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ABSTRACT 

Data collected in two-dimensional projections give 
planar images of object at each projection angle. To 
obtain information along the depth of the object, to- 
mographic images are reconstructed using these pro- 
jections. There are basically two approaches to solve 
the problem of reconstruction: analytical and iterative, 
each one presenting its own advantages and limitations. 
This paper provides a detailed introduction and com- 
parison to four analytical image reconstruction meth- 
ods including Fourier transformation, simple back- 
projection, back-projection filtering and filtered back- 
projection.  
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1. INTRODUCTION 

The basic problem of reconstruction in emission tomo-
graphy is to estimate a volumetric radioactive distribu-
tion from a set of two-dimensional projections (camera 
based acquisitions in SPECT) or a set of lines of re-
sponse (ring detectors based acquisitions in PET). 

The reconstruction methods are divided into analytic 
and iterative approaches, each one presenting its own 
advantages and limitations. The choice of one or the 
other depends basically on the clinical objective of the 
study and the computational facilities supplied by the 
imaging system manufacturers. Analytic reconstruction 
methods offer a direct mathematical solution for the for-
mation of an image. Iterative methods are based on a 
more complicated mathematical solution requiring mul-
tiple steps to arrive at an image. 

We are considering four analytical image reconstruc- 
tion methods here. Firstly, the Fourier transformation 
method that estimate the distribution by inverting Fourier 
transform theorem. Secondly, the simple back projection 
method that is just reverse of the projection operation 
which gave rise to the data. Thirdly, the back-projection 
filtering (BPF) method where the projection data are first 

back-projected, filtered in Fourier space and finally, the 
filtered back-projection (FBP) method where projection 
data are first filtered and then back projected (i.e., just 
reverse BPF method).  

2. BISIC CONCEPTIONS OF 
RECONSTRUCTION 

2.1. Projection and Sinogram 

In SPECT, as a gamma-camera rotates in small steps 
around a patient, it creates a series of planar images 
called projections. At each stop, only photons moving 
perpendicular to the camera face pass through the colli-
mator. A SPECT study consists of many planar images 
acquired at various angles.  

In PET, two-dimensional imaging only considers lines 
of response (LORs) lying within a specified imaging 
plane. The acquired data are collected along LORs 
through a two-dimensional object as indicated in Figure 
1. The LORs are organized into sets of projections, line 
integrals for all x  for a fixed direction θ [1]. 

The collection of all projections for 0 ≤ θ < 2π forms a 
two-dimensional function of x  and θ that is called a 
sinogram. The projection data of each slice along the axis 
of the gamma camera (i.e. the axis of rotation) is stored 
in an individual sinogram, where each row corresponds 
to one projection. Different rows represent different pro-
jection angles. This sinogram is aptly named because a 
fixed point in the object traces a sinusoidal path in the 
projection space. A sinogram for a general object will be 
the superposition of all sinusoids corresponding to each 
point of activity in the object as shown on the right of 
Figure 1. 

The aim of the reconstruction process is to retrieve the 
radiotracer spatial distribution from the projection data. 

2.2. Radon Transform Theorem 

Mathematically a projection can be described by the Ra-
don transform theorem. This theorem, supposed by Ra-
don, states that image reconstruction from projections is 
possible [2,3]:  
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Figure 1. Illustration of a projection and a sinogram. The projections are organized into a sino-
gram such that each complete projection fills a single row of θ in the sinogram. A sinogram for 
a general object is shown on the right. 

 
“The value of a two-dimensional function at an arbi-

trary point is uniquely obtained by the integrals along 
the lines of all directions passing the point”. 

The Radon transformation shows the relationship be-
tween the two-dimensional object and the projections 
and guarantees that a two-dimensional object is recon-
structed from projections obtained by the rotational 
scanning.  

Radon transform is a projective transformation of a 
two-dimensional function onto the polar coordinate 
space  ,x   (see Figure 2) and is given as:  

     , cos sin dp x f x y x y x x y   



    d



 (1) 

where  is a projection of  p x   ,f x y  on the axis 
x  of θ direction. The function  ,f x y  is obtained by 
the integration along the line whose normal vector is in θ 
direction. 

