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ABSTRACT 

For many years, the uncertainty of lie-detection sys- 
tems has been one of the concerns of defense related 
agencies. Clearly the results of these systems must be 
generalized by a high value of accuracy to be accept- 
able by judicial systems. In this paper, a new method 
based on P300-based component has been proposed for 
lie-detection. In this regard, the test protocol is de- 
signed based on Odd-ball paradigm concealed infor- 
mation recognition. This test was done on 32 people 
and their brain signals were acquired. After prepro- 
cessing, the classic features are extracted from each 
single trial. After that, time-frequency (TF) transfor- 
mation is applied on the sweeps and TF features are 
produced thereupon. Then, the best combinational 
feature vector is selected in order to improve classifier 
accuracy. Finally, Guilty and Innocent persons are 
classified by KNN and MLP. We found that combina- 
tion of Time-Frequency and Classic features have bet- 
ter ability to achieve higher amount of accuracy. The 
obtained results show that the proposed method can 
detect deception by the accuracy of 89.73% which is 
better than other previously reported methods. 
 

Keywords: Lie-Detection; Electroencephalography 
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1. INTRODUCTION 

The detection of deception has a long history. The first 
proposed technology was the polygraph, which recorded 
autonomic arousal and was used in the determination of 
guilt or innocence [1]. A researchable hypothesis is that 
by looking at brain function more directly, it might be 
possible to understand and ultimately detect deception [2, 
3]. Based on this hypothesis a number of neurophysi-
ological signals have recently been investigated for the 
possible application to deception detection, including 

Functional Magnetic Resonance Imaging (fMRI) [4-10] 
and event related potentials (ERP) [2,11,12]. ERP based 
techniques have been more widely studied and have 
achieved more satisfying results [2,11]. Moreover, in [2] 
Farwell introduced another measure of participants’ re- 
sponses to test items: the necessary time to classify each 
test item as a probe or irrelevant phrase reaction time 
(RT). Farwell approved that the response time to probe 
in guilty subjects is longer than innocent subjects while 
the response time to irrelevant stimuli are the same for 
both innocent and guilty subjects. Brain signal process- 
ing is one of the most common methods in detection of 
deception, first considered in the 1980s [13]. EEG back- 
ground activities have been used in a few studies on de- 
tection of deception such as [14], however analyzing 
Event Related Potentials (ERPs), especially P300 wave 
form, has been becoming more popular in Guilty 
Knowledge Test (GKT) [15,16]. It has been shown that 
the P300 waveform is elicited in response to oddball 
paradigm; this paradigm is a sequence of usual stimuli in 
which some meaningful rare-unusual stimuli are pre- 
sented [15]. P300 is a positive-going wave with a scalp 
amplitude distribution in which it is largest parietally (at 
Pz) and smallest frontally (Fz), taking intermediate val- 
ues centrally (Cz). (Fz, Cz, and Pz are scalp sites along 
the midline of the head). Its peak has a typical latency of 
300 - 1000 ms from stimulus onset. The size or amplitude 
of P300 at a given recording site is inversely proportional 
to the rareness of presentation; in practice, probabilities < 
0.3 are typically used. The meaningfulness of the stimu-
lus is also extremely influential in determining P300 size 
[17]. Also, GKT is a method of Polygraphy that is used 
in detection of concealed knowledge of the guilty per-
sons. It is supposed that only guilty persons are aware of 
the detail information about the crime. Representation of 
these details in an oddball paradigm to guilty subjects 
will elicit P300 component in their EEG signals [19]. 
GKT method has three types of stimuli [18]: 

1) Probe (P): This is related to crime that only guilty 
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persons are familiar with this stimulus whereas innocents 
are not. 

2) Irrelevant (I): This has not any relations with crime, 
so is unknown by all subjects.  

3) Target (T): This is unrelated to crime but is known 
by all subjects. 

