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ABSTRACT 

Non invasive ultrasound-based imaging systems are 
being more commonly used in clinical bio-microscopy 
applications for both ex vivo and in vivo analysis of 
tissue pathological and physiological states. These 
modalities usually employ high-frequency ultrasound 
systems to overcome spatial resolution limits of con- 
ventional clinical diagnostic approaches. Biological 
tissues are non continuous, non homogeneous and 
exhibit a multiscale organization from the sub-cellu- 
lar level (1 mm) to the organ level (1 cm). When 
the ultrasonic wavelength used to probe the tissues 
becomes comparable with the tissue’s microstructure 
scale, the propagation and reflection of ultrasound 
waves cannot be fully interpreted employing classical 
models developed within the continuum assumption. 
In this study, we present a multiscale model for ana- 
lyzing the mechanical response of a non-continuum 
double-layer system exposed to an ultrasound source. 
The model is developed within the framework of the 
Doublet Mechanics theory and can be applied to the 
non-invasive analysis of complex biological tissues. 
 
Keywords: Nanomechanics; Doublet Mechanics;  
Ultrasound; Spectroscopy; Biopsy; Microscopic  
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1. INTRODUCTION 

In the last few years, there has been an increased interest 
to extend the limits of conventional clinical approaches 
to the level of microscopic resolution [1-5]. The goal 
here is to optimize the imaging of small tissue structures 
and, in general, to obtain information not available from 
the corresponding conventional macroscale applications. 

The ability to quantitatively and non invasively differen- 
tiate living tissues based upon their biological and 
physical properties would enable major breakthroughs in 
the early detection and diagnosis of diseases and in 
monitoring therapeutic effects. 

While surgical biopsy remains the ‘gold standard’ for 
the clinical screening of tissues and the assessment of 
pathologic conditions, there is a concerted effort to de- 
velop new imaging modalities that non-invasively visu- 
alize tissues providing information previously only 
available from biopsy [6-8]. Morphologic presentation 
of tissues together with the microbiologic, immunologic 
and molecular analysis are still critical for determining 
personalized medical treatments. However, the analysis 
of surgical biopsies suffers from being inherently opera- 
tor dependent and, ultimately, the quality of diagnoses is 
entrusted with the pathologist’s experience and knowl- 
edge [9-11]. Availability of quantitative imaging tech- 
niques capable of probing tissues at the microscale level 
may improve the accuracy of the diagnosis of biological 
samples and, most importantly, provide a new non-in- 
vasive means for the assessment of living tissues in situ. 

Recent developments in the fields of optics, nuclear 
medicine, computed tomography, magnetic resonance 
and ultrasound have suggested the feasibility of obtain- 
ing tissue information at the micrometer-scale level with 
high accuracy, sensitivity and contrast-to-noise ratios. 
For example, optical in vivo biopsy is a growing area in 
optical computed tomography applications, which 
promises the assessment of tissue morphology and cell 
function as well as the detection of early-stage tissue 
abnormalities associated with diseases [7,12]. Similarly, 
new magnetic resonance microscopy techniques now 
permit imaging tissue’s fine architecture in applications 
that range from assessing neural tissues [13] to imaging 
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angiogenesis and gene expression in cancers [14,15]. 
Among the various imaging techniques, ultrasound 
methods have always offered distinctive characteristics, 
which make them particularly suitable for clinical 
screening of tissues. These include: cost-effectiveness, 
portability, non-invasiveness, and the ability to provide 
in vivo tissue clinical information in real-time, at high 
resolutions and relatively large depths. 

Although the first acoustic microscope was proposed 
in the early 1930s [16], it was only in the late 1980s that 
the use of pulse-echo imaging systems operating at fre- 
quencies higher than the frequency range conventionally 
used in diagnostic imaging began to be experimented [17, 
18]. Today, the ultrasonic visualization of tissues at mi- 
croscopic resolution is usually referred to in the litera- 
ture as ultrasound biomicroscopy or, more simply, high 
frequency ultrasound [4,6]. Important clinical applica- 
tions of high frequency ultrasound techniques include: 
ophthalmology [19], dermatology [20], intravascular 
ultrasound [18], cartilage imaging [21], and obstetrics 
[22]. While the imaging performance of the ultrasound 
system is ultimately determined by the frequency of the 
ultrasonic transducer, its geometry and the tissue acous- 
tic properties, the choice of the imaging system to be 
used in a given application is highly dependent on the 
nature of the application itself. For example, ophthalmic 
applications usually employ transducers with frequent- 
cies in the 40 to 60 MHz range [19]. These are used for 
imaging glaucoma, scleral and corneal diseases, and 
melanomas of the iris among the various clinical appli- 
cations. The typical frequency range for investigating 
skin and assess skin tumor markers is from 20 to 40 
MHz [20], with possible extension up to 100 MHz [23]. 
For intravascular applications, ultrasound systems usu-
ally operate in the range of 20 to 30 MHz, allowing high 
resolution imaging of vessel walls and coronary arteries 
[24]. Finally, a new and promising application of high 
frequency ultrasound systems relates to the development 
of microscopic elasticity imaging and intravascular 
elastography imaging techniques, which use pre- and 
post-excitation high frequency ultrasound data to recon- 
struct maps of the microscopic mechanical properties of 
tissues [25-28]. 

