some insights into the electrical behaviour of human 
heart, revealing the nature of the electrical wave propa- 
gation pattern in the normal cardiac tissue, it also showed 
that cardiac electrical signal could be significantly af- 
fected by variation in the values of some of the basic 
parameters characterizing the adopted FitzHugh-Na- 
gumo’s ionic model coupling the bidomain model. The 
simulation results showed the excitation pattern in 2-D. 
Time dilation effect of the cardiac electrical wave result- 
ing from decrease in value of є1 and є2 characterizing the 
ionic model is a sign of potential cardiac arrhythmias and 
the overall resulting effect is a delayed repolarization, 
which if persists for a long time may result in sudden 
cardiac death. The obtained results in this work are very 
useful in studying the characteristic properties of action 
potential (the time characteristics of transmembrane po- 
tential) as it propagates through the cardiac tissue and in 
effect detect any electrical wave abnormalities in the 
cardiac tissue. Despite the computational difficulty of 
numerical simulation of bidomain equations, we were 
still able to achieve the major objectives of this work by 
restricting ourselves to 2-D and FitzHugh-Nagumo’s 
ionic model. In our future work, we will investigate po- 
tential multiscale and other numerical methods [26,27] 
for efficient simulation of bidomain equations in 3-D 
using other ionic models.  
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