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ABSTRACT 

A new framework for early diagnosis of prostate 
cancer using Diffusion-Weighted Imaging (DWI) is 
proposed. The proposed diagnostic approach consists 
of the following four steps to detect locations that are 
suspicious for prostate cancer: 1) In the first step, we 
isolate the prostate from the surrounding anatomical 
structures based on a Maximum A Posteriori (MAP) 
estimate of a new log-likelihood function that ac- 
counts for the shape priori, the spatial interaction, 
and the current appearance of prostate tissues and its 
background (surrounding anatomical structures); 2) 
In order to take into account any local deformation 
between the segmented prostates at different b-values 
that could occur during the scanning process due to 
local motion, a non-rigid registration algorithm is 
employed; 3) A KNN-based classifier is used to clas- 
sify the prostate into benign or malignant based on 
three appearance features extracted from registered 
images; and 4) The tumor boundaries are determined 
using a level set deformable model controlled by the 
diffusion information and the spatial interactions 
between the prostate voxels. Preliminary experiments 
on 28 patients (17 malignant and 11 benign) resulted 
in 100% correct classification, showing that the pro- 
posed method is a promising supplement to current 
technologies (biopsy-based diagnostic systems) for the 
early diagnosis of prostate cancer.  
 

Keywords: Prostate Cancer; 3D Markov-Gibbs Random 
Field; Nonrigid Registration; Diffusion-Weighted  
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1. INTRODUCTION 

Prostate cancer is a major health problem, and the most 

frequently diagnosed malignancy in the American male 
population [1]. Recent prostate cancer studies reported 
an estimated 241,740 new cases and a mortality rate of 
close to 28,170 in 2012 [2]. Fortunately, early diagnosis 
of prostate cancer increases the survival rate of the pa- 
tients [3].  

1.1. Current Imaging Modalities for Prostate 
Cancer Diagnosis  

Currently, there are different techniques that are used for 
early diagnosis of prostate cancer. However, the accuracy 
of these techniques are clearly unsatisfactory. For exam- 
ple, Prostate Specific Antigen (PSA) screening doesn’t 
offer accurate information about the location and extent 
of the lesion(s) [4]. In addition, PSA is associated with a 
high risk of over diagnosis of prostate cancer. 

On the other hand, imaging tests using different imag- 
ing modalities, such as Transrectal Ultrasound (TRUS) 
[5], Computed Tomography (CT) [6], MR Spectroscopy 
(MRS) [7], Dynamic-Contrast Enhanced Magnetic Reso- 
nance Imaging (DCE-MRI) [8], and Diffusion-Weighted 
Imaging (DWI) [9] are still critically needed. TRUS im- 
aging [10] is widely used for guided needle biopsy due to 
the real time nature of the imaging system, ease of use, 
and portability. However, TRUS images have low Sig- 
nal-to-Noise Ratio (SNR) making it difficult to detect 
malignant tissues [11]. Another traditional imaging mo- 
dality is CT. It is widely used for diagnosis and follow- 
up of prostate cancer [12]. However, it has poor soft- 
tissue contrast resolution that does not allow precise dis- 
tinction of the internal or external anatomy of the pros- 
tate and thus CT images have shown limited specificity 
for prostate diagnosis [13]. 

On the other hand, MR image-based modalities, such 
as T2-weighted MR, MRS, DCE-MRI, and DWI, have 
also been widely employed for early detection of prostate 
cancer [14]. Despite widely use of T2-weighted MR im- ga*Corresponding author. 
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aging for prostate cancer, the technique is limited by un- 
satisfactory sensitivity and specificity for cancer detec- 
tion and localization [15]. To improve the diagnostic 
performance of MR imaging in evaluations for prostate 
cancer, various other techniques have been applied. MRS 
provides metabolic information about prostate tissue by 
demonstrating the relative concentration of chemical 
compounds. However, MRS has its own limitations, such 
as the need of an additional software and longer acquisi- 
tion time [16], which lead to increased costs and de- 
creased throughput. Furthermore, MRS suffers from lack 
of spatial resolution. In addition, signal from periprostatic 
fat and seminal vesicles can distort spectral waveforms 
[14]. DCE-MRI has been recently suggested for im- 
proved visualization and localization of the prostate can- 
cer [17]. It provides valuable pathologic and anatomical 
information. However, DCE-MRI has the drawback of 
intravenous contrast agent (e.g., gadolinium) administra- 
tion which is harmful to the kidney [18] and requires a 
longer setup time.  