A common denominator for all the aforementioned ul- 
trasound applications is the use of high-frequency sys- 
tems to probe the tissues so that high spatial resolutions 
can be achieved. However, biological tissues are non 
continuous, non homogeneous and exhibit a multiscale 
organization from the sub-cellular level (1 mm) to the 
organ level (1 cm). When the ultrasonic wavelength 
becomes comparable with the tissue’s microstructure 
scale, the propagation and reflection of ultrasound waves 
cannot be fully interpreted employing classical models 

developed within the continuum assumption. In these 
regards, we have recently proposed the use of ultra- 
sound-based Non Destructive Evaluation (NDE) tech- 
niques in conjunction with multiscale mathematical 
models as an integrated tool to automatically screen tis- 
sue biopsy specimens with high accuracy and resolution 
[29-32]. Biopsy samples are exposed to an ultrasound 
source and the tissue response and physical properties 
can be interpreted employing multiscale mathematical 
models. Normal and malignant tissues are expected to 
provide different responses that could be readily de- 
tected. 

Several techniques have been proposed to model the 
mechanical behavior of materials at the nano/micro scale. 
This is the case for instance of the Lattice Dynamics (LD) 
and Molecular Dynamics [33], non-local Micromechan-
ics theories of the differential (CGT) [34] and integral 
type (INT) [35-36]. In addition to these somehow clas- 
sical approaches, the theory of Doublet Mechanics (DM) 
has been developed over the last twenty years as a mul- 
tiscale field theory that allows to bridge the gap between 
Continuum Mechanics (CM) and discrete meso scale 
models without contradiction [37-39]. 

In this paper, we develop a mathematical model based 
on the DM approach to study the response of multilay- 
ered non continuum solids to ultrasounds. While the 
model is formulated for the analysis of biopsy samples, 
it may also be applied to the detection of malignant tu- 
mors developing in natural multi-layered systems such 
as the skin or the eye and might become an important 
tool for the further development of novel high frequency 
ultrasound elastography techniques. 

2. A LINEAR ELASTICITY BOUNDARY 
VALUE PROBLEM WITHIN DM 

The theory of Doublet Mechanics is a multi-scale theory 
which recapitulates Lattice Dynamics at the nanoscale 
limit and is fully compatible with the continuum me- 
chanics framework at the macroscale limit. In the pre- 
sent paragraph, the governing equations for a linear elas- 
ticity problem are briefly recapitulated. A more detailed 
description can be found in [37-39]. 

Within the DM framework, a solid is considered as a 
spatial array of points (nodes) at finite distances. Any 
pair of adjacent nodes is termed a doublet comprising a 
reference node X and a node Yα located at a separation 
distance o

  and aligned along the doublet axis with 
unit vector o

  (Figure 1). A doublet is univocally 
identified by specifying its reference node (X), 
orientation ( o

 ) and separation distance ( o
 ). The 

superscript o means initial configuration. The node X is 
surrounded by other m adjacent nodes, which form a 
number m of doublets with corresponding Yα nodes.  

Copyright © 2011 SciRes.                                                                             JBiSE 
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  

Yα X 

 

Figure 1. A doublet comprising a reference 
node X and a node Y, at a separation distance 
η aligned along the doublet axis indicated by 
the unit vector τ. 

 
Such a set of nodes constitutes a bundle for the reference 
node X. If the nodes are arranged as to form one of the 
fourteen Bravais lattices, m would coincide with the 
coordination number of the lattice and the internodal 
distances would coincide with the lattice constants. 

