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ABSTRACT 

In this paper we present a novel approach for brain 
surfacec characterization based on convexity and con- 
cavity analysis of cortical surface mesh. Initially, vo- 
lumetric Magnetic Resonance Images (MRI) data is 
processed to generate a discrete representation of cortical 
surface using low-level segmentation tools and Level- 
Sets method. Afterward, pipeline procedure for brain 
characterization/labeling is developed. The first cha- 
racterization method is based on discrete curvature 
classification. This is consists on estimating curvature 
information at each vertex in the cortical surface mesh. 
The second method is based on transforming the brain 
surface mesh into Digital Elevation Model (DEM), 
where each vertex is designed by its space coordinates 
and geometric measures related to a reference surface. 
In other word, it consists on analyzing the cortical 
surface as a topological map or an elevation map where 
the ridge or crest lines represent cortical gyri and 
valley lines represents sulci. The experimental results 
have shown the importance of these characterization 
methods for the detection of significant details related 
to the cortical surface. 
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1. INTRODUCTION 

Segmentation of anatomical structures of the intracranial 
cavity is a preliminary and main step for the most analy- 
sis procedures for brain MRI images. When, the brain sur- 
face called also cortical surface is viewed, a human brain 
appears as a volume with a highly wrinkled boundary sur- 
face having numerous long furrows. The term sulci (plu- 
ral of sulcus) is associated with these furrows and the 
term gyri (plural of gyrus) designates the regions between 
the sulci. Geometric modelling, mesh representation and 

mesh segmentation of anatomical structures in 3D im- 
ages are becoming an increasingly important processing 
step. Segmentation of cortical surface should reduce the 
mesh into meaningful, connected pieces. “Meaningful” 
implies that the partitioned areas are relevant to the ap- 
plication at hand. In addition, visualization of brain struc- 
tures such as brain surface, the segmentation allows the 
automatic identification and labeling of cortical sulci, which 
will be used in neuronavigation applications, understanding 
brain anatomy and function, neurosurgeon can easily track 
the features of interest. Also, segmented sulci from a brain 
mesh can serve as landmarks, which can be used to reg- 
ister the mesh with other brain meshes to make intra or 
inter-comparisons. For example, this could serve to measure 
brain growth and identify diseases. 

The most common characterization or labeling of a corti- 
cal mesh is into sulcal and gyral regions. The brain gyri 
can be defined as the top surfaces of the brain folds (Ridges) 
or as convex regions. The barin sulci can be defined as 
the area within the brain folds (valleys) or as concave regions. 
Segmentation of a cortical surface in terms of sulci and 
gyri can occur in several ways. Classification or partitioning 
of the cortical surface in concave and convex regions can 
reduce the size of the Laplacian matrix, in the case of 
spectral analysis [1]. Also, it is useful to avoid the risk of 
main memory congestion, improve rendering speed and 
reduce the computational cost of rendering surface process 
that to be instantaneous. 

In the last several years, many algorithms have been 
proposed in this growing area, offering several methods. 
For example, Rettmann’s works [2] involving the seg- 
mentation of sulci using watersheds. This work focuses 
on segmenting sulcale regions. This paper uses the geo- 
desic depth of mesh points in the sulci regions as the 
height function of the watershed algorithm. Also Mangan 
and Whitaker [3] proposed an approach using the water- 
shed algorithm for partitioning 3D surface meshes when 
total curvature is computed and used in segmentation. 
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We propose in this paper a pipeline steps for the problem 
of 3D mesh characterization of the brain in Magnetic 
Resonance Images. We have developed two techniques 
for cortical surface characterizing using discrete curvature 
computing and Digital Elevation Model (DEM). In the 
first technique, we segment the obtained surface meshes 
using a criteria based on discrete curvature. In the second 
technique, the cortical surface is labeled by transforming 
the surface mesh into Digital Elevation Model, where 
each vertex is designed by its space coordinates and 
geometric measures like orientation or altitude compared 
to a reference surface. In other word, it consists to analyzing 
the cortical surface as a topological map or an elevation 
map where the ridge lines represent cortical gyri and valley 
lines represents sulci. This last technique is done in three 
steps: first, extract cortical surface from volumetric brain 
MRI. Second, compute outer hull surface of brain using a 
simplified model of Level-Sets method. This outer hull 
surface will be used as a reference surface. Finally, Digital 
Elevation Model (DEM) is computed and cortical surface 
characterization/labeling is done. 

This paper is organized as follows: in the next section, 
we present a 3D brain surface extraction from volumetric 
MR images using Level-Sets approach. In Section 3, the 
cortical surface characterization using discrete curvature 
information is described. In Section 4, we shows cortical 
surface labeling using Digital Elevation Model. Then, in 
the Section 5, we present our preliminary results by ap- 
plying the proposed technique on a MRI images database. 
Finally, a discussion and a conclusion related to this work 
are given in Section 6. 