Recently, DWI has emerged as an imaging modality 
that has shown more capabilities in determining the size 
and the shape of the prostate gland and localizing the 
cancer foci [19]. DWI is non-contrast functional imaging 
technique, whereby the image contrast is determined by 
the random microscopic motion of water protons, i.e., the 
Brownian motion [19]. Moreover, DWI has the distinct 
advantage of being acquired very rapidly, without the use 
of any intravenous contrast material or specialized hard- 
ware, and this is the main motivation behind this work.  

1.2. Clinical Studies for Prostate Cancer  
Diagnosis Using DWI 

In recent years, a growing number of clinical studies [19- 
30] have evaluated the utility of DWI, either in combina- 
tion with or in comparison with other MRI techniques, 
for the detection of prostate cancer. These studies have 
reported various sensitivities and specificities of cancer 
diagnosis.  

Earlier studies [19,20] have investigated the abilities 
of DWI for prostate cancer diagnosis using an endorectal 
coil. However, the reported results demonstrated low 
diagnostic sensitivity. To increase the sensitivity of di- 
agnosis, Shimofusa et al. [21] suggested the addition of 
strong magnetic field gradient pulses (b-values) to the 
pulse sequence instead of using endorectal coil. In their 
study [21], they detected the tumor in the central zone of 
the prostate in five of eight total patients using DWI with 
strong magnetic field gradient pulses. Alternatively, the 
compared diagnostic results with T2-weighted imaging, 
detected the tumor only in one of the eight patients. 
Since then, DWI was used for the detection of cancerous 
tissue in later studies [22-30]. For example, Tan et al. [30] 

compared the performance of T2-weighted MRI, DCE- 
MRI, and DWI for the detection of cancer within the 
prostate gland. In their study they reported that DWI 
alone showed better specificity than DCE-MRI alone. It 
is also showed better overall specificity than combined 
DWI and T2-weighted imaging.   

To the best of our knowledge, there are a very limited 
number of image-based approaches for automated com- 
puter-aided diagnosis of prostate cancer using DWI. 
These related works are discussed in the following sec- 
tion. 

1.3. Image-Based Computer-Aided Diagnostic 
(CAD) Systems for Prostate Cancer  
Detection 

In literature, a limited number of CAD systems for pros- 
tate cancer diagnosis have been proposed. For example, 
Chan et al. [31] proposed an in-vivo CAD system using 
multimodal MRI to estimate malignancy likelihood in 
the peripheral zone. They constructed statistical maps 
from T2-weighted MRI, DWI, and Proton Density (PD) 
images. These statistic maps were combined with tex- 
tural and anatomical features of prostate cancer areas in 
order to detect the cancerous regions. However, this 
study doesn’t include benign regions. Huisman et al. [32] 
developed a CAD system for prostate lesion classifica- 
tion using a Hessian-based blob detection algorithm [33]. 
Results showed an accuracy of 92% in classification 
within the peripheral region and an accuracy of 83% in 
classification within transitional zones of the prostate. 
However, their study focused on the peripheral and tran- 
sitional zones of the prostate gland and excluded central 
zones in which up to 30% of prostate cancers can occur.  

Viswanath et al. [34] generated similar likelihood 
maps by combining information from multimodal MR 
images using mathematical descriptors. Their study 
showed, on a voxel basis, that the discrimination be- 
tween benign and malignant tissue is feasible with good 
performances. The unsupervised classification by k- 
means clustering achieved an accuracy of 77%. Unfor- 
tunately, the corresponding slice still needs to be selected 
between different modality. A study by Langer et al. [35] 
focused on the peripheral zone of the prostate gland and 
excluded the central and transitional zones. However, 
detailed anatomic studies have suggested that 70% of 
cancers arise in the peripheral zone of the prostate, but 
up to 30% of prostate cancers occur between transition 
zones and the central zone of the prostate [36].  

