
J. Biomedical Science and Engineering, 2012, 5, 496-507                                                     JBiSE 
http://dx.doi.org/10.4236/jbise.2012.59062 Published Online September 2012 (http://www.SciRP.org/journal/jbise/) 

About the structure of posturography: Sampling duration, 
parametrization, focus of attention (part I) 

Patric Schubert1*, Marietta Kirchner1, Dietmar Schmidtbleicher1, Christian T. Haas1,2 
 

1Institute of Sport Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany 
2Faculty of Health, Hochschule Fresenius, University of Applied Sciences, Idstein, Germany 
Email: *p.schubert@sport.uni-frankfurt.de 
 
Received 20 June 2012; revised 18 July 2012; accepted 30 July 2012 

ABSTRACT 

This study investigates the choice of posturographic 
parameter sets with respect to the influence of diffe- 
rent sampling durations (30 s, 60 s, 300 s). Center of 
pressure (COP) data are derived from 16 healthy 
subjects standing quietly on a force plate. They were 
advised to focus on the postural control process (i.e. 
internal focus of attention). 33 common linear and 10 
nonlinear parameters are calculated and grouped in- 
to five classes. Component structure in each group is 
obtained via exploratory factor analysis. We demon- 
strate that COP evaluation—irrespective of sampling 
duration—necessitates a set of diverse parameters to 
explain more variance of the data. Further more, pa-
rameter sets are uniformly invariant towards sam-
pling durations and display a consistent factor load-
ing pattern. These findings pose a structure for COP 
parametrization. Hence, specific recommendations are 
preserved in order to avoid redundancy or misleading 
basis for inter-study comparisons. The choice of 11 par- 
ameters from the groups is recommended as a frame- 
work for future research in posturography. 
 
Keywords: Center of Pressure; Sample Duration; 
Posturographic Parameters; Exploratory Factor Analysis; 
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1. INTRODUCTION 

Postural control is the ability to maintain the position of 
the body with respect to the environmental constraints 
especially gravitational effects. This feature is an omni- 
present and essential part of everyday life activities prin- 
cipally during standing, sitting and even locomotion. The 
concise, comprehensive, valid and reliable assessment of 
postural control conduces to research evaluation, judg- 
ment and decision making in a clinical context. A simple 
method to derive pertinent experimental data is by mea- 

suring the centre of pressure (COP) on a force plate over 
time, which coincides with the vertical projection of the 
body’s center of mass [1]. Vertical standing posture re- 
quires the projection of the center of mass to be within an 
area that is proportional to the extent of the convex hull 
of the lateral borders of the feet, namely the base of sup- 
port. When subjects are asked to stand as still as possible 
they never attain a stable equilibrium. Dealing with a 
multijoint segmented built-up and the resultant Berns- 
teinian problem of motor redundancy due to the amount 
of degrees of freedom, the organism is permanently ex- 
posed to an unstable condition which is observable in 
small motion of COP trajectories [2]. These fluctuations 
are believed to be regulated by a complex sensorimotor 
system [3-5]. Hence, investigating sway by means of 
COP displacements would deliver insight into neurophy- 
siological processes and hints relevance for practical and 
theoretical applications. However, little success has been 
achieved in using posturography for discriminating quiet 
stance specifics [6]. The reason could be the lack of 
adequate standardization: e.g. the sampling duration, the 
measurement parameters [7], focus of attention (compare 
part II) [8-10]. First, measurement durations in research 
typically range from several seconds (e.g. [11,12]) up to 
30 minutes [13-15]. With regard to clinical investigations 
sampling durations lower than 30 s are typical. However, 
it has been reported that sampling duration strongly af- 
fects the magnitudes of COP parameters [12,16]. On the 
one hand, prolonged standing conditions provoke specific 
postural events that modify postural performance [17,18]. 
On the other hand, COP migration is seen as a bounded 
nonstationary process and therefore short sampling dura- 
tions (<60 s) do neither account for transient events nor 
for low frequency dynamics [19,20]. Second, a great 
variety of popsturographic parameters for COP descrip- 
tion is available, which may as well assign a reason for 
contrary results in literature [21]. Concerning this matter 
Pavol (2005, p. 20) poses the questions “which measures 
best characterize postural sway, which measures are best 
for detecting differences in postural sway and how do  *Corresponding author. 
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differences in these measures relate to the postural con- 
trol system?” [22]. It is widely accepted that multiple 
measures are needed to characterize postural fluctuations 
[21]. Recently, recommendations for the usage of des- 
criptive parameters have been published by using prin- 
cipal component analysis [21,23]. However, one could 
conjecture the influence of sampling duration on the val- 
idity of descriptive posturographic parameter sets. The 
question whether different sampling times necessitate a 
different set of COP parameters is still left open. The 
present study investigates the influence of three different 
sampling durations (30 s, 60 s and 300 s) on the postural 
performance of quiet standing in healthy subjects with 
respect to the most common linear, but also more sophis- 
ticated nonlinear-parameters of posturography [24]. For 
this purpose, and with respect to earlier studies [21,23] a 
factor analysis approach is conducted to expose the sens- 
itivity of different parameter groups to different measure- 
ment times.  