Under externally applied loads, the nodes of a doublet 
are displaced giving rise to microdisplacements and 
microstrains. In general, if the node are separated along 

o
 , the doublet undergoes an elongation  , if the 

nodes are rotated about o
  or separated normally to 

o
 , the doublet undergoes a torsion μα or a shear γα, 

respectively. In the sequel, it is assumed that each 
doublet can only undergo elongations (central interac- 
tions) which would be associated with the build up of a 
microstress pα along o

 . 
An orthogonal Cartesian frame of reference is intro- 

duced with unit vectors ei(i = 1, 2, 3), and each node X is 
associated to a position vector x = xiei, where the clas- 
sical convention of the repeated Roman indices is used. 
A displacement vector uα(x; t) can be introduced and for 
each doublet; the increment displacement vector Δuα(x; t) 
can be defined as the difference between the displace- 
ment of the node γα and that of the node X at time t 

      ,o o
a Y X t      u u u u x u x  , t   (1) 

As in linear elasticity, it is assumed that the relative 
displacement ( ; )a tu x  is small compared to the dou- 
blet separation distance  ( ; )o o

a t   u x  so that 
the initial and final configuration of the system can be 
as- sumed to coincide. Expanding a  in a convergent 
Taylor series in a neighborhood of the reference point X, 
it follows, in scalar form 

u
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where each of the subscript 1, ,k k  runs through 1 to 
3. The order M at which the series is truncated defines 
the degree of approximation employed by the DM theory. 
For M = 1, the continuum theory of elasticity is recov- 
ered. 

The small elongation of the doublet   can be de- 
fined as 

o
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
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               (3) 

and, using (2), Equation (3) can be rephrased as 
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which can be interpreted as the compatibility equation 
within the linear DM theory. The relationship between 
the doublet microstress pa and microstrain   is given 
as 

p A                   (5) 

in the case of linear and homogeneous internodal central 
interactions. Equation (5) can be interpreted as the con- 
stitutive equation in the linear and homogeneous DM 
theory, and Aαβ is the matrix of the homogeneous micro 
modulii of the doublet. Finally, static equilibrium is im- 
posed as 

 
   

1

1

1
/2

1

1 1

1 0
! ...

1,2,3;

io o

o
m M

k k i
k k

p
F

x x

i




 


 
 


 







 


;  

 



 
 (6) 

where Fi are the scalar components of the volume force 
F. The boundary conditions expressed in terms of 
stresses take the form 
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where nkr are the scalar components of the unit vector n 
normal to the body surface, and the subscript r = 1, , 
M – 1 for M ≥ 2 and r = 1 for M = 1. Ti are the scalar 
components of the vector force T. The term dr1 is the 
Kronecker delta function. The Equations (4), (5) and (6) 
together with (7) give a boundary value problem within 
DM for a linear elastic body. Notice that Equations (6) 
and (7) are general to the extent that they are written as a 
function of the doublet unit vectors 



i . 
The relationship between the micro- and the macro- 

stresses has been derived in [37] as 
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at a generic level of approximation M. 
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3. ULTRASOUND WAVE PROPAGATION 
IN BIOLOGICAL TISSUES 

A thin slice of biological tissue is considered (histology- 
cal sample) embedded between two glass slides. An aux- 
iliary continuous layer is placed upon the biological slice, 
as in Figure 2 to simulate a multilayered complex tissue 
system. An ultrasound transducer is used to probe this 
sandwich-like structure, generating mechanical waves of 
both shear and longitudinal type. The initial train of 
waves (0) travels unperturbed in the θ0 direction (Figure 
3, see also Appendix A). Upon the interaction of (0) with 
the first glass layer four more waves are generated (as- 
suming specular reflection): two are forward scattered 
into the system (waves (3) and (4)) and two are back 
scattered into the glass substrate (waves (1) and (2)). 
Similarly, other waves are generated at the interface be- 
tween the auxiliary layer and the tissue layer at the in- 
terface between the tissue and the second glass layer. 
Under the approximation of neglecting multiple reflec- 
tions higher than the second order, the total number of 
waves travelling within the system is thirteen for the 
present configuration (Figure 3). Theoretically, a com- 
parison between the interacting waves at each interface 
would allow to deduce the reflection coefficients, given 
by the ratio between the amplitudes of the incident and 
reflecting waves. 