2. BRAIN SURFACE EXTRACTION 

Manually segmentation of volumetric images is a com- 
plex process which requires lot of time and much con- 
centration to achieve a good quality extraction of regions 
of interest. For this reason, it is generally interesting to 
deal with automatic segmentation algorithms. For this pur- 
pose, a range of methods including edge based, region 
based, and knowledge based have been proposed for semi- 
automatic or automatic detection of various anatomical 
brain structures. Recently, several attempts have been made 
to apply deformable models [4-6] to brain image analysis. 
Indeed, deformable models refer to a large class of com- 
puter vision methods and have proved to be successful 
segmentation techniques for a wide range of applications. 
Moreover, they constitute an appropriate framework for 
merging heterogeneous information and they provide a 
consistent geometrical representation suitable for a surface 
based analysis. 

In some particular Level-Sets [7], geometric deformable 
models provide an elegant solution for medical images 
processing [8-11]. In this paper, to extract brain surface 
from volumetric MRI images we will use a region-com- 

petition Level-Sets method as described in [12,13]. This 
algorithm overcomes classical Level-Sets problems by 
modulating the propagation term with a signed local 
statistical force, leading to a stable solution. 

We propose a method which operates on 3D MRI scans 
to extract brain surface. First, the data volume is pre-proc- 
essed with an anisotropic diffusion filtering method [14] 
to reduce noise and preserve edges. Then no-brain tissues 
are removed from the data volume using a simple thres- 
holding. Afterwards, a 3D binary morphological erosion 
and dilation process [15] are applied to get an initial 
brain surface and finally we refine brain region extraction 
by using region-based information into the Level-Sets 
framework. These computational steps are illustrated in 
Figure 1. 

The aim of the third step is to extract “exactly” the 
cerebral cortex surface representing the interface between 
the Gray Matter (GM) and the Cerebrospinal fluid (CSF). 
For this reason, we propose to use a deformable model 
algorithm based on the level set technique. We propose 
also to drive our model by region information instead 
boundary information, because it is more robust. The proc- 
ess requires an initialization step and speed function. 
Theoretically, the Level-Set snake is defined as the zero 
Level-Set of an implicit function   defined on the entire 
volume. This function will change over the time accord- 
ing to the speed term F. The evolution of   is defined 
as in [7] via a partial differential equation: 

F
t

 
 


                     (1) 

The classical speed term is defined as in [16,17]: 

  F g I v k                   (2) 

Speed term is coupled with the image data through a 
multiplicative stopping term  g I . The curvature k 
and the constant force v propagate curve near the region 
of interest surface. 

In this work, we use a simplified version of the Level- 
sets formulation [13]. The model shrinks when the boundary 

 

 

Figure 1. Proposed method for brain segmentation from 3D 
MRI data. 
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encloses parts of the background, and grows when the 
boundary is inside the brain region. Here, the speed function 
usually consists in a combination of two terms: curvature 
term for smoothness and data term for evolution. The 
snake evolves using the following equation: 

   1D x k
t

   
    


       (3) 

where D is a data term that forces the model to expand or 
contract toward desirable features in the input 3D MRI 
data. By making D positive in desired regions or negative in 
undesired regions. The term k is the means curvature of 
the surface, which forces the surface to have less area 
(and remain smooth), and  0 ,1   is a free parameter 
that controls the degree of smoothness. 

The speed function depends on the grayscale value 
input MRI data denoted D at the point x: 

 D I I T              (4) 

where T controls the brightness of the region to be seg-
mented and   controls the range of grayscale values 
around T that could be considered inside the object. A 
model situated on voxels with grayscale values in the in- 
terval T   will expand to enclose that voxel, whereas 
a model situated on grayscale values outside that interval 
will contract to exclude that voxel. 

As represented in Figure 2, T describes the central 
intensity value of the region to be segmented, and   
describes the intensity deviation around T that is a part of 
the desired segmentation. Therefore if a voxel has an 
intensity value within the T   range, the model will 
expand; otherwise it will contract. 

Consequently, the three user parameters that need to 
be specified for the segmentation are T,   and  . The 
initial surface obtained after pre-processing must be trans- 
formed into a signed distance [18] for the Level-Sets 
function is also required (Figure 3). The Level-Sets it- 
eration can be terminated once   has converged, or after a 
certain number of iterations. 

