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ABSTRACT 
Fast and satisfied medical ultrasound segmentation is 
known to be difficult due to speckle noises and other 
artificial effects. Since speckle noise is formed from 
random signals which are emitted by an ultrasound 
system, we can’t encounter the same way as other 
image noises. Lack of information in ultrasound im-
ages is another problem. Thus, segmentation results 
may not be accurate enough by means of customary 
image segmentation methods. Those methods that 
can specify undesirable effects and segment them by 
eliminating artificial effects, should be chosen. It 
seems to be a complicated work with high computa-
tional load. The current study presents a different 
approach to ultrasound image segmentation that re-
lies mainly on local evaluation, named as local histo-
gram range image method which is modified by 
means of discrete wavelet transform. Thus, a signifi-
cant decrease in computational load is then achieved. 
The results show that it is possible for tissues to be 
segmented correctly. 
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1. INTRODUCTION 
Fast and reliable ultrasound image segmentation is a 
complicated process with particular difficulties. Because 
of the presence of speckle in these images and their poor 
contrast, using common methods for segmentation is not 
possible. General approaches to segmentation can be 
grouped into three categories: 1) pixel-based, 2) continu-
ity, and 3) edge based methods. Many segmentation 
methods that are presented, include clustering, watershed, 
active contours, and those methods that are based on 
statistical models [1-4]. Pixel-based methods are the 
easiest to implement, since they apply to one element 

while, they are particularly susceptible to noise. Conti-
nuity-based and edge-based methods encounter the seg-
mentation problem from opposing sides: continuity- 
based methods search for similarities while edge-based 
methods search for differences [5]. 

On the other hand, almost these segmentation methods 
consider the entire image as a unit, which contains a 
large area of gray value, and uses spatial or frequency 
for segmenting; however, it can’t recognize speckle 
noises accurately. Local evaluation methods can be a 
solution for ultrasound images, since speckle pixels will 
be recognized precisely. In [6], local estimation of 
Rayleigh parameter was proposed to identify different 
tissues. However, its complexity and computational load 
are high. In [7], researchers defined “local histogram 
range image” (LHRI) based on histogram distribution 
which reduced statistic complexity. They applied a clas-
sification method to recognize edge or border of organ 
while, speckle noises remained unchanged. LHRI was 
proposed for segmentation in [8]; although, its computa-
tional load was too high.  

In this study, the combined edge-based and continuity- 
based method are presented by modified LHRI. Discrete 
wavelet transform (DWT) is applied to reduce dimen-
sion of input images of LHRI algorithm; whereas, the 
image energy compresses in few number of wavelet's 
coefficients. Hence, we expect to have proper segmented 
images and to decrease computational load by means of 
reducing input image size. 

We will introduce the LHRI method for an ultrasound 
image in Part 2. Section 3 describes DWT. Combination 
of LHRI method with DWT is introduced in Section 4. 
In Section 5 the simulation results are presented. 

2. LOCAL HISTOGRAM RANGE IMAGE 
FOR SEGMENTATION 

2.1. Definition 
The recognition of ultrasound signal characteristics is 
the primary requirement. Speckle has a random nature as 
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it is formed from signals which are produced by scatter-
ers in the medium under observation. This analysis of 
speckles is one of the most important studies. In addition, 
today's advanced scanners apply a log-compression to 
the envelope data to enhance the lower signal values. 
Considering that log-compression is a nonlinear opera-
tion, statistics of envelope signal are different before and 
after this compression.  

Because of different scatterer’s distribution and den-
sity in different tissues, researchers have studied several 
probability density models of ultrasound envelope sig-
nals. We divide image areas into two general groups to 
evaluate an ultrasound image: 1-fully developed speckle 
(a large number of randomly located scatterers with 
small scatterer spacing were compared to the wavelength 
of ultrasound), 2-areas that have low scatterers. Several 
distributions are presented for each mentioned area that 
we only introduce two usual distributions. Statistics 
demonstrate Rayleigh model in fully developed speckle 
areas [9]. In the second area that the number of scatterers 
is low and its spatial locations are dependent variables, 
Nakagami distribution is the most flexible model among 
the others [10]. Of course, these distributions are due to 
previous logarithmic compression step. However, refer-
ence [7] has shown that each distribution can be 
achieved after applying logarithmic compression. For 
the first area (fully developed speckle), Raleigh distribu-
tion convert into double exponential distribution that its 
mean and variance are obtained as follows: 

( ) ( )1 1
1 2

ln 2
ln ,

2 2Log Rayleigh

n nMean n nγ
σ− = + − +    (1) 

( )
2 2

2 1

24Log Rayleigh
nVAR E y y π

−
 = − =         (2) 

where γ =0.5772 is Euler constant, 1n is image dy-
namic range, and 2n  is gain setting (ratio of minimum 
to maximum output signal). It can be concluded that the 
mean depends on three factors: initial Raleigh variance, 

1n  and 2n , while the variance only depends on dy-
namic range 1n . 