In the sequel, the DM theory is used to model the het- 
erogeneous biological tissue and the auxiliary continu- 
ous layer, for which a scaleless approximation (M = 1: 
Continuum Mechanics) would be sufficient. In particular, 
the reflection coefficients are derived. Details of these 
derivations are given in Appendix A. According to the 
theory derived in this study, the reflection coefficient at 
the first interface, R1, is a complex function of the inter- 
nodal distance η, the doublets configuration embodied 
by t’s, the elastic microconstants Aαβ. Thus, estimation of 
the reflection coefficients can provide important infor- 
mation regarding the tissue microstructure and me- 
chanical properties. Since different tissues are expected 
to exhibit different responses, spectral analysis of the 
reflection coefficients may allow differentiation between 
different tissue types as well as monitoring changes oc- 
curring in the microstructural properties of a tissue due 
to pathology. In the next section, we analyze two distinc- 
tive cases where the application of the developed theory 
is used for the ultrasonic characterization of a biological 
tissue: a mono-layer model with a single tissue, and a 
double-layer model comprising a biological slice and an 
auxiliary continuum layer. 

3.1. The Mono-Layer Model 

In the limit that the thickness of the auxiliary layer is 
going to zero (h1  0) a mono-layer, discrete model is  

 

Figure 2. The sandwhich like structure comprising an interme- 
diate continuum layer, a biological discrete tissue substrate and 
two external glass dishes. The system is feasible to be tested 
through ultrasounds.  
 

 

Figure 3. Elastic waves propagating in the system. 
 
obtained as in [29-32]. Figure 4 shows a plot of the re- 
flection coefficient R1 as a function of the frequency f of 
the ultrasound transducer. For comparison, a plot of the 
reflection coefficient as obtained using the CM theory as 
opposed to the DM theory is also shown. These plots are 
obtained by imposing η = 0, λ =1.805 GPa, μ = 0.04875 
GPa, and the DM solution, with η = 5 μm, and A11 = 2 
GPa, A44 = 0.195 GPa as derived using λ and μ in equa- 
tion (15). These parameters are set based on previous 
studies retrievable in the literature [29-32,40]. These 
results show that at low frequencies, smaller than about 
10 MHz, the CM and DM solutions tend to overlap 
without any significant difference; whereas at higher 
frequencies, significant discrepancies emerge. This may 
be explained by observing that, at low frequencies, the 
probing waves have a finite length that is greater than 
the characteristic length scale of the system η (tens of 
microns against η = 5 μm). Consequently the micro 
structure of the layer is averaged out within the ultra- 
sonic wavelength, which ultimately limits the spatial 
resolution, and the predictions of CM and DM coincide.  

Copyright © 2011 SciRes.                                                                             JBiSE 
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Figure 4. The reflection coefficient R1 shown against the fre- 
quency f and comparison between the CM solution. 
 
Notice that η has the same order of magnitude of a cell 
size. Conversely, as f increases, and the ultrasonic wave- 
lengths become comparable to the scale length of the 
small components of the material (cells), the difference 
between the discrete and continuum approach becomes 
more and more evident. 

The relation between the angular frequency ω, the 
wave number ki and the phase velocity ci in the frame- 
work of DM is embodied by the quite complex equations 
(18) (Appendix A). Interestingly, these relations reduce 
to the non scale, classical dispersion ones (where simple 
relations ki = ω/ci, ci = (E/ρ)1/2 hold true) via two differ- 
ent assumptions: 1) the constituent granules of the bio- 
logical substrate are material points whose sizes are in- 
finitesimal η = 0 and all the waves may have arbitrary 
but finite length, 2) the constituent particles of the bio- 
logical substrate may have an arbitrary but finite size  
(η > 0) and all the waves have an infinite length (k  0). 
The diagrams of Figure 4 show the occurrence of a 
number of minima and maxima. These can be explained 
considering phenomena of interference occurring at each 
interface between the reflecting and transmitting waves. 

3.2. The Double Layer Model 

Herein the results stemming out from the double layer 
model are presented, where both h1 and h2 are different 
from zero. For the analysis, it is assumed that the auxil- 
iary layer is made up of a polymeric material commonly 
used in biomedical applications (Table 1). The biologi- 
cal tissue has the properties listed in Table 2. These pa- 
rameters are set based on previous studies retrievable in 
literature [29-32,40]. The CM and DM frameworks are 
used in describing the auxiliary and biological substrate, 
respectively. In Figures from 5 to 9, the reflection spec- 
tra of the system under study are shown for different 
auxiliary layer materials, with varying Young’s modulus 
E and for wave frequencies ranging from 4 to 12 MHz. It 
can be concluded that as E increases, the number of  

Table 1. The CM properties of the intermediate layer. 