Besides these basic research aspects, measuring postu- 
ral control is of major interest in applied sciences. In re- 
habilitation, this procedure serves as a forecast instru- 
ment for a great amount of patients (e.g. orthopedic, neu- 
rologic, traumatological, etc.) or elderly subjects. How- 
ever, COP data is often analyzed by only one parameter 
and therefore, results deal with limited significance. As a 
set of parameters will lead to more reasonable outcomes 
the present study provides a transfer for practical appli- 
cations. 

2. METHODS 

2.1. Experimental Procedure 

Sixteen healthy students (9 males and 7 females, age: 
26.1 ± 6.7 years; height: 173.45 ± 11.14 cm; weight: 
72.36 ± 13.04 kg) without musculoskeletal or neurologi- 
cal dysfunctions participated voluntarily in this study 
[24]. The subjects were instructed to stand with both feet 
parallel and upright as quiet as possible in hip width 
stance with arms relaxed at both sides while staring at a 
point on the wall in front and concentrating on the pos- 
tural control process, which induces an internal focus of 
attention [8]. Three trials with different sampling dura- 
tions (35 s, 65 s, 305 s) were conducted. 30 s is seen to 
be the typical clinical duration. At least 60 s is seen to be 
appropriate for time domain parameters, whereas the 
description of other parameters need 300 s of duration 
[7]. The experimental condition is referred to the typical 
laboratory condition and in practice, for example, to dis- 
criminate between different populations (e.g. [25]). Due 
to the fact that distance between the eyes and the visual 
field affects postural performance it was left unchanged 
during the whole measurement (about 2 m) [26]. Centre 
of pressure data (COP) were recorded by means of a 0.3  

× 0.4 m2 force plate with a sampling rate of 1000 Hz. 
Subsequently, COP data were used to reckon anterior- 
posterior and medial-lateral movements labeled AP [unit 
of length: UL] and ML [UL] (Figure 1). A 4th order 
low-pass Butterworth filter with a cut-off frequency of 
10 Hz was applied to eliminate measurement noise [1,27]. 
Next, time series were downsampled to 100 Hz (for cal- 
culation of entropy values to 20 Hz) and detrended by 
the mean of the time series. This procedure is appropriate 
for COP data as 95% of the informational content is 
within a range of the first Hertz [24,28]. Impact effects 
were eliminated by cutting the first 5 s from the time 
series. The person’s task temporally exceeded the mea- 
sured samples so that no end effects were detectable. 

2.2. Parameter Selection 

Since, there exists no consent (if queried at all) which 
parameters should be chosen. For our purpose, we have 
selected the most common ones, which are typically used 
in the majority of medical research and practice. The 
different variables comprised traditional linear and non- 
linear methods as proposed by diverse authors [24,28-31]. 
Duarte & Freitas (2010) subdivide the parameterization 
methods roughly into two groups: First, the traditional 
parameters which refer to estimations of the overall size 
 

 
(a) 

 
(b) 

Figure 1. (a) Force plate and measurement directions. The COP 
position is expressed as a fraction of deviation from the mid- 
point of the force plate (values in units of length [UL]). Ex- 
emplary COP recording and resultant AP and ML time series; 
(b) Classification of COP parameters into five groups. 
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of COP excursions, second, structural posturographic and 
more sophisticated parameters which describe temporal 
pattern of the time series in a nonlinear manner [29]. The 
former ones are used as indicators of postural stability 
outlining COP displacements as random fluctuations. Ac- 
cording to this theory, larger COP deflections are associ- 
ated with less stable balance and in a next step with ag- 
ing and disease. Consequently, the assumed random pro- 
perties are treated as unwanted noise and averaged out. 
Temporal structures of the displacements are disregarded. 
In contrast, nonlinear methods determine the time-de- 
pendent structure of the time series. Against this back- 
ground, both analysis techniques create complementary 
information [32,33]. 

Earlier studies recommend different procedures to at- 
tain a set of reliable parameters to evaluate the behavior 
of postural fluctuations. For instance, Kitibayashi et al. 
(2003) examined a large cohort of 220 subjects and 
found via factor analysis 4 factors that explained about 
two third of the total variance [23]. The factor structure 
is grouped into a unit time sway factor, mainly explained 
by velocity parameters, an AP sway factor, a ML sway 
factor and a frequency band power factor [34]. The au- 
thors suggest that parameters of these factors may syn- 
thetically characterize COP deflections. However, in their 
study nonlinear tools for COP evaluation were disre- 
garded. Rocchi et al. (2004) calculated an amount of 37 
stabilometric parameters [21]. Principal component analy- 
sis applied to 2-dimensional and 1-dimensional data se- 
parated in each case, identified 4 components on the one 
hand and 6 components on the other hand. In both cate- 
gories the overall parameter loadings were similar, which 
corroborates the interdependent structure: size of the os- 
cillation, spectral information and the relative weight of 
AP to ML components. This is in agreement to the find-
ings of [30], and roughly to those of [23]. 

2.3. Traditional Parameters 

Traditional parameters consist of values obtained in the 
time domain and frequency domain, which are also 
known as linear parameters [30]. Time domain describers 
are interrelated to either displacement of the COP or the 
velocity of the COP trace. Parameters of the frequency 
domain are associated with values calculated of the po- 
wer spectral density (PSD) of the COP trace separated 
into an anterior-posterior (AP) and medio-lateral (ML) 
direction. A further classification which was achieved 
here alludes to the dimensionality of the calculated para- 
meters. Time domain parameters can be subdivided into 
1-dimensional (1D: AP and ML) or 2-dimensional (2D: 
COP trace) values whereas frequency parameters can 
only be calculated of 1-dimensional sequences. 