3. DISCRETE CURVATURE 
CLASSIFICATION 

Curvatures can also be used as a height measure. The 
idea is that ridges and valleys have opposite signed curva- 
tures, and the cortical surface is naturally divided between 
crest lines or ridges (gyri) and valley (sulci). For this reason, 
we compute gaussian curvature, mean curvature and the 
two principal curvatures, and later use them to classify 
the surface type of vertices. The major complication is that 
curvature cannot be directly evaluated for triangle meshes 
because it is mathematically defined for smooth surfaces 
only. However, discrete differential geometry operators have 
been developed which can estimate curvatures on train- 
gulated manifolds [19,20]. We apply here some operators, 

which are derived recently by Meyer et al. [21], to esti- 
mate curvature information at each vertex in the mesh. 
We denote H and G, the Mean and the Gaussian discrete 
curvature operators. k1 et k2 the two principal curvatures 
operators. We calculate these operators according to the 
following formulae: 

        
1

cot cot
2i ij ijj N i

h x x x
A

 


  i j  (5) 

Mean curvature 

   1

2i iH x h x             (6) 

 

 

Figure 2. The speed term from [13]. 
 

 

Figure 3. Cortical surface obtained after 3D segmentation of 
volumetric brain MR Images. (a) Initial cerebral cortex surface; 
(b) Shows 2D projection into 2D brain slice of initial surface; (c) 
Cerebral cortex surface obtained using 3D Level- Sets method; (b) 
2D projection of brain refined surface into 2D brain slice. 
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Gaussian curvature 

  1
2

f

jj
iG x

A




 



          (7) 

As shown in Figure 4, ij  and ij  are the two an- 
gles opposite to the edge in the two triangles sharing the 
edge  ,i jx x , j  is the angle of the  face at the vertex 

i

thj
x  and f  denotes the number of faces around this vertex. 
The two principal curvatures are expressed as shown by 
the following equations: 

     1 i ik x H x x   i           (8) 

   2 ik H x x   i             (9) 

where 

     2
i i ix H x G x            (10) 

by examining discrete curvatures on triangular meshes, 
one can achieve the following analysis: 
 Concave regions/valleys (sulci): 2 0k   and 1 0  k 

 Convex regions/crest lines (gyrus): 0k  and 0k  1 2

 If the H value is negative, then we have a convex 
behavior (gyri), otherwise it is concave (sulci). 

4. DIGITAL ELEVATION MODEL (DEM) 

After the text edit has been completed, the paper is ready 
for the template. Duplicate the template file by using the 
Save as command, and use the naming convention pre- 
scribed by your journal for the name of your paper. In 
this newly created file, highlight all of the contents and 
import your prepared text file. You are now ready to style 
your paper. 

In this second characterization method, we present a 
pipeline steps for cortical surface mesh labeling. Our 

 

 

Figure 4. 1-ring neighbors and angles opposite to an edge. 

method is based on transforming the brain surface mesh 
into Digital Elevation Model (DEM), where each vertex 
is designed by its space coordinated and geometric mea- 
sures like orientation or altitude related to a reference sur- 
face. In other word, it consists to analyzing the cortical 
surface as a topological map or an elevation map where 
the ridge lines represent cortical gyri and valley lines 
represents sulci. The cortical surface characterization pro- 
cess is done in two steps: first, compute outer hull surface 
of brain using a simplified model of Level-Sets method. 
This outer hull surface will be used as a reference surface. 
Finally, Digital Elevation Model (DEM) is computed and 
cortical surface characterrization/labeling is done. 

4.1. Outer Hall Surface Extraction 

An outer hull surface, which wraps the brain surface, is 
computed using a simplified Level-Set model. This model 
is given as follows: 

 

0, 1

, , ,0

V V
t
x y z d

 



      
  

        (11) 

where V = +1 is a coefficient that controls the speed and 
direction of deformation (expands). This constant deforma- 
tion plays the same role as the pressure force. This Level- 
sets model is implemented using entropy condition ori- 
ginally proposed in the area of interface propagation by 
Sethian [23,24]. 

After his stage, we have two discrete meshes surfaces: 
cortical surface denoted S and outer hull surface denoted 

 as show in Figures 5 and 6. 'S
 

 

Figure 5. Geometric measures for characterizing the cortical 
surface denoted S. Minimum distance denoted d, the polar 
angle α and the polar angle γ. 
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Figure 6. Cortical surface (left) and 2 views of outer hull surface (middle and right). 
 

4.2. Digital Elevation Model Computing 

We have proposed to define three geometric measures 
for characterizing the cortical surface as shown on Fig- 
ure 5. These measures are assigned to each cortical sur- 
face vertex. The first measure is the minimum distance 
denoted between vertex on the cortical surface and the outer 
hull surface. The second measure is the polar angle   
between the normal vector related to vertex P on cortical 
surface and the vector . Finally, the third measure is 
the polar angle 

PQ
  between the normal vector related to 

vertex P on the cortical surface and the normal vector 
related to vertex Q on the outer hull surface. Where Q is 
the nearest vertex belonging to the outer surface  to 
vertex P on the cortical surface S. These measures are 
given as following: 

'S

 OPEN ACCESS 

4.2.1. Elevation of Vertex d 
Each vertex of the cortical surface receives the minimum 
distance that separates it from the outer surface. A vertex 
from cortical surface will be considered belonging to sulci 
or gyri according to its height and according to pre-fixed 
threshold. 