Material 
ρ 

[103 kg/m3]
E 

[GPa] 
ν 

h 
[mm]

PDMS 0.97 4.8  10–4 0.49 0.133

Polyurethane 1.10 5.3  10–3 0.48 0.133

Polyethylene 0.955 0.70 0.41 0.133

Polypropylene 0.91 1.30 0.42 0.133

Polycarbonate 1.23 2.40 0.41 0.133

 
Table 2. The CM properties of the glass substrates, and the 
DM parameters of the biological tissue. 

Material 
ρ 

[103 kg/m3]
E 

[GPa] 
ν 

h 
[mm]

 

CROWN glass 2.50 71.8 0.23 0.133
 

Material 
ρ 

[103 kg/m3]
A11 

[GPa] 
A44 

[GPa] 
h 

[mm]
η 

[mm]

Bio tissue 0.95 2.20 0.36 0.133 5.6 

 
minima decreases within the frequency range considered, 
as it does the difference in frequency between two suc- 
cessive minima. Most importantly, at high values of E, 
the minimum values of the reflection coefficient do not 
vary significantly. Since increased tissue stiffness is of- 
ten associated with changes in tissue pathology, spectral 
analysis of reflection coefficients as interpreted within 
the DM theory may contain important markers for the 
assessment of a tissue state and its changes due to the 
onset of diseases. These simulations also show that ma- 
terials with a high compliances, such as PDMS (Figure 
5), generate a very complex response, with several min- 
ima. Such complexity would spoil the reflection signal, 
inducing more noise and making more difficult the ac- 
curate interpretation of the spectra. Stiffer intermediate 
layers would be more convenient. Additional simulation 
(Figure 10) shows the effects of varying the Young’s 
modulus (ΔE = 10%) about the mean value for the 
Polyethylene case. As E increases, the spectrum under- 
goes a rigid translation towards higher frequencies (see 
Table 3 for the complete list of values). 

The effect of thickness h1 of the continuum, interme- 
diate layer has been also investigated. Starting from a 
thickness of 134 μm, a 10% variation has been imposed 
(Polyethylene, Δh = 10%) and the reflection spectra 
evaluated. Results are shown in Figure 11 and Table 4. 
It is observed that as h1 increases, the spectra rigidly 
move towards lower frequencies, with no change in the 
number of minima. The thickness h1 also affects the 
damping of the system, the thicker is the intermediate 
layer and the stronger is the attenuation for the spectra.  

Copyright © 2011 SciRes.                                                                             JBiSE 
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Figure 5. The reflection spectrum of the system assuming that 
the intermediate layer is PDMS. 
 

 

Figure 6. The reflection spectrum of the system assuming that 
the intermediate layer is PU. 
 

 

Figure 7. The reflection spectrum of the system assuming that 
the intermediate layer is PE. 

 

Figure 8. The reflection spectrum of the system assuming that 
the intermediate layer is PP. 
 

 

Figure 9. The reflection spectrum of the system assuming that 
the intermediate layer is PC. 
 

 

Figure 10. The effect of the variation of the Young’s modulus 
 upon the overall response of the system. E    
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Table 3. Characterist minima points for different plastic substrates. 

PDMS  PU PE PP  PC 

f [MHz] R  f [MHz] R f [MHz] R f [MHz] R  f [MHz] R 

4.595 0.333  4.534 0.334 5.348 0.224 6.301 0.342  6.602 10.418 

4.946 0.282  5.269 0.186 8.031 0.487 9.930 0.322  0.181 0.187 

5.298 0.311  6.005 0.192 10.681 0.347      

5.650 0.391  6.739 0.363        

6.002 0.411  7.457 0.684        

6.354 0.409  8.109 0.921        

6.705 0.446  8.456 0.949        

7.055 0.510  9.091 0.738        

7.405 0.677  9.806 0.431        

7.753 0.835  10.538 0.235        

8.101 0.940  11.274 0.211        

8.501 0.946  12.009 0.347        

8.847 0.850           

9.193 0.710           

9.543 0.578           

9.894 0.421           

10.246 0.327           

10.597 0.252           

10.949 0.200           

11.300 0.240           

11.652 0.315           

12.003 0.365           

 
Table 4. Characterist minima points for different plastic substrates. 