To increase the sensitivity of diagnosis, accurate de- 
lineation of the prostate region is mandatory. Basically, 
manual outlining of the prostate borders is the most ac- 
curate segmentation that enables precise determination of 
the prostate volume. However, it is prohibitively time 
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consuming and is prone to intra- and inter-observer vari- 
ability. Traditional edge detection methods (e.g., [39]) 
are unable to extract the correct boundaries of the pros- 
tate since the gray-level distributions of the prostate and 
the surrounding organs are hardly distinguishable. There- 
fore, other automated segmentation methods are desir- 
able. However, multiple challenges stemming from 1) 
the large variations of prostate shape within a specific 
time series as well as across subjects; 2) lack of strong 
edges and diffused prostate boundaries; and 3) the simi- 
lar signal-intensity profile of the prostate and surround- 
ing tissues, complicates the segmentation process. 

The most successful known approaches (e.g., [37-45]) 
have addressed the segmentation challenges of the pros- 
tate by modeling object appearance and shape. In par- 
ticular, Zhu et al. [40] used a combination of an Active 
Shape Model (ASM) and 3D statistical shape modeling 
to segment the prostate. Toth et al. [41] presented an al- 
gorithm for the automatic segmentation of the prostate in 
multi-modal MRI. Their algorithm starts by isolating the 
Region-Of-Interest (ROI) from MRS data. Then, an ASM 
within the ROI is used to obtain the final segmentation. 
Klein et al. [42] presented an atlas-based segmentation 
approach to extract the prostate from MR images. The 
segmentation of the prostate is obtained as the average of 
the best-matched registered atlas set to the test image 
(image to be segmented). Recently, Vikal et al. [43] used 
a priori knowledge of prostate shape to detect the contour 
in each slice and then refined them to form a 3D prostate 
surface. Martin et al. [44] developed an atlas-based ap- 
proach for segmenting the prostate from 3D MR images 
by mapping probabilistic anatomical atlas to the test im- 
age. The resulting map is used to constrain a deformable 
model-based segmentation framework. 

1.4. Current Limitations and Motivation for Our 
Proposal 

The above-mentioned CAD systems for analyzing DWI 
are not sufficiently accurate and reliable for several rea- 
sons: 

1) The majority of CAD systems used multimodal 
MRI which is cost inefficient [45].  

2) The majority of these studies require user interac- 
tion to select a ROI (a small window) around the prostate. 
Unfortunately, such approaches not only prone to inter- 
observer variability, but also ROI selection biases the 
final decision by over- or under-estimating the problem 
in the entire graft, just as with biopsy. 

3) Automated prostate segmentation methods have one 
of the following limitations:  
 Deformable model-based methods without adequate 

appearance and shape priors fail under excessive 
noise, poor resolution, diffused boundaries, or oc- 

cluded shapes in the images;  
 Segmentation based only on the shape prior still re- 

sults in large errors caused by discontinuities in ob- 
ject boundaries, large image noise, and other inho- 
mogeneities;  

 Parametric shape-based models are unsuitable for 
discontinuous prostate objects due to a very small 
number of distinct landmarks.  

4) The majority of CADs assumes that the prostates 
(prostate contours) remain exactly the same from scan to 
scan. However, prostate contours may not always exactly 
match due to patient movement or breathing effects; 
therefore, image registration schemes should be applied 
first before ROI selection/segmentation. 

To overcome these limitations, we propose an auto- 
matic framework for analyzing DWI images building on 
our previous work in [46-48]. The proposed approach 
consists of the following steps as shown in Figure 1: 

1) Segmentation of the prostate from DWI (Section 
2.1) based on a Maximum a Posteriori (MAP) estimate 
of a new likelihood function that accounts for both ap- 
pearance features of the prostate (Section 2.1.1) and their 
3D spatial voxel interactions (Section 2.1.2), as well as a 
3D shape prior (Section 2.1.3).  