Also, log-Nakagami [9] was derived for latter area 
that its variance is as follows: 
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where ξ  is defined as follow: 
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Log-Nakagami distribution tends to Rician in the case 
of m = 1.5, which leads to the variance below: 

( )
2 2

2 1

42.23Log Rice
nVAR E y y π

−
 = − =  .       (5) 

Since both distributions depend on one parameter 
1( )n , their comparison shows that the variance of log- 

Rayleigh exceeds the variance of log-Nakagami. Hence, 
variance of log-Rayleigh is more than log Nakagami’s 
variance. 

After introducing the distribution, now it's the time to 
find out the relationship between borders and mentioned 
distributions. The borders of ultrasound images are to-
tally divided into two groups: 1) the edge between two 
fully developed speckle areas, and 2) the Edge between 
speckle area and specular scattered areas. The experi-
ments on ultrasound images show that although histo-
grams of fully developed speckle areas have similar 
structure; however, their mean values could be different 
for these two different organs. Also, equal variances and 
different means are concluded from double exponential 
equations. In addition, local histogram range in borders 
between two fully developed speckle areas is more than 
the range of local histogram in fully developed areas. We 
can see from (5) that the variance of Rician distribution 
after log compression will be a constant, and its value is 
smaller than the one in Rayleigh distribution. Therefore, 
valid range of the histogram will not be very large, while 
its mean is larger than double exponential mean. Local 
histogram between two specular scatterer and speckle 
has the largest range among other areas.  

We can recognize edges, and segment image by means 
of proper function via prior analysis and relation be-
tween distributions and valid local histogram range, 
without high computation load of statistic calculations. 
Therefore, we use local histogram range image defini-
tion [7]: at first we should choose proper size for moving 
window that suits our approach. The experiment on sev-
eral ultrasound images shows that the best window size 
for segmentation is 4 4×  to 15 15× . This window 
moves around original image and an N M×  matrix is 
obtained as below: 

,

,  if u different gray values
  exist in the moving window

0,  if no different gray values
  exist in the moving window,

i j

u

k



= 




     (6) 

where ,i jk  is the pixel value of LHRI at the position a(i, 
j). 

2.2. Classifier Function 
Here, a function is described that separates different im-
age areas after computation of the LHRI matrix. In [7], 
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authors have used a linear adaptive function to enhance 
edges; we modified it for segmentation. Our purpose is 
clustering pixels in two levels, foreground and back-
ground. The mean of whole image is a general margin 
for separating two classes, but it is a static parameter; 
therefore, it doesn’t work properly for all ultrasound 
images. We need dynamic parameter to classify pixels 
truly. For this reason, we define classifier function below 
with dynamic parameter ,i jk  obtained from LHRI ma-
trix: 

( ), , , ,i j i j i j i jf g k g gα= + −          (7) 

where ,i jf  is the enhanced value, ,i jg  is the old one, 
g  is the mean of whole image, and α  is the coeffi-
cient value. Distance of each pixel’s gray value from 
mean is computed at first in this equation. This distance 
can be positive or negative. Output pixel would be 
brighter if this value is positive, and darker if it is nega-
tive. The proportion of this change depends on ,i jk . It 
can be explained as local adaptive classifying parameter, 
whereas more ,i jk  causes more margin parameter near 
the whole image mean.  

Figure 1 shows this function for 8 bit gray level in-
puts and several k (0 to 9) and 127g = . It can be seen 
that the defined function classifies and ranks gray level 
values of pixels in terms of LHRI pixel value and whole 
image mean.  

Another problem with this approach is the α  value. 
Implementation of this algorithm indicates that proper  

results would be attained by coefficient values between 
0.1 to 1 which depend on gray value range of original 
image. 