The number of irrelevant stimuli is many times greater 
than the numbers of the other two types; and therefore 
probes and targets are rare stimuli. The T stimuli force 
the subject to pay attention to items, because failure in 
responding to these stimuli suggests that the subject is 
not cooperating [17]. Also, the T stimuli are rare and task 
relevant and thus evoke a P300 component that has been 
used in subsequent analysis of the probes as a typical 
P300 of the subject [2], although this assumption that the 
T-P300 is a classical rendition of standard P300 has been 
shown to be sometimes wrong [19]. The basic assump- 
tion in the P300-based GKT is that, if the subject has 
guilty knowledge of the probe stimuli, the infrequent 
nature of these items will cause them to elicit a P300 
component like that for the T stimuli. However, if the 
person has no knowledge of the probe items, they will be 
perceived as belonging to the irrelevant stimulus set and 
thus elicit an ERP with only small or no P300 component. 
There are conventionally two approaches in the analysis 
of signals and detection of deception in P300-based GKT. 
In the first—used by Rosenfeld et al.—the amplitude of 
P300 response in P and I items are compared [19]. In 
guilty subjects, one expects P > I while in innocents P is 
another I and so no P-I difference is expected. Based on 
this theory, the Bootstrapped amplitude difference (BAD) 
method has been introduced and used by Rosenfeld. The 
second approach, introduced by Farwell and Donchin [2], 
is based on the expectation that in a guilty person, the P 
and T stimuli should evoke similar P300 responses, 
whereas in an innocent subject, P responses will look 
more like I responses. Thus, in this method the cross 
correlation of P and T waveforms is compared with that 
of P and I. In guilty subjects, the P-T correlation is ex- 
pected to exceed the P-I correlation and the opposite is 
expected in innocents. However in many previous stud- 
ies, GKT paradigm has been used in order to detection of 
concealed object recognition, it has been shown that the 
P300 component is also sensitive to concealed informa- 
tion recognition [13,20]. A simple method in ERP ex- 
traction is calculating the average of ERP-trials. In this 
method, the behavior of EEG background activity is as- 
sumed to be similar to the noisy signals and can be omit- 
ted by averaging, whereas ERP is a deterministic signal 
and remains in this process. One of the disadvantages of 
averaging method is to use a large number of single-trials 
to reduce the noises [21]. Because of difficulties of 
long-term EEG recording, it is reasonable to find some 
methods that are based on single-trials. In previous stud- 
ies pattern recognition systems based on frequency,  

wavelet and time domain analysis were introduced for 
P300 detection, in a P300-based GKT method [17,22]. 
Also, another method is introduced for ERP assessment 
in a P300-based GKT based on some wavelet features 
and a statistical classifier in [17]. 

In this study a new combinational feature vector which 
is obtained from Wigner Ville transform is introduced, 
then the principal component analysis (PCA) is applied 
to the optimal feature vector and finally two classifiers 
are used to discriminate between guilty and innocent 
subjects in a concealed information recognition test. 
Thus, a new algorithm has been presented for lie detec- 
tion using ERPs sweep. In this algorithm, after preproc- 
essing of EEG signal, and probe sweeps extraction, first 
some suitable features are extracted from each single trial. 
These features such as morphological and frequency 
features (classic features) will be those ones which con- 
tain suitable information about the inspected phenomena. 
In the next stage, time-frequency transformation is done 
on the sweeps and some other features are produced. The 
best features are selected in order to achieve the best 
combinational feature vector which is optimal. Then, 
PCA is applied to the feature space to reduce the features 
dimension. Finally, Multilayer perceptron (MLP) neural 
network and K-Nearest Neighbor (KNN) are used to 
classify guilty subjects and those of innocents. In Figure 
1 summary of the algorithm is shown. Generally speak-  

 
 EEG Recording 

Pre processing  
 Determine the time of stimulus 
 Extraction of probe sweeps 
 Filtering of signals EOG artifact removal 

Feature Extraction 
 17 morphological 
 3 frequency domain features 
 14 Wigner Ville Transform 

Feature selection reduction 
 Using feature selection 
 Using principle component analysis 

Classification 
 Using Artificial Neural Network 
 Using k-Nearest neighbor 

 

Figure 1. Flowchart of proposed algorithm. 
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or movie stars and also from the most famous landmarks 
(such as most famous monuments, city icons, places of 
power and worship, sacred mountains and etc.). Slides of 
meaningless words were used as irrelevant. Probe for 
guilty subjects were taken from a meaningful word. In 
the case of innocent subjects, the word slide of probes 
had not been seen by them and they didn’t have any in- 
formation about those words. 

ing, the aim of our research is to find a new combina- 
tional feature space from classic (morphological and 
frequency features) and Wigner-Ville features in order to 
detect Innocent and Guilty subjects, and also to compare 
its performance with the obtained results using the 
wavelet features and previously reported methods. 