Initial E +10% –10% 
min 

1 2 3 1 2 3 1 2 3 

f [MHz] 5.348 8.031 10.681 5.514 8.214 10.919 5.160 7.883 10.315 

R 0.224 0.487 0.347 0.252 0.445 0.415 0.203 0.503 0.221 

 
Notice that the thickness h1 and the stiffness E have op- 
posite effects. 

4. DISCUSSIONS 

In this study, we have presented a multiscale model for 
analyzing the mechanical response of a non-continuum 
system exposed to an ultrasound source. The proposed 
model may be interpreted as a quantitative, non-invasive 
ultrasound spectroscopy method, which is based on the 
analysis of the reflection coefficients as a function of the 

ultrasonic wavelength (or conversely the frequency) for 
estimating changes in the tissue microstructure and me- 
chanical properties. The model was developed within the 
framework of the Doublet Mechanics theory, which led 
to the determination of the reflection coefficients as a 
function of the internodal distance, the doublets con- 
figuration and the elastic microconstants. In its present 
form, the model does not take into consideration scatter- 
ing effects at the various interfaces or within the tissue 
layer. Coupling this effect with the DM theory would  
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Figure 11. The effect of the variation of the intermediate layer 
thickness h1 upon the overall response of the system. 
 
require large mathematical efforts, which are considered 
outside the scope of the presented study and left for fu- 
ture investigations. In Appendix B, we provide a detailed 
analysis of the conditions under which this approxima- 
tion is valid. 

As a test platform, the DM model developed in this 
study was applied to the ultrasonic characterization of 
two tissue models: a mono-layer solid simulating a tissue 
specimen for histological analysis and a double-layer 
system simulating a more complex tissue. For the 
mono-layer case, the results obtained using the DM the- 
ory were statistically compared with the results obtained 
from the same tissue model using the classical CM the- 
ory. The results reported in this study demonstrate that at 
frequencies as high as 10 MHz and above, the CM re- 
sults significantly deviate from the DM results. This 
would suggest that the use of CM-based approaches to 
characterize the ultrasonic behavior of tissues exposed to 
high frequency (>10 MHz) insonications may lead to 
incorrect or incomplete interpretation of the ultrasonic 
parameters of interest with respect to the tissue micro- 
structural properties. In such experimental conditions, a 
more complicated model should be considered. The 
model described in this paper offers an attractive alterna- 
tive, which is based on the spectral analysis of the re- 
ceiving signals to differentiate between tissue types. In 
addition, the analysis of the single layer tissue model 
carried out in this paper may prove as a useful example 
on how to practically apply the proposed DM model to 
ultrasound-based histological applications. 

The present work with the development of a double 
layer mathematical model constitutes the first step to- 
wards a more realistic representation of natural multi- 
layered systems as the human skin and the growth and 
spread of malignancies such as melanoma. Human skin 
is a unique organ that permits life by regulating heat and 

water loss from the body while preventing the ingress of 
noxious chemicals or microorganisms [41]. Skin mem- 
branes may be examined at various levels of complexity. 
While the membrane is regarded sometimes as a simple 
physical barrier, more complexity may be introduced by 
considering skin as various layers in series, namely 1) 
the innermost subcutaneous fat layer (hypodermis); 2) 
the overlying dermis; 3) the viable epidermis; 4) the 
outermost layer of the tissue (the stratum corneum). All 
the cited layers posses, at different extents, a certain de- 
gree of heterogeneity due to sebaceous glands, hair folli- 
cles, fat lobules, blood vessels, nucleii and desmosomal 
junctions [41]. With such a scenario, a simple single- 
layer model would not be sufficient for interpreting the 
system response. In addition, skin cancer is associated 
with localized changes in the tissue microstructure and 
morphological modification at the interfaces between 
different skin layers making single-layer models poten- 
tially inaccurate in predicting the onset and spread of 
tumor masses. 

As a demonstration of the practical applicability of 
some of the concepts exposed in this paper, we have 
previously developed an ex vivo apparatus that uses ul-
trasound technology and the Doublet Mechanics theory 
to obtain information about tissue pathological states 
[31,40]. For the purpose of illustration, a sketch of such 
apparatus and set-up is provided in Figure 12. The ul- 
trasonic wand delivers an acoustical wave of known 
frequency into the tissue, and then detects the reflected 
wave fractions with separate transducers. As described in 
this study, a characteristic reflection spectrum can be 
plotted depicting the reflection coefficient versus the  
 

 

Figure 12. A sketch of an ex vivo apparatus based on ultra- 
sound technology and the Doublet Mechanics theory for the 
determination of the malignancy potential of a cutaneous or 
mucousal growth such as melanoma. 
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excitation frequency. The spectrum can be related to 
tissue physical properties such as density, microelastic 
constants, attenuation, and internodal distance via the 
DM theory. Through comparative analysis of reflection 
spectra from normal and diseased tissue, it may be pos- 
sible to determine the malignancy potential of a cutane- 
ous or mucousal growth such as melanoma. This would 
allow physicians to screen patients on an annual or 
semi-annual basis for the presence of dysplastic nevi 
(pre-cancerous) or early stage cancerous skin lesions. 