4.2.2. Polar Angle α 
The polar angle α is the angle between the normal vector 
N  related to vertex P on cortical surface and the vector 
PQ . 

4.2.3. Polar Angle γ 
The polar angle γ is the angle between the normal vector 
N  related to vertex P on the cortical surface and the 
normal vector  related to vertex Q on the outer hull 'N
surface. Where Q is the nearest vertex belonging to the 
outer surface  to vertex P on the cortical surface S. 'S

5. EXPERIMENTS RESULTS 

We have performed a series of experiments on brain MR 
images from MeDEISA database [22]. Results of two 
different labeling methods of cortical surface are given. 
The mesh that represents cortical brain was created from 

T1-weighted MRI images using level-sets method. Re- 
sults of cortical surface characterization by curvature classi- 
fication are depicted in Figure 7. Discrete curvatures are 
used as a height measure. So that, gyri are considered as 
ridges and sulci are considered as basins which have op- 
posite signed curvatures. Each label corresponds to a dif- 
ferent color for each curvature operator. Then, results of 
cortical surface characterization using geometric meas- 
ures computed from brain surface and outer haul surface 
are depicted in Figures 8 and 9: 
 Figure 8 shows the classification result of the cortical 

surface into gyri and sulci using elevation of vertex. 
 Figure 9 left shows the distribution of polar angle   

on the cortical surface, when gyri and sulci are very dis- 
tinguishable and are divided into two different classes. 

 Figure 9 right shows the distribution of polar angle   
on the cortical surface, when gyri and sulci are very dis- 
tinguishable and are divided into two different classes. 

Through this classification process it will be easy to 
distinguish between gyri that are the surfaces top of the 
brain folds (ridges), and sulci that are the surface within 
the brain folds (basins). Each label corresponds to a dif- 
ferent color for each geometric measure. An inherent diffi- 
cultly in the interpretation of brain characterization is that 
there is no definition of what is correct. Some works use 
expert points of view from neurologists on where sulci 
and gyri exist. However, visual results given by Figures 
7-9 can be interpreted given the idea that sulci are the 
surfaces within the brain folds (basins) and gyri are the 
surfaces at the top of the brain folds (ridges). 

6. CONCLUSIONS 

This paper proposes novel methods to decompose cortical 
surface represented by triangle meshes into separate parts 
based sulci and gyri using geometric measures computed 
from cortical surface and outer hull surface of the brain. 
Specially, the first approach use discrete curvature as height 
in order to distinguish brain sulci from gyru. The second 
approach is based on transforming the brain surface mesh 
into Digital Elevation Model (DEM), where each vertex 



K. Aloui et al. / J. Biomedical Science and Engineering 5 (2012) 133-140 138 

 

 
(a)                                              (b) 

 
(c)                                            (d) 

 
(c)                                              (d) 

Figure 7. Corticale surface segmentation using discrete curvature classification into sulci and gyri. (a) Principal 
curvature k1; (b) Principal curvature k1 after thresholding; (c) Principal curvature k2; (b) Principal curvature k2 af-
ter thresholding; (a) Mean curavature H; (b) Mean curvature H after thresholding. 

 
is designed by its space coordinates and geometric mea- 
sures like polar angle α, polar angle γ and elevation of ver- 
tex d related to a reference surface. After that we will have, 
a cortical surface as a topological map, when gyri and sulci 
are very distinguishable and are divided into two different 

classes. 
Visually appealing results can be interpreted given the 

idea that that sulci are the surfaces within the brain folds 
(basins) and gyri are the surfaces at the top of the brain 
folds (ridges). Thus, the prospects of this work would be  
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Figure 8. (Left) DEN computed from the altitude or the minimum distance for each vertex on the 
cortical surface that separates it from the outer hull surface. (Right) DEN after thresholding of vertex 
elevation on cortical surface. 

 

 

Figure 9. (Left) Distribution of polar angle α on the cortical surface. (Right) the distribution of polar 
angle γ on the cortical surface. 

 
to use our approach to address studies on asymmetry of 
brain anatomy, the inter-individual variability of brain 
anatomy, neurological dimension of certain mental diseases 
such as autism and schizophrenia, or, in the context of 
longitudinal studies on the characterization of brain de- 
velopment for healthy or pathological subject. 
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