2. PARTICIPANTS 
Two push buttons were given to each hand of the sub- 

jects and all subjects were asked to press one of them 
whenever they want to say “Yes, I know”, and press an- 
other one when they want to say “No, I don’t know”. 
Innocent subjects replied honestly to all stimuli, but 
guilty subjects replied honestly only to target and irrele 
vant ones. They replied falsely to probe stimulus.  

Thirty two Iranian subjects participated in the experi- 
ments that were generally undergraduate or postgraduate 
students and all had normal or corrected vision partici- 
pated in this study. They did not have any neurological 
disease. Participants were naive to the experimental de- 
sign. The mean age was 25 years. Data from three sub 
jects were discarded because of too many artifacts or 
machine failure. 

Figure 2 shows different examples of slides shown to 
Guilty and Innocent subjects. As can be seen, these slides 
include different meaningful and meaningless words. 
Meaningless words are produced using some randomly 
selected characters. Whereas, name of famous places or 
know persons have been chosen as meaningful words. 

3. DATA ACQUISITION 

Thirty-two subjects participated in this study. They were 
randomly divided into two groups (16 guilty cases and 
16 innocent ones). The implementation methodology 
used in this study is the same as method which was em-
ployed in the Ref [23]. 

Figure 3 shows a one-second of EEG signal for both a 
guilty subject (a) and an innocent (b). It is reminded that 
each observation is obtained by average of single-trials 
of all 20 iterations for each subject. As it is seen in Fig-
ure 2(a), there is no P300 component in the probe stimu-
lus of the innocent subject (It is not built) and is similar 
to the irreverent stimulus. That is because of the fact that 
the probe stimulus of the innocent subject is obtained by 
showing a meaningless word. However, the probe 
stimulus of the guilty subject which is shown in Figure 
2(b) contains P300 component and is similar to the Tar-
get stimulus because of the guilty given answer (“I don’t 
know”) to the “slide of a meaningful word”(i.e., her/his 
name ). 

EEG data was recorded by using Ag/AgCl electrodes 
which were placed at midline sites of the head (Fz, Cz 
and Pz); But only the results of Pz channel would be 
analyzed. The vertical and horizontal EOG were re- 
corded. EEG was recorded continuously and digitized 
with a sampling rate of 256 Hz. All signals were filtered 
in the range of 0.5 - 30 Hz by a zero phase digital filter. 

Procedure: Before experiments, seven different slides 
presenting seven different words were prepared for each 
subject. These slides were presented randomly and each 
one lasted 1500 ms with the 40 iterations on the com- 
puter screen with an inter stimulus interval of 1000 ms. 
Among these seven slides, one was probe stimulus, the 
other was target and the rest were irrelevant stimuli. It is 
necessary that subjects (both Guilty and Innocent) rec- 
ognize the target stimuli well, thus it should be a word 
(name) related to one of subjects family members or 
from well-known people such as sport stars, politicians  

4. MATERIAL AND METHODS 

Based on the previous studies, in this research, two types 
of Morphological and Frequency features as Classic fea- 
tures have been proposed. These features have shown 
good performances in similar studies and hence, were 

 

           

Figure 2. Some examples of slids represented to Guilty and Innocent groups for data acquisition. 
P and Ir slides are randomly shown for 40 times, and T slide is shown for one time to each subject. 
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Figure 3. Averaged EEG signals of single-trials of all 20 iterations after showing 
target, irrelevant and probe slides for two typical subjects: (a) Innocent subject; (b) 
Guilty subject. 

 
believed to be useful as well for this application. Then, 
time-frequency transform features have been suggested 
that those are extracted through the Wigner Ville trans- 
form because it provides better time frequency resolution 
than nonparametric linear methods (i.e., wavelet and 
short-time Fourier transform), an independent control of 
time and frequency filtering, and power estimates with 
lower variance than parametric methods when rapid 
changes occur. 