In addition to dermatology applications, the proposed 
model may have significant potentials in several other 
clinical applications that employ high frequency ultra- 
sound systems for the assessment of tissue pathological 
and physiological states. It may be particularly useful in 
ophthalmology, where the anatomy of the eye resembles 
a multilayered system and where the use of high fre- 
quency ultrasound techniques has already shown sig- 
nificant potentials for the diagnosis and treatment of eye 
diseases [19]. Other possible applications may include 
cartilage assessment, intravascular applications, and high 
frequency elastography techniques, which ultimately 
long to the quantitative estimation of the tissue me- 
chanical behavior at the microscopic scale. 

5. CONCLUSIONS 

The Doublet Mechanics theory has been employed to 
model the propagation of elastic waves within a biologi- 
cal tissue. The present case is characterized by hetero- 
geneous and not continuous materials that, consequently, 
may be conveniently analyzed within the multiscale DM 
framework. 

It has been observed that an operating frequency of 
the ultrasound generator increases, the difference be- 
tween the DM solution and the classical elasticity solu- 
tion becomes larger, as a consequence of the intimate 
interaction among waves and microscopic components 
of the biological tissue. It has been discussed that a DM 
multilayer model could be effective in describing the 
skin multi-layer structure. The design requirements for a 
characterization-mode ultrasound skin cancer detection 
system should provide primary care physicians with a 
rapid, noninvasive, screening tool for malignant mela- 
noma that would assign a quantitative malignancy po- 
tential for specific cutaneous lesions. 
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APPENDIX A 

The propagation of the waves in the media can be un- 
ambiguously identified specifying thirteen angles (Fig- 
ure 3) 
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where the identities in (9) stem from the second law of 
optics of reflection. Given the mechanical properties of 
the media and θ0, Snell’s law may be used to derive six 
further independent equations having the form 
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where θi and θt are the incident and transmitted wave 
directions, and the ci the wave phase velocities. Using 
Equations (9) and (10) it is thus straightforward ex- 
pressing any characteristic parameter θi in terms of the 
sole incident angle θ0. The displacements u(n) can be 
expressed as 
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with (n) an index indicating the (n)th wave, An the am- 
plitude of the waves, x is the position vector, d(n) the 
particle motion unit vector, p is propagation unit vector 
and kn = 2π/λ the wave number. 

The most relevant coefficient in the system is the re- 
flection coefficient R1 = A1/A0 which can be determined 
imposing at each interface suitable boundary conditions 
for either the displacements and the stresses 
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here, m is the number of perturbations insisting upon the 
same boundary, u1, u2, σ22 and σ12 are the displacements 
and the stresses, of tangential and normal type respect- 
tively. Relations (12) generate a total of twelve equations 
meaning that the problem of solving for the twelve re- 
flection coefficients (four per interface) is completely 
determined. 

The reflection coefficients Ri depend upon the waves 
amplitude An and thus, through Equation (11), also upon 
the displacements u(n). On the other hand, displacements 
may be conveniently rephrased in terms of stresses, pro- 
vided that appropriate constitutive equations are used. 
The waves (0), (1), (2), (3), (4), (5), (6), (11) and (12) 
can be handled using the conventional theory of elastic- 
ity in that travel in continuum media. On the contrary 
DM is necessary in describing waves (7), (8), (9) and (10) 

which propagate in the biological, non continuum sub- 
strate. In this perspective, M has been chosen as M = 2, 
that is the smallest value of M that retains the scale fea- 
tures of DM. It is assumed that the dynamic process is 
isothermal and the volume forces vanish. The particle 
interactions are assumed to be longitudinal (central), so 
that the shear and torsion microstresses vanish every- 
where in the body. Recalling (4), for M = 2 the elonga- 
tion microstrains are derived as 
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while, recalling (5), the micro moduli matrix Aαβ takes 
the form 

11 12 12 15 15

11 12 15 15

11 15 15

44

44

44

0

0

0

0 0

0

A A A A A

A A A A

A A A
A

A

A

Sym A



 
 
 
 

  
 
 
  
 

   (14) 

11 44 44

1
;

4
A A    A         (15) 

where solely the two constants A11 and A44 are inde- 
pendent. Under these conditions, relation (8) is simpli- 
fied into 

,1

1

2
n

ij i j i j k kp p             


   
 

    (16) 

The unit vectors τ are chosen as follows 
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and correspondingly the doublets distribute in space as 
in Figure 13. Notice that the problem is fully three-di- 
mensional. 