Although the Radon transformation expresses the pro-
jection by the 2-D integral on the  , x y -coordinate, the 
projection is more naturally expressed by an integral of 
one variable since it is a line integral. Since the 
 , x y  -coordinate along the direction f projection is 
obtained by rotating the  , x y -coordinate by θ, the rela- 
tionship between two directions is expressed as follows: 

cos sin

sin cos

x x y

y x y

 
 

  
   

            (2) 

Since the translation from the  ,x y -coordinate to the 
 , x y 

d d
-coordinate yields no expansion or shrinkage, we 

get d dx y x y  . Then, 
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



       
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 

 

d
     (3) 

2.3. The Fourier Slice Theorem (Central 
Projection Theorem) 

The 1-D Fourier transformation of the projection is [4,5]: 

 

Figure 2. Illustration for Radon transform theorem. 
 

     

   

exp d

, exp d d

P v p x ivx x

f x y ivx x y

 
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employing of Eq.2: 

      , exp cos sin d dP v f x y iv x y x y  



     (5) 

In the next step, we calculate the 2-D Fourier trans-
form of  ,f x y ,  ,x yF v v : 

      , , expx y x y d dF v v f x y i v x v y x y


   


  (6) 

transforming to polar coordinates,  ,v  , in the Fourier 
domain, 

cos

sin
x

y

v v

v v







 

we get, 
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 
    
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 
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comparing Eqs.5 and 7, we result:  

   , x yP v F v v                  (8) 

The last equation states that the 1-D Fourier transform 
of the projection , denoted , is identical to 
the cross-section of the 2-D Fourier transform of the ob-
ject 

 p x   P v

 ,

3. IMAGE RECONSTRUCTION 
METHODS 

3.1. The Fourier Transformation (FT) Method 

The Fourier slice theorem [3] indicates that the projec-
tion at an angle θ yields one cross-section of the Fourier 
transform of the original object,  , x yF v v . Thus the 
projections for all θ yield the whole profile of  ,x yF v v  
(see Figure 3). The inverse Fourier transformation of 
 ,x yF v v  yields the full reconstruction of  ,f x y . 

This reconstruction method is called Fourier transforma-
tion method. A scheme of this reconstruction has showed 
in Figure 4. 

f x y , perpendicular to the direction of the pro-
jection, denoted  , x yF v v . This important result is 
known as the Fourier slice theorem or the central projec-
tion theorem and is illustrated in Figure 3. 

 

 

Figure 3. Illustration of Fourier slice theorem. 
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Figure 4. Flow of direct Fourier transform reconstruction.  
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3.2. The Simple Back-Projection (BP) Method 

In this reconstruction method, to reconstruct  ,f x y , 
which is the absorbance at point  , x y , we consider the 
summation of projections passing through  , x y  for all 
θ. Since these projections are line integrals through 
 , f x y , it is duplicated and enhanced in the summation. 

Thus  , f x y  is reconstructed by this summation al-
though it contains blur by absorbances at other points 
included in the projections. This reconstruction method is 
called simple back-projection (BP) method [5]. 

Based on this method, the summation of  p x   for 
all θ yields the reconstructed image by the back-projec- 
tion method, denoted , i.e.  ,bp x y

   

 

π

0

π

0

, d

cos sin d

bp x y p x

p x y


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

  



 




        (9) 

substituting the definition of the Radon transformation 
(Eq.1), we get 

 

   π

0

,

, cos sin d d

bp x y

f x y x y x x y d  





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

 (10) 

To prevent confusion, we change  ,x y -variables to 
 ,    before submitting x ,  

 
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p x
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
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  (10′) 

After x  from Eq.2 submitted into Eq.10′, we get  
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
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      (11) 

assuming, 

   

   

2 2

2 2
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
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we get, 

   

    

   

Now, rewriting term into the Dirac delta function in 
Eq.11 using of Eq.12, we can employ the following 
theorem, 

 
 

1

d
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k
k

g
g

 
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According to Eq.13,   0g    for a finite number of 

k  . This obtain to submit  in Eq.12 
that result 

  0  sin
π   . Then submitting this value for 

k in Eq.13, we get 
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submitting Eq.14 into Eq.11, we get 

 

 
   2 2

,

1
, d
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employing of convolution definition, 

   
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2 2

1
, ,

1
,

bp x y f x y
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r
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Consequently,  ,bp x y , the reconstructed image by 
the back-projection method, is obtained by blurring 
 ,f x y  by convoluting 1 r . 