2) A non-rigid registration approach is employed to 
account for any local deformation that could occur in the 
prostate during the scanning process based on the solu- 
tion of the Laplace equation (Section 2.3).  

3) KNN classifier to classify the prostate into benign 
or malignant based on three appearance features ex- 
tracted from registered images (Section 3.2). 

2. MATERIALS AND METHODS 

In this paper we introduce a new, automated, and non- 
invasive framework for early diagnosis of prostate cancer 
from DWI. Figure 1 demonstrates the steps of the pro- 
posed CAD system. Below, we will illustrate each of 
these steps. 

2.1. Segmentation of the Prostate Using a Joint 
MGRF Model  

The segmentation of the prostate is a challenge, since the 
gray-level distribution of the prostate and surrounding 
organs is not highly distinguishable and because of the 
anatomical complexity of prostate. This stage proposes a 
powerful framework for prostate segmentation based on 
a learned shape model and an identifiable joint Markov- 
Gibbs Random Field (MGRF) model of DWI and “ob- 
ject-background” region maps.  

The joint-MGRF model is fundamentally a model that 
relates the joint probability of an image and its object- 
background region map, to geometric structure and to the 
nergy of repeated patterns within the image. The basic  e  
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Figure 1. Flowchart of the proposed CAD system for automatic detection of cancer from 3D DWI. 
 
theory behind such models is that they assume that the 
signals associated with each pixel depend on the signals 
of the neighboring pixels, and thus explicitly take into 
account their spatial interactions, and other features, such 
as the shape.  
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Figure 2. Aligning a 3-D joint Markov-Gibbs random field 
model with shape prior of DWI. 

support a grayscale DWI  and their binary 
region maps , and probabilistic shape model 

. The shape model allows for registering 
(aligning) 3D prostate DWI. The DWI data 
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region maps  are described with a joint probability 
model [49,50]:  

m

 
shape model provides the voxel-wise object and back- 
ground probabilities being used, together with the condi- 
tional image intensity model P g m , to build an initial 
region map. The final Bayesian segmentation is per- 
formed using the identified joint MGRF model of the 
DWI and region maps.  

     , hP P Pg m g m m            (1) 

where  is a 2nd-order MGRF of region maps and  hP m
 P g m  is a conditionally independent random field of 

image intensities given the map. The map model  
2.1.1. Conditional Intensity Model 
The specific visual appearance of the prostate in each 
data set to be segmented is taken into account by model- 
ing a marginal gray level distribution with a Linear Com- 
bination of Discrete Gaussians (LCDG) [50,51]. Close 
approximation with LCDG separates each factor of the 
joint empirical gray level distribution,  

     h sP P Pm m

sP m

m  has two parts: a shape prior prob- 
ability being a spatially variant independent random field 
of region labels , for a set of co-aligned training 
DWI data, and a 2nd-order MGRF model 


 P m  of a 

spatially homogeneous evolving map. 

   ,x yP pg  , mixx y R
, into two (object and back- 

ground) components, 

The Bayesian MAP estimate of the map, given the 
DWI data  , arg max ,g m L g

m
m  maximize the log- 

likelihood function: 

g
  ; , andq    Q Lp q . The 

LCDG modeling restores transitions between these 
components more accurately than conventional mixtures 
of only positive Gaussians, thus yielding a better initial 
region map formed by voxel-wise classification of the 
image gray values, the similar intensity profile of the 
prostate and surrounding tissues. 

       , log log hL P P g m g m m  

In this work we focus on accurate identification of the 
spatial interaction between the prostate voxels  P m , 
and the intensity distribution for the prostate tissues, 
P g m , and the prior distribution  of the pros- 

tate shape, as shown in Figure 2. 
 sP m

2.1.2. Spatial Voxel Interaction Model 
In order to overcome noise effect and to ensure the ho- 
mogeneity of the segmentation, spatially voxel interac- 

To perform the initial prostate segmentation, a given 
3D DWI is aligned to one of the training 3D DWI. The  
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tions between the region labels are also taken into ac- 
count using the popular Potts model, i.e., the MGRF with 
the nearest voxel 26-neighborhood (see Figure 3). 