4.1. Pre Processing 

After the filtering of signals, each continuous record was 
separated to single sweeps according to the known times 
of stimulus presentation. The length of each sweep is 
1000 ms which contains 256 samples of signal. EOG 

data were checked for blink artifact by visual inspection 
and sweeps with blink artifacts were removed. 

It should be noted that, in all description of P300 fol- 
low, only the results at site Pz was noted, since Pz is the 
site where P300 is usually reported to be maximal and 
therefore the analytic procedure (below) were performed 
on Pz data only. 

4.2. Classic Features Analyses 

These features are morphological and frequency features 
will be those which contain suitable information about 
the inspected phenomena. 

4.2.1. Morphological Features 
First group of features contains 17 morphologic features. 
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These features were previously used by Kalatzis et al. in 
discriminating depressive patients from healthy controls 
using the P600 component of ERP signal [24]. These 
features are defined and calculated as follows [17] (due 
to the characteristics and typical delay of cognitive 
components of ERP, the time interval was confined be- 
tween 400 ms and 800 ms after stimulus): 

1) Amplitude (smax): the maximum signal value 

 max  max s s t                 (1) 

2) Absolute amplitude (|smax|). 
3) Latency time: the time where the maximum signal 

value appears 

 
max max:St t s t s               (2) 

where s(t) is the ERP single trial during 400 - 800 ms 
after stimulus and smax is the maximum signal value in 
this time interval. 

4) Latency/amplitude ratio (
max maxSt s ). 

5) Absolute latency/amplitude ratio (
max maxSt s ). 

6) Positive area (Ap): the sum of the positive signal 
values 

    400

800
0.5

t ms

ms
t s tAp s

            (3) 

7) Negative area (An): the sum of the negative signal 
values 

    800

400
0.5

ms

t ms
s t s tAn


           (4) 

8) Total area (Apn): the sum of the positive and nega-
tive signal values 

Apn Ap An                    (5) 

9) ATAR (|Apn|): Absolute total area. 
10) TAAR (Ap|n|): Total absolute area. 

A pn Ap An                   (6) 

11) AASS :Average absolute signal slope S  

    800

400

1
0.5

1 ms

t ms
s t s

n
tS 


   

t

       (7) 

where τ is the sampling interval of the signal, n the 
number of samples of the digital signal, and s(t) the sig-
nal value of the sample. 

12) Peak-to-peak (pp): 

pp = Smax − Smin                (8) 

where Smax and Smin are the maximum and the minimum 
signal values, respectively: 

    max minmax ,  minS s t S s          (9) 

13) Peak-to-peak time window (tpp): 

max min
  s stpp t t                (10) 

14) Peak-to-peak slope  spp : 

pp
spp

tpp
                    (11) 

15) Zero crossings (ZC, nZC): the number of times t 
that s(t) = 0, in peak-to-peak time window: 

max

min

s

s

t

zc t
n s                  (12) 

where s  = 1 if s(t) = 0, 0 otherwise . 
16) Zero crossings density (ZCD, dZC)—zero crossings 

per time unit, in peak-to-peak time window: 

ZC
ZC

pp

n
d

t
                    (13) 

where nZC are the zero crossings and tpp is the peak- 
to-peak time window. 

17) Slope sign alterations (nsa): the number of slope 
sign alterations of two adjacent points of the ERP signal: 

   
   

   
   

800

400
0.5

ms

sa t ms

s t s t s t s t
n

s t s t s t s t




 
 



 

   
  

   
   

(14) 

where τ is the sampling interval of the signal (τ = 3.9 ms, 
for the sampling rate of 256 Hz). 

4.2.2. Frequency Features 
The second group of defined features is three frequency 
characteristics of the signals. These features are mode 
frequency, median frequency and mean frequency, 
[17,25-28] which are described and calculated as fol-
lows: 

1) Mode frequency: fmode is the frequency with the 
most energy content in the signal spectrum, so the 
maximum amplitude in the power spectrum density of 
the signal is at this frequency: 

    mod e   maxS f S f  

S is the power spectral density of signal and f is fre-
quency. 