 

2 2

2 2

cos sin

sin cos cos sin

sin

x y

x y
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   
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    

   (12) 

For a point source,   , ,f x y x y . Submitting this 
distribution function in Eq.15, we get  

   
   2 2

1
, ,bp x y

x y
d d    

 





 
 
    

   

 
2 2

1
,bp x y

rx y




1
         (17) 

Eq.15 indicates the intensity of the back-projection 
image rolls off slowly as 1 r  (see Figure 5). 

3.3. The Back-Projection Filtering (BPF) 
Method 

As said above, the reconstructed image by simple 
back-projection method is highly blurred and not the real 
reconstruction. However, the Fourier transformation 
Eq.16 yields,        
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Figure 5. Surface plot of the backprojection image of a point source. 
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then, 

   ,FT f x y v FT bp x y      

,

        (21) 

  ,x y x yF v v v BP v v                (22) 

where  , x yBP v v  is the 2-D Fourier transform of the 
back-projected image and  ,x yF v v  is the 2-D Fourier 
transform of the back-projection-filtered image. Eq.22 
yields the Fourier transform of the original object 
 , f x y . This deblurring is called inverse filtering, and 

this kind of the inverse operation of convolution is called 
deconvolution [5,6]. 

The final step is the inverse Fourier transform of 
 , x yF v v  to obtain the image  , f x y . According to 

convolution theorem, the product of the Fourier trans- 
forms of the two functions in frequency space equals to 
the convolution of two functions in spatial space, i.e. 

     1, ,f x y bp x y FT v           (23) 

This is known as the back-projection filtering (BPF) 
image reconstruction method, where the projection data 
are first back-projected, filtered in Fourier space with the 
cone filter, and then inverse Fourier transformed. Alter- 
natively, the filtering can be performed in image space 
via the convolution of  with  ,bp x y  1FT v  (see 
Figure 6). A disadvantage of this approach is that the 
function  has a larger support than ,bp x y  ,f x y  

due to the convolution with the filter term, which results 
in gradually decaying values outside the support of 
 ,f x y . Thus, any numerical procedure must first 

compute  ,bp x y  using of a significantly larger image 
matrix size than is needed for the final result. This dis- 
advantage can be avoided by interchanging the filtering 
and back-projection steps as discussed in next method. 

3.4. The Filtered Back-Projection (FBP) Method 

A practical reconstruction method is derived from the 
back-projection method using the projection theorem. 
Since  ,f x y  is obtained by the inverse Fourier trans- 
formation of  ,x yF v v  [3,7],  
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converting Eq.24 into the polar coordinate  ,v  , 
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employing the Fourier slice theorem and separating the 
interval of integral (0, 2π) on θ as two subinterval (0, π) 
and (π, 2π), we get 
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rewriting second term in summation and converting the 
subinterval (π, 2π) to (0, π), and the interval (0, ∞) to (–∞, 

), we get 0     
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Figure 6. Flow of back-projection filtering (BPF) reconstruction method. 
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For parallel projection data, we clearly have 

   πp x p x                  (28) 

then, in frequency space,  
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submitting Eq.29 into Eq.27 and rewriting Eq.26, we 
will get 
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where 

     ˆ exp 2 π dp x v P v i vx v 



         (31) 

Eq.30 is in the same form of the back-projection in 
Eq.9. The one-dimensional “ramp” filter, v , is a section 
through the rotationally symmetric two-dimensional cone 
filter (see Figure 7). Consequently, Eq.31 states that the 
original object  , f x y  is obtained by applying the filter 
that multiplies ramp filter to the Radon transforms and 
then performing the backprojection. This method is 
called filtered back-projection (FBP) method. This 
method performs the back-projection after applying the 
filter, contrarily to the back-projection with deconvo- 
lution, which is explained in the back-projection filtering 
method, which applies the filtering after the back- 
projection. 

On the other hand, Since  v P v  is Fourier trans- 

form of  p̂ x  , then 

     ˆFT p x v P v v FT p x                (32) 

the Fourier transformation Eq.32 yields, 

    1p̂ x p x FT v 
              (33) 

This is a simple convolution and the Fourier transfor- 
mation is not required. This method is called convolution 
back-projection method (see Figure 8).  