Altogether, we calculated 33 traditional measures for 
the time domain and frequency domain time series via  

MATLAB© version 2008b routines in each experimental 
situation. In the time domain 5 parameters were included 
for 1D, each applied to AP and ML direction, and 13 pa- 
rameters for 2D time series resulting in a sum of 23 va- 
lues. In the frequency domain 5 parameters were com- 
puted respectively for AP and ML direction which com- 
passed 10 different values. Table 1 summarizes these 
parameters. 

We present a brief overview of those parameters for 
which the underlying algorithms are not immediately 
comprehensible. Otherwise, we state descriptive litera- 
ture. A common procedure for COP evaluation is achi- 
eved by investigating the area covering the COP trace. 
Here, we used three different estimation approaches: 
95% prediction ellipse, 95% prediction circumference 
and a convex hull method. A MATLAB© algorithm for 
the ellipse area is described e.g. in [29], where the coeffi- 
cient of 2.4478 is the approximate value of the Chi- 
square distribution with 2 degrees of freedom (Figure 2). 
We are aware that the interpretation of the prediction 
ellipse is misleading; hence we refer to [29,30,35]. Cir- 
cumference area was computed of the mean distance 
from the centre of the COP trajectory multiplied with the 
coefficient of 1.96 which represents the appropriate con- 
fidence region in the standard normal distribution. Both 
algorithms were useful to determine the estimated area of 
the COP deflections per second (see also [21]). The third 
method refers to the sector formula of Leibniz. For this 
purpose we divided the COP plot in equal angles from 
the centre ranging from 0˚ to 360˚ and found the maxi- 
mal distance from the centre in each interval (Figure 2). 
A measure used to quantify the twisting and turning of 
the COP trajectory is the “turn” index which is the sway- 
path length of the normalized posturogram [36]. We also 
calculated the mean deviance from the AP baseline ex- 
pressed in a value between 0˚ and 180˚. The COP velo- 
city in the 2D space is perfectly correlated with the 
length of the COP trajectory wherefore this parameter 
was excluded. Measures in the frequency domain were 
entirely conducted via PSD [29] and at this juncture by 
means of the Welch method, which demonstrates an 
adequate estimation technique [24]. For instance, the 
median frequency (f50) in this context may be para- 
phrased as the frequency band that contains up to 50% of 
the power spectrum. Therefore, we computed equivalent 
values for 80% (f80), 95% (f95) and 99% (f99). An in- 
sight into most of these frequency parameters is pre- 
sented in [24]. 

2.4. Nonlinear Parameters 

Nonlinear parameters differ strongly from the traditional 
ones described before. The underlying algorithms are 
more sophisticated and depend on further input para- 
meters that has to be chosen carefully by the experi- 
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Table 1. Selected traditional parameters and classification. 

Nomenclature Abbreviation Domain Dimensionality Mathematical description and Matlab® code 

Mean COP distance R Time 2D mean(sqrt(COPap.^2 + COPml.^2)); 

Standard deviation of 
COP distance 

std r Time 2D std(sqrt(COPap.^2 + COPml.^2)); 

COP length Length Time 2D sum(sqrt(diff(COPap).^2 + diff(COPml).^2)); 

Turns index Turns Time 2D 
sum(sqrt(diff(COPap/std(COPap)).^2+ 
diff(COPml/std(COPml)).^2)); 

Mean angle deviance 
from AP 

Beta Time 2D 
beta = 90-abs(atand(diff(COPap)./diff(COPml))); 
mean(beta); 

Standard deviation of 
angle deviance from 
AP 

std Beta Time 2D std(beta); 

Hull of COP Ah Time 2D 

A = sum(0.5*maxr(a)*maxr(a+1)*sind(maxd(a+1)-maxd(a))); 
sum(A); 
%maxr is the maximum distance in the interval; maxd the 
corresponding angle 

95% prediction ellipse 
area 

Ae Time 2D 
[vec,val] = eig(cov(COPap,COPml)); 
pi*prod(2.4478*sqrt(svd(val))); 

Mean 95% prediction 
ellipse area per second 

Ae sec Time 2D mean of ellipse (algorithm computed each second) 

Standard deviation of 
95% prediction ellipse 
area per second 

std Ae sec Time 2D standard deviation of ellipse (algorithm computed each second)

95% prediction 
circumference area 

Ac Time 2D pi*(mean(r) + 1.96*std(r))^2; 

Mean 95% prediction 
circumference area per 
second 

Ac sec Time 2D mean of circumference (algorithm computed each second) 

Standard deviation of 
95% prediction 
circumference area per 
second 

std Ac sec Time 2D 
standard deviation of circumference (algorithm computed each 
second) 

Path 
pathAP; 
pathML 

Time 1D (AP & ML) sum(abs(COPap)); sum(abs(COPml)); 

Mean path velocity velAP; velML Time 1D (AP & ML)
sum(abs(diff(COP)))*fs/length(COPap); 
%fs is sample rate 

Range 
rangeAP; 
rangeML 

Time 1D (AP & ML) range(COP); 