Substituting back within relations (12) the stresses and 
displacements written in terms of the amplitudes An ac- 
cording to Equation (11) and Equations from (13) to (16), 
a subset of 12 explicit equations is derived, which may 
be clothed in matrix form as to obtain M·R = B, where 
M is the [12 × 12] coefficients matrix, B the [12 × 1] 
vector comprising the known terms and R represents the 
[12 × 1] vector enclosing of the unknown reflection co-
efficients Ri. Both M and B depend upon a number of  
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Figure 13. The doublets distributing in space as to form a 3D 
arrangement. 
 
parameters, namely: the micro mechanical properties of 
the biological substrate (density, nodal separation dis- 
tance ηα, micro moduli Aαβ); the classical continuum 
mechanics properties of the glass substrates and of the 
auxiliary layer (density, constants of Lamè λ and μ); the 
thickness of the layers (h1, h2); the initial set-up angle θ0; 
the phase velocities ci; the time harmonic waves’ angular 
frequency ω = 2πf. Noticeably, while conventionally the 
relation between ω and ki is represented by the cele- 
brated relation ki = ω/ci (ci = (E/ρ)1/2) in the framework 
of DM it assumes a far more elaborated form, for either 
pressure (P) or shear (S) waves 
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and we shall call the latter equations of dispersion in that 
demonstrate that propagation in discrete-media is dis- 
persive, and strongly influenced by the micro moduli 
and by the scale length. 

APPENDIX B 

In its present form, the model presented in the paper 
does not take into account diffraction or scattering. Cou- 
pling these effects with the DM theory would require 

considerable mathematical efforts which are considered 
outside the scope of this study and left for future invest- 
tigations. While there are several practical ways to re- 
duce speckle (such as the use of spatial and frequency 
compounding techniques [42], it is important to under- 
stand that, under certain circumstances a simple reflec- 
tion/refraction model is still sufficient for describing 
tissue/US interaction. 

A practical proof for this statement is the fact that ul- 
trasound reflection techniques are commonly employed 
to accurately measure the thickness of different tissues 
or tissue layers and for non destructive testing of materi- 
als. These circumstances are insonicating from different 
angles and averaging the results. This sentence is further 
substantiated in the following. 

A speckle field arises when a wave impinges on a 
rough surface, generating a scattered wave radiating in 
all directions. Each echo signal is the combination of the 
many signals coming from a group of scatterers within 
the resolution cell. At each point, the amplitude of the 
echo signal depends on whether constructive or destruct- 
tive interference predominates. Since the scattered wave 
emanates from numerous contributors, it is appropriate 
to characterize it in statistical terms. If this field is inte- 
grated over a finite detector area (that would be the US 
receiver) the probability distribution of the integrated 
intensity I is [43] 

   
1

exp

m
m

I

m I m
p I I

I m I

  
       


 


      (18) 

where Γ(m) is the Gamma function, the operator <·> 
stands for spatial average and thus <I> would corre- 
spond to the “true” mean intensity in the limit of a per- 
fectly flat reflective surface, and m is, to a first approxi- 
mation, the number of correlation cells or speckles fal- 
ling onto the detection area. Figure 14 illustrates Equa- 
tion (18) for different m’s. Notice that for increasing m  
 

 

Figure 14. The probability distribution of the speckle inte- 
grated intensity I for different m’s. 
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the diagrams turn into quasi-Gaussian with most prob- 
able intensity <I>. Equivalently, in the limit of large de- 
tector area, the speckles would just represent a back- 
ground noise that would have negligible influence on the 
response of the sample. Founding on these considera- 
tions, scattering effects can be reasonably neglected. 

Note that by large detector area we simply mean an area 
containing a large number of scatterers compared to the 
resolution cell, which is equivalent to state that the tissue 
scatterer density satisfies the requirement for obtaining 
fully developed Raleigh backscatterers and thus m 1. 
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