2) Median frequency: Median frequency (fmedian) sepa-
rates the power spectrum into two equal energy areas and 
is calculated from the following equation:  

   median

median

0

0
d  d

f

f
S f f S f f          (15) 

3) Mean frequency: Mean frequency (fmean) represents 
the centroid of the spectrum and is calculated from the 
weighted averaging of the frequencies in the power spec-
tral density of signal: 

 
 

0

mean

0

d

d

f S f f

S f f



 


             (16) 
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4.2.2.1. Time-Frequency Domain Analysis 
Time-frequency (TF) analysis transforms time-domain 
signals into the so called time-frequency distribution 
(TFD), which can be interpreted as joint (simultaneous) 
distributions of signal energy in the time and frequency 
domains, without the scaling effects of wavelet trans- 
forms [29]. 

An approach to analyze non stationary EEG signal, is 
time-frequency (TF) methods. This can be divided into 
three main categories: nonparametric linear TF methods 
based on linear filtering, including the short-time Fourier 
transform [30-32] and the wavelet transform [33-39], 
nonparametric quadratic TF representations, including 
the Wigner-Ville distribution [40-42] and its filtered ver- 
sions, and parametric time-varying methods based on 
autoregressive models [43-50] with time-varying coeffi-
cients. In this paper the Smoothed Pseudo Wigner-Ville 
distribution (SPWVD) is preferred since it provides bet-
ter time frequency resolution than nonparametric linear 
methods, an independent control of time and frequency 
filtering, and power estimates with lower variance than 
parametric methods when rapid changes occur [51]. The 
main drawback of the SPWVD is the presence of cross 
terms, which should be suppressed by the time and fre-
quency filtering. The SPWVD of the discrete signal x(n) 
is defined by . 

   
   

21

1

1 2π
1

, 2

, e

N

k N

p M j km N
xM

X n m h k

g p r n p k



 

  




 




    (17) 

where n and m are the discrete time and frequency in-
dexes, respectively, h(k) is the frequency smoothing 
symmetric normed window of length 2N − 1, g(p) is the 
time smoothing symmetric normed window of length 2M 
− 1 and rx(n, k) is the instantaneous autocorrelation func-
tion, defined as 

    , *xr n k x n k x n k                (18) 

Figure 4 shows the result of applying Wigner Ville 
transform to the probe signal. 

4.2.2.2. TF Features Extraction 
Each probe sweep is divided into 10 segments of equal 
length; each segment is approximately 100 ms in time 
domain. Then, the average energy of each segment was 
computed using our previously reported method in [52]. 
The features are: 

FLT: Frequency of latency time (i.e., the frequency of 
the time where the maximum signal value appears). 

MAX w: maximum amount of energy in each win-
dow. 

MIN w: minimum amount of energy in each window. 
DIF w: difference between maximum and minimum 

amount of energy between windows. 

STD w: standard deviation between energy of time 
windows. 

The obtained signal in TF domain is also divided into 
four frequency segments according to the brain wave 
frequency as below: 

EDelta: the complex of energy signal in Delta frequency 
band (0.5 - 4) Hz, divided by length of band (3.5). 

ETheta: the complex of energy signal in Theta fre-
quency band (4 - 8) Hz, divided by length of band (4). 

EAlpha: the complex of energy signal in Alpha fre-
quency band (8 - 13) Hz, divided by length of band (5). 

EBeta: the complex of energy signal in Beta frequency 
band (13 - 30) Hz, divided by length of band (17). 

FDelta: the average of energy signal in Delta frequency 
band (0.5 - 4) Hz. 

FTheta: the average of energy signal in Theta frequency 
band (4 - 8) Hz. 

FAlpha: the average of energy signal in Alpha fre-
quency band (8 - 13) Hz. 

FBeta: the average of energy signal in Beta frequency 
band (13 - 30) Hz. 

Also, we have defined the first order derivative as a 
feature to show the difference between adjacent windows. 
This derivative is the difference between the average 
energy in subsequent windows, so the first order deriva-
tive feature is computed as below 

1 dif n nW W W                (19) 

where 
Wn: average energy in window of n 
W(n–1) : average energy in window of (n – 1) 
The result of features survey in time span of 100 ms 

illustrate that in guilty person the features changes from 
one window to next window is much more prominent so 
we define the first order derivative . 

The defined features (34 features) were extracted from 
all probe sweeps of all subjects. 