A generic MGRF of region maps accounts only for 
pairwise interaction between each region label and its 
characteristic neighbors. Generally, the interaction struc- 
ture and the Gibbs potentials can be arbitrary and are 
identified from the training data.  

By symmetry considerations, we assume that the po- 
tentials are independent of relative orientation of each 
voxel pair and depend only on intra- or inter-region posi- 
tion (i.e. whether the labels are equal or not). Under these 
restrictions, it is the 3D extension of the conventional 
auto-binomial, or Potts model differing only in that the 
potentials are estimated analytically.  

The 26-neighborhood has three types of symmetric 
pairwise interactions specified by the absolute distance a 
between two voxels in the same and adjacent MRI slices 
( , 1a  2 , and 3 , respectively): 1) the closest pairs 
with the inter-voxel  co- 
ordinate offsets; 2) the diagonal pairs with the offsets 

      1 1,0,0 , 0,1,0 , 0,0,1N

 0,1, 1 , 1,0 N     , 1 , 1, 1,0 
2

; and 3) the farthest 
diagonal pairs with the offsets   3

. The 
Gibbs potentials of each type are bi-valued because only 
label coincidence is accounted for:  
where  if l

1, 1, 1  

 ;a a eqV VV

N

 , ,a eq aV V l l l
, ,a ne

  and  l l, ,a ne aV V   if  

l l  ;  1, 2, 3a A . Then the MGRF model of  

region maps is as follows [52,53]: 

  
  

, , ,
, , , ,

1
exp ,

a

h a x y
x y z a k

P V m
z  

 
   

  

   
R A N

m z x y z km  

(2) 

where Z is the normalizing factor (partition function).  
To identify the MGRF in Eq.1, approximate analytical 

maximum likelihood estimate of the 3D Gibbs potentials, 
 and  are derived in line with [52]: ,a eqV ,a neV

 

 

Figure 3. Pairwise voxel interac- 
tion for 26 neighborhood system in 
a 3D GGMRF. The reference voxel 
is shown in red. 
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where,  ,a eqf m  denotes the relative frequency of the 
equal labels in the equivalent voxel pairs  
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of a region map  of a given DWI aligned in accord 
with the prior shape model. 

m

2.1.3. Probabilistic Shape Model  
To enhance the segmentation accuracy, the expected 
shape of the goal object is constrained with a soft prob- 
abilistic 3D prostate shape model. Initially, a training 
database collected from different subjects are co-aligned 
by rigid, affine 3-D transformations. The shape prior is a 
spatially variant independent random field of region la- 
bels: 

 
 

, ,
, ,

s m x y z
x y z

P s


 
R

m  

where is the empirical probability that the voxel (x, y, z) 
belongs to the prostate (L = “ob”) or the background (L = 
“bg”) given the map. To enhance the segmentation of the 
current prostate volume, the prior probabilistic shape 
model is updated by adding the previous segmented 3D 
prostate data to the prior calculated shape model. The 
proposed prostate segmentation process can be summa- 
rize as follows: 
 Perform an affine alignment of a given 3D MRI to an 

arbitrary prototype prostate from the training set using 
mutual information [54] as a similarity measure to 
obtain the learned probabilistic shape model  sP m ; 

 Estimate the conditional intensity model  P g m  by 
identifying the bimodal LCDG; 

 Use the intensity model found and the learned prob- 
abilistic shape model to perform an initial segmenta- 
tion of the prostate, i.e., to form an initial region map; 

 Use the initial region map to estimate the potential for 
the Potts model and to identify the MGRF model 
 P m  of region maps; 

 Improve the region map using voxel-wise stochastic 
relaxation (Iterative Conditional Mode (ICM) [55]) 
through successive iterations to maximize the log 
likelihood function of Eq.1 until the log likelihood 
remains almost the same for two successive iterations; 

 Output: The 3D prostate segmentation is the final 
estimate m . 