4. DISCUSSION 

Tomographic methods do not generate three dimensional 
images of an object directly. Instead sectional 2-D im- 
ages are reconstructed from a set of projections. As the 
amount of data, or projections, is limited, there is not a 
unique solution. Due to the statistical nature of radioac- 
tive decay and detection process, the presence of noise in 
the acquired data is inevitable, so that an exact solution is 
not achievable. However, it is feasible to obtain a solu- 
tion close to the given distribution, both in the visual and 
the quantitative aspects, so that a diagnostically reliable 
result is generally possible. We considered four analytic- 
cal methods for reconstruction method here.  

First method, Fourier transformation, although is 
theoretically the simplest of various reconstruction 
methods, it is practically not popular because obtaining 
projections for all θ is practically impossible; they are 
obtained at an interval of θ. The Fourier transformation 
of  xp   is calculated practically by computers using 
the discrete Fourier transformation with sampled x . 
Thus  ,x yF v v  is obtained only at discrete points lo- 
cated radially on  ,x yv v -plane. The discrete inverse 
Fourier transformation of  , x yF v v  requires  ,x yF v v  
at square lattice points. Since the radially located points 
and the lattice points are not generally synchronized, the 
values of  ,x yF v v  at the lattice points have to be es-
timated from the values at the radially located points by 
some interpolation. The error by the interpolation in the 
frequency domain can yield an artifact, which is a noise 
not existing in the original image but caused by the 
processing, spread over the whole image. The artifact 
causes a severe misjudgment in image-aided medical 
diagnosis, since such diagnosis should find an object that 
should not be normally observed, for example a tumor. 
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In second method, back-projection (BP), the recon- 
structed image is blurred by convolution distribution 
function,  , f x y , with blurring factor, 1 r . Therefore, 
after back-projection, it is necessary to filter the over- 
sampling in the Fourier space in order to have equal 
sampling throughout the Fourier space (see Figure 9). 

For this reason, in third method, back-projection fil- 
tering (BPF), the Fourier transform of the back-projected  

image is filtered with a “cone” filter  2 2
x yv v v  .  

This cone filter accentuates values at the edge of the 
Fourier space and de-accentuates values at the center of 
Fourier space. However, this method has two problems: 

1)  , x yBP v v  should be calculated within an area 
much broader than the support of  , f x y , since the 
back-projection, , is spread by blurring  ,bp x y
 ,f x y

 ,
. 

2) f x y  is positive at every  ,x y since it is a dis-
tribution of absorbance. However, from Eq.22,  
 ,x yF v v  0  when . It means that the DC 

component of 
0x yv v 

,f x y
 ,

 is zero and negative values 
should appear in f x y

 ,

.This is a contradiction. The  

reason is that x yBP v v  diverges at  and  0x yv v 

no information on  , f x y  is obtained there. To avoid 
this advantage, in next method, back-projection and fil- 
tering steps is interchanged. 

In fourth method, filtered back-projection, first projec- 
tion data is filtered and then back-projected. This method 
does not require the inverse Fourier transformation of the 

spread blurred image, since the Fourier transformation is 
applied to the projections only. Although this method 
requires an interpolation between the polar coordinate to 
the Cartesian coordinate similarly to the Fourier trans- 
formation method, no artifact spread over the whole real 
domain is occurred, since this method carries out the 
interpolation in the real domain contrarily to the Fourier 
transformation method. Since the filtering can be applied 
for each θ independently, the filtering for a θ can be ap- 
plied parallelly before the capture of projection at an- 
other θ is completed. 

In general, the most well known of these methods is 
the filtered back-projection (FBP), based on the Central 
Slice Theorem and easy to be implemented. On the other 
hand, it does not take into account any of the factors that 

 

 

Figure 7. Illustration of cone ramp filter. 
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Figure 8. Flow of filtered back-projection (FBP) method. 
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Figure 9. Comparative displaying of BP and FBP methods.   
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were mentioned before and considers the data noiseless. 
Therefore, it is necessary to perform radiation interac- 
tions correction either before or after the reconstruction. 
In general, FBP is available in all commercial nuclear 
medicine imaging systems and the resulting images are 
adequate for the majority of routine clinical problems.  
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