5. FEATURE SELECTION AND 
REDUCTION 

5.1. Feature Selection 

In any classification task, there is a possibility that some 
of the extracted features might be redundant. These fea-
tures can increase the cost and running time of the sys-
tem, and decrease its generalization performance. In this 
way, the selection of the best discriminative features 
plays an important role when constructing classifiers. To 
identify the best features (for classification) in feature 
space, searching selection method is applied. In such a 
way, first the classification has been applied separately to 
each feature. The best feature has been selected in ac-
cordance with the most value of classification accuracy. 
This feature will be combined with the other individual     
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(a) 

 
(b) 

Figure 4. Wigner Ville transform of the probe signal of a guilty person: (a) 2D view; (b) 3D view. 
 

6. CLASSIFICATION features and thus the best pair combination will be pro-
duced. This process would be counting to achieve the 
best combination of features. 

To discriminate between the probe stimuli of the guilty 
and innocent person, the Multilayer perceptron (MLP) 
neural network and k-Nearest Neighbor (KNN) classifier 
have been used. The extracted Features from the probe 
sweep of the guilty person were compared with the in-
nocent person. For each subject, the probe sweeps of 
other subjects with their real labels (G-probe/I-probe) 
were used as training data, and then the trained classifier 
applied on the probe sweeps of the given subject. 

5.2. Principal Components Analysis 

In order to reduce the dimensionality of input features, 
and to select the discriminating features, and to have 
better classification performance, and reduce the learning 
time, the principal components analysis (PCA) is used. 
The goal of the use of PCA, is finding a transform matrix 
to maximize the between class distribution and minimize 
the interclass distribution [53-57]. The obtained features 
from feature selection method (26 features) and without 
feature selection (34 features) were reduced to 21 and 25 
features, respectively, by using PCA technique. 

6.1. Multilayer Perceptron Neural Network 

The classifier using a three-layer MLP with error back 
propagation algorithm and variable learning rate. The 
input layer has a number of nodes equal to the input 
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vector length. The output layer consists of one node, ac-
counting for a possibility of only 2 classes to be classi-
fied. Also, all the possible combinations of the selected 
numbers of neurons in the hidden layer were selected and 
trained and finally the optimized number was equal to 5. 
The output nodes had linear transfer functions, and the 
hidden layer used a sigmoid function. Network training 
continued until the mean square error became less than 
0.01 or the number of training iterations reached to 1000. 
Due to the limited input data set, Leave One Out cross- 
validation method was done for training [58,59]. At each 
stage one of observations was selected as test data and 31 
as train data, and this process repeated 32 times. Network 
error in each step was computed, and finally the average 
was calculated. One advantage of this approach is that all 
the input data set are present in both processes (train and 
test). 

6.2. k-Nearest Neighbor 

k-Nearest neighbor (KNN) algorithm is one of the most 
effective non-parametric methods in pattern recognition 
[60]. The k-NN algorithm is a method for classifying 
objects based on their distance to the training examples 
in the feature space. The algorithm is independent from 
statistical distribution of training examples. There are 
several distance measures that might be used in this al-
gorithm. However Euclidean distance is commonly pre-
ferred as the distance measure. An object is classified by 
the majority vote of its neighbors, and the object is as-
signed to the class most common among its k nearest 
neighbors. The number k is usually chosen small. If k = 1, 
then the object is simply assigned to the class of its near-
est neighbor. The selected feature set is then used to de-
termine the best value of k for the classifier. Therefore, 
different numbers of nearest neighbors (k = 1, 3, 5, 7, 9, 
11, 13) are tested in the k-NN classifier to obtain the best 
performance for the classifier [61]. Performances of all 
classifiers are calculated based on their accuracy. The 
maximum performance is provided by a 7-nearest neigh- 
bor classifier. 