Standard deviation stdAP; stdML Time 1D (AP & ML) std(COP); 

Root mean square rmsAP; rmsML Time 1D (AP & ML) sqrt(sum(COP.^2)/length(COP)); 

Mean frequency 
fmeanAP; 
fmeanML 

Frequency 1D (AP & ML)

window = hamming(z); 
[Py1,Fy1] = pwelch(s,window,[],nfft,fs); 
%z is window size, nfft is FFT points, fs is sample frequency 
% subsequently computing the integral with the trapezoidal 
rule, and defining mean frequency 

Median frequency f50AP; f50ML Frequency 1D (AP & ML)
Same algorithm as before, defining the frequency below which 
50% of the total power is found 

Frequency band that 
contains up to 80% of 
the PSD 

f80AP; f80ML Frequency 1D (AP & ML)
Same algorithm as before, defining the frequency below which 
80% of the total power is found 

Frequency band that 
contains up to 95% of 
the PSD 

f95AP; f95ML Frequency 1D (AP & ML)
Same algorithm as before, defining the frequency below which 
95% of the total power is found 

Frequency band that 
contains up to 99% of 
the PSD 

f99AP; f99ML Frequency 1D (AP & ML)
Same algorithm as before, defining the frequency below which 
99% of the total power is found 
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Figure 2. (a) Exemplary area calculation via 95%- 
prediction ellipse; (b) Area calculation via the Leibnitz 
method; (c) Power spectral density of AP direction and 
parameters (with allowance of [24], modified). 

 
menter. Small variations in those initial values may lead 
to different results and entrap to error-prone interpretations. 
Nonetheless, nonlinear tools are believed to be more 
sensitive and suitable to physiological data [32] and rep- 
resent complementary information content to traditional 
methods [33,37,38]. An inspection of literature reveals 
that this field is continuously rising. On account of the 
great variety of different nonlinear methods, we ab- 
stracted procedures which were chosen in a previously 
published work to evaluate COP sway data [24].  

We applied four different nonlinear tools to 1D AP and 
1D ML data, respectively. For our purpose we calculated 
the sample entropy (SaEn, [39]) of the AP and ML posi- 
tion data and of its velocity time series (increment time 
series) which gives 4 regularity values and another 2 
complexity indices from the multiscale entropy (MSE, 
[40]). Furthermore we educed one Hurst exponent [5] in 
AP and ML direction respectively. We combined these 
measures with a frequency analysis achieved by the 
Wavelet transform (WT) and computed a total of 2 va- 
lues for different frequency bands (Figure 3). Overall, 
we obtained 10 nonlinear measures. A previous work gives 
a comprehensive overview of the applied nonlinear tools 
and computations used here [24]. Nonlinear procedures 
were chosen carefully to obtain best outputs. Table 2 
shows the obtained nonlinear parameters. 

2.5. General Procedure and Exploratory Factor 
Analysis 

We applied an exploratory factor analysis (EFA) by using 
SPSS© 17.0 to the preselected linear (traditional) and 
nonlinear parameters, respectively, as far as both views 
disclose complementary information. To ensure compa- 
rability the parameter values were transformed into z-  

scores. To maintain accurate calculation we conducted 
the following procedure: 1) Correlation matrix. In this 
step we proved the suitability of the COP parameters for 
further analysis. First, we computed Bartlett’s test of 
sphericity to reject the null hypothesis that the correla- 
tion matrix is equal to an identity matrix. Next, the Kaiser- 
Meyer-Olkin criterion (KMO) and the anti-image-corre- 
lation matrix (AIC) were inspected to test whether partial 
correlations among variables were small. Variables which 
showed only a few correlations to other ones had to be 
excluded. We compared the factor loadings of the re- 
maining parameters to the respective components before 
and after this exclusion to ensure whether this method 
anyhow leads to uniform results. The KMO value and the 
diagonal entries of the AIC (measures of sampling ade- 
quacy) should be greater than 0.5 [42]; 2) Extraction. 
Here, we estimated the factor loadings through an ex- 
traction of the factors by means of a PCA. The number of 
factors was calculated by the Kaiser-Dickmann criterion, 
meaning, dropping principal components whose eigen- 
values are less than one [43]. Furthermore communalities 
can be computed, which can be seen as a common vari- 
ance of the item due to the different factor solutions; 3) 
Rotation method. The factor rotation was achieved by the 
VARIMAX algorithm to gain maximal variance between 
factors and therefore to facilitate interpretation. 

An apparent emerging problem of the present study is 
the small sample-size of 16 subjects, which complicates 
an application and interpretation of factor analysis. The 
recommendations of methodologists for an adequate 
sample-size differ and exhibit large ranges. As discussed 
earlier by [44], sample size has relatively little impact on 
EFA solutions even with very small cohorts, when com- 
munalities of the variables are uniformly high. As re- 
ported by [45] item communalities are considered high, 
if their values are all over 0.8. However, the authors pro- 
claim a caveat to this general assertion that those values 
are very unlikely to occur in real life data and that more 
common magnitudes are found in social sciences in a 
range between 0.4 and 0.7. 