2.2. Performance Evaluation of the Proposed 
Segmentation Algorithm 

The proposed segmentation is evaluated based on char- 
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acterizing the agreement (Figure 4(a)) and the Average 
Perpendicular Distance (APD) between the segmented 
and ground truth contours (Figure 4(b)). To evaluate the 
performance, we measured True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative 
(FN) segmentation (Figure 4(a)). Let C and G denote the 
segmented region and its “ground truth” counterpart, 
respectively.  

Let z  denote the volume (in the number of voxels) 
of a region z. Then, TP C G   is the overlap between 
C and G, FP C C G    is the difference between C 
and TP; and FN G C G    is the difference between 
G and TP; and TN R C G   .  

The Positive Predictive Value (PPV), Sensitivity (Sens), 
Dice Similarity Coefficient (DSC), and the average seg- 
mentation error  are defined as:  avgE 

TP
PPV

TP FP



               (4) 

TP
Sens

TP FN



               (5) 

2 TP
DSC

2 TP FP FN




  
           (6) 

FP FN

FN TPavgE





              (7) 

2.3. Nonrigid Registration 

Due to patient breathing and local movement, accurate 
registration is a main issue in DWI. In this paper, the 
nonrigid motion of the DWI data at different b-values is 
compensated for by using our developed registration 
approach that is based on the solution of the second-or- 
der partial differential Laplace equation [56]: 

2 2
2

2 2 2 2
0

x y

   
   

 
           (8) 

for a scalar function  ,x y

B

 between the target and the 
reference prostate objects. The solution of a planar 
Laplace equation between two boundaries results in in- 
termediate equipotential surfaces (dashed lines in Figure 
5) and streamlines that establish natural point-to-point 
correspondences and are everywhere orthogonal to all 
the equipotential surfaces (see e.g., the line connecting 
the points ai  and ai  in Figure 5). Based on solving 
the Laplace equation, we perform the non-rigid registra- 
tion as follows: 

B

1) Generate the distance maps inside the prostate re- 
gions as shown in Figures 6(a) and (b). 

2) Use these distance maps to generate equispaced iso- 
contours as shown in Figures 6(c) and (d). 

3) Solve the Laplace equation between respective ref- 
erence and target iso-contours to find the point-to-point 
correspondence. 

      
(a)                              (b) 

Figure 4. 2-D schematic illustration of measuring segmentation 
errors (a) and (b) perpendicular distances (black lines) (b) be- 
tween the ground truth G and automatic segmentation C. 
 

 

Figure 5. 2-D illustration of co-allocation of point-to-point 
correspondences between two borders by a potential field. 
 

 
(a)                          (b) 

 
(c)                          (d) 

Figure 6. The distance maps (a), (b) and the iso-contours (c), 
(d) of the two prostates. 

2.4. Color Map Generation and Tumor  
Boundary Determination 

To characterize the physiological data, color-coded maps 
that illustrate the propagation of diffusion in the prostate 
tissues are constructed. To construct the initial color 
maps, we have to estimate the changes in image signals 

, ,x y z  due to the Brownian motion. These changes are 
estimated from the constructed normalized diffusion as 
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the difference between the signals of image sequences at 
two different b-values. DWI is performed with at least 
two b values, including a b value of 0 sec/mm2 and a 
higher b value of 500 - 1000 s/mm2 depending on the 
body region or organ being imaged [57]. At b = 0 s/mm2, 
there is no diffusion sensitizing gradient with free water 
molecules have high signal intensity. We used b = 800 
s/mm2 because imaging of solid organs requires high b 
value specially in prostate and using high b values allows 
differentiation of areas of restricted from the normal high 
signal at the peripheral zone. During our trials we found 
the b = 800 s/mm2 allows lesions differentiation with 
least degradation of image quality as the image quality 
decrease with the high b values.  