7. RESULT 

In this research, many types of features have been inves-
tigated to classify the Guilty and Innocent subjects. In 
this regard, after extraction of features, has been tried to 
find the best combinational feature vector through the 
feature selection method. Also, to improve the perform-
ance of the classifier and reduce the execution time, PCA 
method is applied and finally Guilty and innocent sub-
jects are classified using a classifier which has the best 
accuracy in comparison with others. Mean values of the 
accuracy of classification for both MLP neural network 
and KNN classifier are given in Table 1. This table  

shows how simultaneous usage of Feature selection and 
PCA can increase the accuracy. As can be seen, in both 
cases (using of MLP or KNN), PCA has better results in 
comparison with Feature Selection whereas simultaneous 
usage of Feature Selection and PCA methods for pro-
ducing a new combinational feature vector has increased 
the accuracy by 4% - 5%. Considering the obtained re-
sults, it’s clear that the optimal combinational feature 
vector has more ability to distinguish between Innocent 
and Guilty subjects. Table 2 shows the results of our 
proposed method and ones reported in [18]. As it is seen, 
the deception detection accuracy has been improved 
from 86% to 89%. It has been investigated that because 
of the presence of independent Time-Frequency control-
lers and also simultaneous usage of Time and Frequency 
information, extracted features from Wigner-Ville trans-
form are better than wavelet based analyses. 

8. DISCUSSION 

P300-based GKT, as a new method for the psychophysi-
ological detection of concealed information, was tested 
on innocent and guilty subjects who were concealing 
information regarding a mock crime committed as a part 
of the experiment. 

As can be seen in Figure 1(a), EEG Acquisition 
through Odd-ball paradigm indicates that P300 compo-
nent is sensitive to the “meaningful word” which is con-
sistent with this notion that P300 component is sensitive 
to the “concealed information” [18,21,24]. In other 
words, the unexpected and significant stimulus of Target 
(T) and Probe (P) lead to the same production of P300- 
based brain responses in the guilty subject. Whereas, in 
the innocent subjects the response of probe stimulus is 
more similar to the response of Irrelevant stimulus. 

Therefore these results are in accordance with our ex-  
 
Table 1. The accuracy values of MLP and KNN classifiers 
with the feature dimension reduction methods (individual and 
combinational) for Guilty and Innocent groups. 

 Average classifier accuracy 

Methods 
Classifier

Only using  
Feature selection

Only using  
PCA 

Both Feature 
selection & PCA

MLP 86.27% 87.38% 89.73% 

KNN 84.62% 85.12% 88.16% 

 
Table 2. Lie detection accuracy values for the proposed method 
and the method used in [18]. 

Method The proposed method Ref [18] 

MLP 89.73% 86% 
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pectation that probe stimuli result in larger P300 in guilty 
subjects than innocents. Also the significant increase in 
positive area and total area features and the significant 
decrease in all frequency features for the guilty subjects 
are in accordance with the appearance of a positive peak 
with low frequency content (P300) in the brain response 
which is according to previous studies in [18]. 

In this research, by attention to the Oddball paradigm, 
some changes have been applied to the common GKT 
methods and the manner of implementation the reference 
test [24] so that the detection rate of P300 component 
improves in recognition of Concealed information and 
classification of Innocent and Guilty subjects. Also, in 
comparison with [24], the test time has been increased 
which is equivalent to increase the probability of number 
of iterations in the Oddball paradigm (increased from 30 
to 40). Nevertheless, the negative outcomes of this task 
(to be tired, get used to the seeing the images, and an 
increase in the rate of blink artifact) must be considered. 
The obtained results show that an increase of the test 
time improves the detection rate of P300 component and 
as a result the accuracy of separation. Therefore, one of 
the probable reasons may be the increase of Test time in 
the process of the protocol. 

Finally, comparing our findings with the results re-
ported in [18], it is obvious that the optimal combined 
feature vector resulted from Wigner-Ville transform 
performs better than Classic and wavelet based methods, 
and has more ability to detect Guilty subjects, the most 
important reason might be the superiority of the 
Wigner-Ville method over Wavelet transform, simulta-
neous usage of the features (combinational form of Clas-
sic and Time-Frequency features), and also using the 
PCA method. 
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ABBREVIATIONS 
TF: Time-Frequency,  
ERP: event related potentials,  
fMRI: Functional Magnetic Resonance Imaging,  
GKT: Guilty Knowledge Test,  
EEG: Electroencephalography,  
P: Probe,  
I: Irrelevant,  

T: Target,  
PCA: Principal Component Analysis,  
MLP: Multilayer perceptron,  
KNN: K-Nearest Neighbor,  
TFD: Time-Frequency distribution,  
SPWVD: Smoothed Pseudo Wigner-Ville distribution,  
ZCD: Zero crossings density.  
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