Furthermore, using more variables as subjects (sub- 
jects-to-variables ratio less than one) is a second prevail- 
ing problem for EFA here, leading to a correlation matrix 
which is not positive definite. On account of this prob- 
lem we subdivided the parameters into five classes, 
which are described formerly in the traditional and non- 
linear parameters sections and has been similarly ex- 
plained by others [23]. The traditional parameters are 
classified into three blocks: 1D time domain and fre- 
quency domain parameters (AP), 1D time domain and 
frequency domain parameters (ML) and 2D parameters 
comprising 10, 10 and 13 values, respectively. The non- 
linear measures form another two blocks in AP and ML 
direction containing 5 values each. In a first analysis we 
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Figure 3. (a) DFA analysis and Hurst exponent; (b) Scalogram of a 12-level Wavelet transform of AP (60 s); (c) Sam-
ple mean of energy percentage of the Wavelet transform (with allowance of [24]). 

 
Table 2. Selected nonlinear parameters. 

Nomenclature Abbreviation Dimensionality Reference 

Complexity index MseAP; MseML 1D (AP & ML) Costa et al., 2002 [40] 

Sample Entropy (applied to path  
and velocity) 

SaEnAP; SaEnML; SaEnvelAP; 
SaEnvelML 

1D (AP & ML) Richman et al., 2000 [39] 

Hurst exponent via detrended 
fluctuation analysis 

hAP; hML 1D (AP & ML) Collins and De Luca, 1993 [5] 

Cumulated frequencies via Wavelet 
transform 

cumWTAP; cumWTML 1D (AP & ML) 
e.g. Blatter, 2003 [41],  
Kirchner et al., 2012 [24] 

 
assembled linear and nonlinear parameters in one AP- 
and in one ML-group, which unfortunately did not give 
adequate results regarding sampling adequacy, so that we 
had to separate linear and nonlinear variables. Within 
each of the five parameter blocks an exploratory factor 
analysis was calculated (Figure 1). This was conducted 
consistently throughout the different measurement times 
(30 s, 60 s, 300 s), so that a total of 15 EFAs were com- 
puted. Rocchi et al. (2004) applied a similar procedure 
for 1D and 2D parameters [21]. In this article the authors 
assume that the different groups share most of the infor- 
mation. Here we adopted this keynote by dividing the 
parameters first into five classes. 

3. RESULTS 

3.1. Sampling Adequacy 

Due to KMO and AIC values we excluded in 4 cases of 
15 EFA’s particular parameters to improve the sampling 
adequacy of the parameter sets. Those were f50AP (30 s, 
BT, 1D-AP block), Ae and std Ae sec (60 s, BT, 2D 
block), and SaEnvelAP (300 s, BT, nonlinear AP-block). 
The exclusion process showed no influence on the 
remaining parameter loadings. After this procedure the 
sampling adequacy values matched the requirements 
(mean KMO = 0.73, KMOmin = 0.68, KMOmax = 
0.84). Item communality values were consistently over 
0.85 which match the specifications of [44] and [45]. 
This can be generally explained by high correlations 
between the stabilometric parameters. As a result, the 

proband cohort which is smaller than traditionally re- 
commended is likely sufficient for adequate application 
of EFA [44]. Bartlett’s test of sphericity always rejects 
the null hypothesis that the correlation matrix is equal 
to an identity matrix [p < 0.001]. 

3.2. Traditional Parameters 1D ML 

EFA’s from this group (Table 3) show a consistent pat- 
tern. All factor loadings regardless of sample duration 
(30 s, 60 s, 300 s) exhibit two principal components with 
approximately equal loadings in variance (approximately 
40% in the first to 40% in the second component). In a 
sum the EFA’s explain at about 80% - 90% of variance on 
average. The principal components are easy to interpret.  

The first component refers to parameters from the time 
domain (pathML, velML, rangeML, stdML and RMSML) 
and the second component is associated to parameters 
from the frequency domain (fmeanML, f50ML, f80ML, 
f95ML and f99ML). Another peculiarity alludes to the 
individual item loadings in the components. The highest 
loadings in the frequency parameters have fmeanML, 
f80ML and f95ML. In the time domain all parameters 
have similar loadings consistently over 0.9 except of 
velML. The latter parameter sometimes loads with higher 
values to the frequency component. 

3.3. Traditional Parameters 1D AP 

In anterior posterior direction (Table 4) a similar output 
as in ML direction is interpretable. Two components  
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were extracted at which a distribution of time domain 
and frequency domain variables is detectable akin to 
those of the ML direction. An exception is the 60 s trial, 
in which VelAP creates a third component with 11% of 
explained variance. The remaining variances are ex- 
plained by both components equally (approximately 40% 
in the first component to 40% in the second component) 
with a total sum of 80% - 90%. Inside the 30 s sample 
some frequency parameters (fmeanAP, f80AP and f95AP) 
are also loading negatively to the component which is 
loaded by the time domain parameters. In the 30 s and 
300 s trial VelAP is loading to the frequency component. 

3.4. Traditional Parameters 2D 

Parameters describing the 2D-COP trace (Table 5) are 
partitioned into three components normally. Interestingly, 
there are some general schemes identifiable which are 
constant over the sampling durations. In general, the first 
component often comprises five parameters (r, std r, Ah, 
Ae and Ac, Ac sec and std Ac sec) with some inconsis- 
tencies in the 60 s trial (40 to 60% of total variance). This 
component obviously refers to the global area covering 
the COP trace. Naturally, the two distance parameters R 
and std r from normalized COP centre is mathematically 
strongly related to the area values. A separate component 

 
Table 3. Factor loadings for 1-D parameters ML (rotated, >0.5 in bold letters). Components and explained variances.  