To preserve continuity (remove inconsistencies), the 
initial estimated , ,x y z  values are considered as samples 
from a Generalized Gauss-Markov Random Field 
(GGMRF) image model [58] of measurements with the 
26-voxel neighborhood (Figure 3). Continuity of the 
constructed 3-D volume (Figure 7) is amplified by using 
their MAP estimates [51]: 
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where , ,x y z  and , ,x y z  denote the original values and 
their expected estimates, 



 , , x y zv  is the 26-neighborhood 
voxel set (Figure 7),    , , , , ,x y z x y z     is the GGMRF po- 
tential, and   and   are scaling factors. The parame- 
ter  1.01, 2

2
.0  controls the level of smoothing (e.g., 

smooth,   , vs. relatively abrupt edges, 1.01  ). 
The parameter  determines the Gaussian, 1, 2  

2  , or Laplace, 2  , prior distribution of the esti- 
mator. Then, the color maps are generated based on the 
final estimated   (see Figure 8). 

Finally, to allocate the boundary of the detected tu- 
mors, which is important to determine the cancer stage in 
case of malignancy, we used a level set-based deform- 
able model controlled by a stochastic speed function [59]. 
The latter accounts for the perfusion information and  
 

3-D GGMRF 
For Continuity 
Preservation 

Final EstimationInitial Estimation 

 

Figure 7. Enhanced perfusion estimation and continuity analy- 
sis using the 3-D GGMRF image model. 

Color Scale 

Before 3-D GGMRF After 3-D GGMRF

 

Figure 8. Color-coded maps for three of the test subjects (col- 
umnwise) before and after the 3-D GGMRF smoothing with ρ 
= 1, λ = 5, β = 1:01, α = 2, and    , , , , ,

2
x y z x y z

      and their re- 

spective color-coded maps. The red and blue ends of the color 
scale relate to the maximum and minimum changes, respec- 
tively. 
 
spatial interactions between the prostate voxels. 

3. EXPERIMENTAL RESULTS  

The performance of the proposed framework has been 
evaluated by applying it on DWI prostate images col- 
lected from 28 patients. These patients had biopsy- 
proven prostate cancer and underwent DWI at 1.5-T 
(SIGNA Horizon, General Electric Medical Systems, 
Milwaukee, WIS). DWI were then obtained using mono- 
directional gradients and a multi-section Fast Spin Echo 
type (FSE) echo-planar sequence in the axial plane using 
a body coil with the following imaging parameters: TE: 
84:6 ms; TR: 8.000 ms; Band Width 142 kHz; FOV 34 
cm; slice thickness 3 mm; inter-slice gap 0 mm; seven 
excitations, water excitation with b value of 0 s/mm2 and 
800 s/mm2. Fifty four slices were obtained in 120 second. 
to cover the prostate in each patient. Note all the subjects 
were diagnosed using a biopsy (ground truth).  

3.1. Segmentation Results  

The proposed segmentation approach has been tested on 
28 independent data sets of DWI images. Figure 9 shows 
sample examples of prostate segmentation from different 
data sets, with respect to the ground truth segmentation. 
The ground truths were obtained by manual delineation 
of the prostate borders by an MR imaging expert. To 
highlight the advantages of our segmentation technique, 
we compare it to the shape-based segmentation approach 
proposed by Tsai et al. [60]. We re-implemented the 
method described in [60] and tested it on our locally- 
acquired data.  

Figure 9 compares qualitatively the accuracy of our 
approach and the shape-based approach [60] with respect 
to the ground truth. The segmentation accuracy for all 
data sets has been evaluated using the average segmenta- 
tion error, given by Eq.7. Differences between the mean  
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(a) 

   
(b) 

   
(c) 

Figure 9. 3-D prostate segmentation projected onto 2-D. (a) 
Our segmentation (red) in comparison with the ground truth 
(white); (b) The segmentation with the algorithm in [60] (red) 
comparison with the ground truth; and (c) 2-D visualization for 
our segmented prostates for three of the test subjects.  
 
errors for our segmentation and the shape-based ap- 
proach [60] in Table 1 are statistically significant by the 
unpaired t-test and thus highlight the advantages of the 
proposed integration of the shape prior, prostate/back- 
ground marginal intensity distributions, and spatial in- 
teraction characteristics into MAP-based segmentation. 

Moreover, the accuracy of our segmentation approach 
has been evaluated, with respect to the expert tracing, 
using the PPV, Sens, DSC [61], and the APD between the 
borders of ground truth G and automatic segmentation C 
(see Figure 10). Table 2 compares the segmentation over 
all the test data sets with the ground truth obtained by 
manual tracing by an imaging expert.  