 30 sec 60 sec 300 sec 

Parametersa 1 (49.21%) 2 (41.57%) 1 (48.16%) 2 (41.66%) 1 (44.23%) 2 (43.71%) 

PathML –0.307 0.940 –0.415 0.895 –0.216 0.967 

VelML 0.392 0.652 0.523 0.702 0.742 0.321 

RangeML –0.288 0.953 –0.250 0.957 0.010 0.983 

StdML –0.295 0.940 –0.395 0.905 -0.173 0.977 

RmsML –0.295 0.940 –0.391 0.907 -0.173 0.977 

FmeanML 0.970 –0.190 0.950 –0.255 0.934 –0.336 

f50ML 0.919 –0.145 0.810 –0.155 0.800 0.065 

f80ML 0.945 –0.199 0.933 –0.240 0.887 –0.237 

f95ML 0.947 –0.199 0.931 –0.236 0.867 –0.362 

f99ML 0.916 –0.193 0.839 –0.331 0.846 –0.393 

aAbbreviations of parameters can be looked up in Table 1. 
 
Table 4. Factor loadings for 1-D parameters AP (rotated, >0.5 in bold letters). Components and explained variances.  

 30 sec 60 sec 300 sec 

Parametersa 1 (48.04%) 2 (38.84%) 1 (40.19%) 2 (39.92%) 3 (11.19%) 1 (44.44%) 2 (43.3%) 

PathAP 0.950 –0.196 0.034 0.982 –0.039 –0.286 0.948 

VelAP 0.279 0.894 –0.019 –0.097 0.932 0.792 0.124 

RangeAP 0.950 0.096 0.162 0.939 –0.005 –0.165 0.943 

StdAP 0.968 –0.122 0.013 0.995 –0.056 –0.279 0.955 

RmsAP 0.972 –0.118 0.015 0.995 –0.051 –0.279 0.955 

FmeanAP –0.682 0.697 0.992 0.007 –0.102 0.906 –0.417 

f50AP x x 0.731 0.023 –0.396 0.742 –0.278 

f80AP –0.700 0.547 0.938 –0.183 –0.095 0.818 –0.415 

f95AP –0.643 0.716 0.942 0.182 0.171 0.813 –0.411 

f99AP –0.208 0.757 0.840 0.298 0.195 0.923 –0.329 

aAbbreviations of parameters can be looked up in Table 1. 
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Table 5. Factor loadings for 2-D parameters (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec 60 sec 300 sec 

Parametersa 1 (53.13%) 2 (22.14%) 3 (15.23%) 1 (41.32%) 2 (32.5%) 3 (14.05%) 1 (59.19%) 2 (18.48%) 3 (16.06%)

R 0.969 0.080 –0.009 0.902 0.371 –0.040 0.967 –0.116 0.024 

std r 0.953 0.144 0.084 0.960 –0.002 –0.015 0.935 –0.040 0.082 

Ah 0.903 0.372 0.130 0.396 0.786 0.194 0.961 0.111 0.080 

Length 0.179 0.928 0.125 –0.034 0.080 0.931 0.064 0.950 –0.176 

Turns –0.360 0.558 0.183 –0.597 –0.348 0.575 –0.427 0.842 0.037 

Beta 0.163 0.147 0.939 0.003 0.904 –0.077 0.057 –0.005 0.990 

std Beta 0.081 0.047 0.974 –0.003 0.925 –0.271 0.113 –0.042 0.987 

Ae 0.950 0.215 0.153 x x x 0.922 –0.034 0.005 

Ae sec 0.461 0.845 0.139 x x x 0.646 0.709 0.201 

std Ae sec 0.355 0.849 –0.108 0.102 0.725 0.387 0.805 0.508 0.169 

Ac 0.962 0.101 0.088 0.981 0.102 –0.026 0.982 –0.017 0.084 

Ac sec 0.983 0.123 0.078 0.949 0.280 0.004 0.993 0.005 0.047 

std Ac sec 0.957 0.103 0.091 0.970 0.024 0.037 0.947 –0.021 0.099 

aAbbreviations of parameters can be looked up in Table 1. 

 
is built by Beta and Std Beta (15% to 30% of total vari- 
ance), which can be interpreted as a global alignment of 
COP excursion. The third component comprises of Length, 
Turns and in some cases of Aesec and std Ae sec (14% to 
22% of total variance). It may be discerned as 2-dimen- 
sional COP path-length characteristics. Moreover, there 
are specific variable groupings. Remarkably, Ae sec and 
std Ae sec is not related to Ac sec and std Ac sec. In 30 s 
and 300 s, mean Ae sec and Std Ae sec both load to a 
different component as Ae itself, whereas the circular 
counterparts Ac, Ac sec and std Ac sec are grouped to- 
gether. 

3.5. Nonlinear Parameters ML 

In this variable set two components were extracted (Ta- 
ble 6). One component contains the entropy values Sa- 
EnML and SaEnvelML, as well as hML (30% to 45% of 
total variance). The component may be interpreted as a 
group of values indexing the irregularity of the under- 
lying time series. The second component is generated by 
the multiscale entropy value and cumWTML. These va- 
lues account for different time scales (different time 
scales in the entropy algorithm, and different frequency 
bands via wavelet transform). Hence, this component can 
be seen as a global nonlinear interpreter of the underly- 
ing time series in medial lateral direction. Despite this 
interpretation of the components slight differences in in- 
dividual loadings are preexisting. Referring to this hML 
in the 30 s set-up is loading to both components, and the  

same fact is given by SaEnML in 60 s and 300 s. 

3.6. Nonlinear Parameters AP 

In this nonlinear group (Table 7) two components are 
extracted. The factor loadings here are insofar compa- 
rable to ML as MseAP is related to cumWTAP. SaEnAP 
is attached to this component (40% to 60% of total vari- 
ance). The second component is roughly based on the 
entropy value SaEnvelAP and the Hurst coefficient hAP. 
However, AP case does not reveal an equal structure 
compared to the ML parameter set. The interpretation of 
the two components seems to be different. We will ac- 
count for the 300 s trial to have better discriminative 
power in factor configuration [7,24]. Therefore, the com- 
ponents are based on the same variables as in the ML set 
(MseAP and cumWTAP in the first component, the en- 
tropy values in the second one).  

4. DISCUSSION 

4.1. Effect of Sampling Duration on COP 
Parametrization 

Standing as still as possible on a plane and stable surface 
is a prime indicator for postural control and approves 
investigation of sway dynamics in research and in a cli- 
nical context. However, lack of standardization in static 
posturography experiments complicates the comparison 
of results between different studies. As a consequence 
this has led to contradictory outcomes which hamper 
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Table 6. Factor loadings for nonlinear parameters ML (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec 60 sec 300 sec 

Parametersa 1 (45.28%) 2 (30.51%) 1 (44.62%) 2 (33.67%) 1 (44.19%) 2 (40.11%) 

MseML –0.394 0.648 0.860 0.388 0.906 0.048 

SaEnML 0.905 –0.010 0.796 0.567 0.792 0.504 

SaEnvelML 0.860 0.055 0.070 0.567 0.003 0.708 

hML –0.679 0.508 –0.108 –0.925 –0.094 –0.890 

cumWTML –0.297 –0.919 –0.917 0.183 –0.868 0.084 

aAbbreviations of parameters can be looked up in Table 2. 
 
Table 7. Factor loadings for nonlinear parameters AP (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec 60 sec 300 sec 

Parametersa 1 (58.23%) 2 (24.96%) 1 (53.99%) 2 (22.23%) 1 (38.67%) 2 (35.59%) 

MseAP 0.960 0.000 0.940 0.111 0.889 0.267 

SaEnAP 0.963 0.040 0.918 0.235 0.537 0.805 

SaEnvelAP 0.408 0.758 0.102 0.969 x x 

hAP –0.321 0.819 –0.449 –0.321 0.204 –0.901 

cumWTAP –0.891 0.027 –0.873 –0.054 –0.892 0.071 

aAbbreviations of parameters can be looked up in Table 2. 
 
easy utility in clinical practice [6,29]. Longer sampling 
durations contain different type of information compared 
to shorter ones and therefore, this could emerge as a 
critical factor for obtaining reliable COP data [27]. This 
is partly underlined by the present study as sampling 
duration effects concerning particular parameters (Vel- 
ML, VelAP, Aesec, std Ae sec, SaEnML, hML, and Sa- 
EnAP) are revealed. VelML and VelAP display relations 
to frequency parameters when the sampling duration is 
300 s, which may be an effect due to better resolution in 
the low frequency range. Ae sec and std Ae sec seem to 
come along with area values as well as pathlength pa-
rameters in longer durations. The underlying computa- 
tion every second implies that the major axis of the el- 
lipse points to the COP displacement direction which 
carries more weight within longer durations. SaEnML 
and hML are loading consistently in 60 and 300 s and 
SaEnAP changes its affinity to one component with 300 s. 
One can speculate if longer durations serve as better es- 
timates for these values. With respect to traditional pa- 
rameters, longer sampling durations apparently enables 
higher reliability values within the COP data set [7,27]. 
In a recent paper Kirchner et al. (2012) have shown that 
longer recording times (≥60 s) seems to have more dis- 
criminative power for nonlinear measures than shorter 
ones [24]. Regarding frequency components of time se- 
ries longer sample durations come along with a decom- 
position of lower frequency contents in the data. Since 
COP excursions compose of 95% of the frequency power 
beneath 1 Hz, longer durations account for better resolu- 
tion [24,28]. The longer the sampling durations the less  