3.2. Diagnostic Results 

The ultimate goal of the proposed framework is to dis- 
tinguish between benign and malignant detected tumors. 
The malignant tissues show higher signal intensity with a 
b-value of 800 s/mm2, and a lower Apparent Diffusion 
Coefficient (ADC) compared with benign and normal 
tissue due to the replacement of normal tissue. To dis- 
tinguish between the benign and malignant cases, we 
used a KNN classifier learning statistical characteristics  

Table 1. A comparative segmentation accuracy over all test 
data sets for our approach and [60]. Note that “STD” stands for 
standard deviation. 

Eavg% 

Algorithm 
 

Our [60] 

Min. Error % 0 0 

Max. Error % 1.6005 2.7724 

Mean Error % 0.5500 1.4615 

STD. % 0.3085 0.7687 

P-value 0.0001 

 
Table 2. Error statistics over all test data sets. Note that “STD” 
stands for standard deviation and “APD” values are in mm. 

 Performance measures 

 PPV Sens DSC APD 

Min. 0.857 0.882 0.841 0.00 

Max 0.991 0.851 0.930 3.1 

Mean 0.952 0.816 0.991 0.60 

STD. 0.004 0.004 0.004 0.80 

 

 

Figure 10. Prostate image with ground 
truth (blue) and automatic segmenta- 
tion (green) contours, and their associ- 
ated streamlines (red) obtained by the 
solution of the Laplace equation yield- 
ing the estimation of the APD. 

 
of the DWI. The characteristics are obtained from the 
training sets containing both benign and malignant cases. 
After training, three features namely are the mean inten- 
sity value of the DWI at 0 s/mm2, the mean intensity 
value of the DWI at 800 s/mm2, and the mean value of 
ADC maps [62], were chosen to classify the test cases. 

To build the KNN classifier that characterizes the 
prostate tissue, we used 13 subjects for training, and the 
other 15 subjects for testing. The diagnostic accuracy 
based on the combined three features resulted in correct 
classifications of all 28 data sets (i.e., 100% accuracy).  
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(B)

(M)

 

Figure 11. Tumor’s contour determination (green) using the 
level set approach for multiple image sections for benign (B) 
and malignant (M) subjects. 
 

For regional display we explore pixel-by-pixel maps 
of the registered diffusion data. The diffusion was com- 
puted for each pixel and superimposed on an image slice 
to form a parametric image. Also, for visual assessment 
of the prostate tumor the tumor contours are determined. 
Figure 11 shows the tumor contours determination for 
selected image sections for two subjects involved in our 
study. 

4. CONCLUSIONS AND DISCUSSION 

In this paper, we present a novel fully automatic frame- 
work for detecting prostate cancer using DWI. The 
framework includes prostate segmentation, nonrigid reg- 
istration, and KNN-based classification. For prostate 
segmentation, we introduced a new 3D approach that is 
based on a MAP estimate of a new log-likelihood func- 
tion that accounts for the shape priori, the spatial interac- 
tion, and the current appearance of the prostate and its 
background which increases the accuracy of automatic 
segmentation, evidenced by the error and the DSC 
analysis (Tables 1 and 2). Following segmentation, we 
used a nonrigid registration approach that deforms the 
prostate object on iso-contours instead of a square lattice, 
which provides higher degrees of freedom to obtain ac- 
curate deformation. In the classification step, the seg- 
mented prostate regions are classified into malignant or 
benign using the KNN classifier. Applications of the 
proposed framework can assist the radiologist in detect- 
ing all prostate cancer locations and could replace the use 
of current technologies to determine the type of prostate 
cancer.  

Although we have obtained promising results in this 
initial study using DWI data in 28 patients, potential 
widespread adoption would require confirmation by 
other groups, and investigation in a larger number of 
subjects. Our future work will focus on comparing the 
diagnostic accuracy of prostate cancer detection using 

other imaging modalities, such as DCE-MRI.  
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