transient events have an impact on time series and the 
more extreme values could be detected as an appendix of 
the physiological process. A second prevailing problem 
in standardization in COP studies refers to the choice of 
posturographic parameters. It is well-established, that a 
set of parameters is needed to declare most of the vari- 
ance in COP data [21,23,30,34]. However, an influence 
of recording times on the choice of parameters within 
parametrization sets is left unknown. The present study 
aims the question whether sampling duration affects the 
choice of posturographic parameters, and hence delivers 
a straightforward framework for COP standardization. 
Considering the pattern of the five parameter groups in- 
side the different measurement times (30 s, 60 s, 300 s) a 
minor effect on parameter setting has been revealed. De- 
spite the aforementioned dependencies on sampling du- 
rations for some parameters, all in all, factor loadings 
show consistent pattern throughout all groupings. Hence, 
a similar set of parameters may be used in spite of dif- 
ferent sampling durations. We would like to point out 
that this result does not favor short sampling durations, 
but that even within shorter recording durations, explana- 
tion of COP data could be achieved through an equal set 
of parameters as it is proposed in longer measurement 
times. Short sampling durations may be useful for sub- 
jects who are unable to stand longer than 30 s. In this 
case more repetitions in quiet standing task are required 
to gain appropriate reliability of results [27]. Further- 
more, a set of nonlinear parameters has been included 
into a comprehensive analysis involving entropy values, 
DFA and wavelet transform. 
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4.2. Classification of Parameters 

A prime aspect of standardization involves the usage of a 
comprehensive set of descriptive posturographic para- 
meters [6]. There exists a great variety of COP descrip- 
tors and diverse recommendations on the usage of these 
parameters have been published. Rocchi et al. (2004) de- 
composed the COP data in a 1-dimensional and a 2-di- 
mensional group of variables and derived four and six 
parameters respectively via principal component analysis 
[21]. Designed according to this, the parameters are sub- 
divided into five groups which presumably share most of 
the information: 1-dimensional AP and ML, 2-dimen- 
sional, and nonlinear AP and ML. A feature of the pre- 
sent study is a separate variable block containing exclu- 
sively nonlinear values (sample entropy measures, com- 
plexity index and a value derived from the wavelet trans- 
form), for which calculation is more sophisticated. Com- 
pared to traditional variables, these measures are be- 
lieved to be more sensitive to diverse aspects of signal 
processing and are applied in order to understand phy- 
siological variability [32,33]. The several groups possess 
different components for which in each case one repre- 
sentative parameter has to be chosen. This study presents 
a parametrization framework and we make some propos- 
als to obtain particular posturographic parameters based 
on the predefined groups. One can speculate whether 
different configurations would reveal different compo- 
nent pattern. For instance, assembling linear and nonlin- 
ear parameters in one group may give an insight into the 
interactions of both variable characteristics [46]. How- 
ever, this approach had to be abandoned due to bad sam- 
pling adequacy results. Inside the 1-dimensional group a 
time domain and a frequency domain component is dis- 
closed. Time domain parameters comprise mostly vari- 
ables describing the magnitude of the time series. In this 
regard, posturographic measures that refer to just a few 
representative points among the entire time series should 
be avoided [27]. Here, outliers are responsible for great 
variances and hence low reliability. Other measures that 
explain the magnitude of the 1-dimensional time series 
had to be preferred, like std or rms (both variables are 
highly correlated). Indeed, latter variables are more ro- 
bust, even though, they present vulnerable values con- 
fronting outliers as well. Within the frequency domain 
we recommend F80, as far as [47] demonstrated F80 
having best statistical performance in opposition to F70, 
F85, F90 or F95. The 2-dimensional parameters display 
three components: the global area which covers the COP 
trace, the global alignment of the COP path, and the COP 
path-length characteristics. COP area may be highlighted 
using Ah, as this measure is the best estimate, followed 
by Ae and Ac. The global alignment should be deter- 
mined with the AP angle deviance beta, which has been 
earlier recommended by [21]. Concerning path-length  

characteristics, some authors underline the significance 
of COP velocity as the most reliable indicator of global 
COP migration [48,49]. As we mention before, this vari- 
able correlates perfectly with the COP length. The non- 
linear group is divided into two components. The choice 
of a regularity index is more difficult to arrange as this is 
strongly dependant on the underlying algorithm. We re- 
commend sample entropy SaEn introduced by [39] as it 
shows better relative consistency and is less sensitive to 
the lengths of data time series compared to other algo- 
rithms [24]. The nonlinear value encompassing different 
time scales is to our opinion achieved through cumWT 
values. Wavelet transform is able to decompose a signal 
into different frequency bands within different time 
scales which avoids the problem that comes along with 
Fast Fourier Transform-frequency and time resolution 
[24]. 

5. CONCLUSION 

We demonstrate that COP evaluation irrespective of sam- 
pling duration necessitates a set of diverse parameters to 
gain more variance of the data. Parameter sets are—de- 
spite of a few exceptions—uniformly invariant towards 
sampling durations and display a consistent factor load- 
ing pattern. 11 parameter groups are suggested for COP 
evaluation. A comprehensive analysis of posturography 
should imply descriptive measures regarding the 2-di- 
mensional COP trace and the decomposed 1-dimensional 
AP and ML time series to gain maximal explanation of 
variance in COP data: three global (2-dimensional) pa- 
rameters: 1) area; 2) alignment; 3) path-length character- 
istics, eight 1-dimensional parameters; 4) time domain AP; 
5) time domain ML; 6) frequency domain AP; 7) fre- 
quency domain ML; 8) irregularity parameter AP; 9) 
irregularity parameter ML; 10) nonlinear multi-timescale 
parameter AP; and 11) nonlinear multi-timescale parame- 
ter ML. This study suggests a framework for standardi- 
zation of parameter sets within these subgroups. Fur- 
thermore this study constitutes a critical position on 
studies that has just included a few parameters for COP 
description. 
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