2.3. Morphological Image Processing 
Since LHRI algorithm leads to the existence of small 
holes in the obtained matrix, it can’t classify tissues 
properly. For this reason, we apply morphological image 
processing to achieve perfect and smooth tissues. Con-
sequently, dilation and erosion are selected. At first, we 
apply dilation to eliminate holes and fill the contour gaps 
[12]. The dilation is defined as: 

( ){ }z
A B z B A ϕ⊕ = ∩ ≠

)
           (8) 

where... is a median filtered image, B is a circle or a 
square structuring element and denotes reflection of B. 
Erosion is applied to eliminate the effects caused by di-
lation in the tissue size. It is defined as: 

( ){ }z
A B z B AΘ = ⊆

)
            (9) 

The key problem with this explanation is the size of 
structuring element, because small structuring doesn’t 
fill holes correctly. Furthermore, large size of them 
makes artificial edges. Experiments show that 3 3×  
element could fill holes properly. 

3. DISCRETE WAVELET TRANSFORM 
The concept of “wavelet” was first introduced in 1984  

 

 
Figure 1. Classifier function for k = {0, 2, 3, ..., 9}.    
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by A. Grossmann and J. Morlet [13]. By wavelet trans-
form (WT), each signal included in 2 ( )L R  is presented 
as weighted summation of wavelet basis functions. In 
WT, the basis functions are obtained from a single func-
tion named “wavelet basis functions” by time translation 
(b) and dilation (a). Eq.10 presents wavelet function: 

( ),
1

b a
x bx

aa
ψ ψ

− = ×  
 

          (10) 

If a, and b, in continuous wavelet transform, are used 
in binary form, the DWT is yielded [14]: 

2 , 2m ma b n= = ×              (11) 
Thus, DWT is defined as: 

( ) ( ) ( )22 , 2 2 2 ,
m

m m m
fW n x n f x dxψ

+∞− −

−∞

= −∫    (12) 

Inverse discrete wavelet transform (IDWT) is ob-
tained by following equation: 

( ) ( ) ( )2 , 2m m
f mn

m n
f x W n xψ

+∞ +∞

=−∞ =−∞

= ∑ ∑      (13) 

Each wavelet basis function has nonzero value in spe-
cial frequency interval (band). Therefore, it concludes 
signal information in the special frequency interval. Also, 
basis functions are selected in a way that they are or-
thogonal. This means that there are no overlaps between 
the special frequency intervals of various basis functions 
[14]. This special frequency interval of wavelet basis is 
introduced as follows: 

( ){ }2 .m
mW span x n m Zψ −≡ − ∈       (14) 

Another set of functions named scaling function, is 
introduced in a way that its special frequency band 
comes from union the special frequency interval of 
wavelet basis. If its special frequency band of scaling 
function is defined as mV , we have [14]: 
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Scaling functions that are orthogonal basis for mV , 
are obtained thorough time translation and dilation of 
special function as follows: 

( ) ( )2
, 2 2  n Z

m
m

n m x x nϕ ϕ
− −= − ∈       (16) 

Therefore, for survey of the signal in all frequency 
bands, DWT should be calculated for [ , )m a∈ +∞  
along with signal decomposition with ( 1)a nϕ −  [15]. In 
such a way signal decomposition is as follows: 
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where jkc  and 
0j kd  are approximations and details co-

efficients of WT respectively, and they are computed by: 
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0 0j k j kd f x x dxϕ

+∞
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These coefficients for discrete signal are calculated by 
[16]: 

( ) 1,2jn j k
k

c h k n c += −∑          (20) 

( ) 1,2jn j k
k

d g k n c += −∑          (21) 

where h(k) low pass filter coefficient and g(k) is high 
pass filter coefficient.  

We need to generalize mentioned subjects into two 
dimensions under to apply DWT on images. Four fun-
damental functions must be used for two dimensional 
DWT, which elicit low frequency information and high 
frequency information in three directions ‘x’, ’y’ and 
diagonal. These functions are assumed to be separable 
for simplicity. Therefore, we have from one dimensional 
wavelet and scaling functions [17]: 
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where these functions compute four types of coefficients: 
approximation, vertical, horizontal and diagonal coeffi-
cients. Two dimensional DWT computations is con-
verted to double calculation of one dimensional DWT by 
using separable mentioned functions. 

Input image is divided into four images which consists 
of approximation image, vertical, horizontal and diago-
nal edges for each decomposition level in DWT. Ap-
proximation part will be a shrank image that contains a 
large amount of primary image energy. So we can apply 
some image processing algorithms (such as segmenta-
tion) on approximation coefficients to decrease compu-
tation load. 

4. COMBINATION OF LHRI METHOD 
WITH DWT 

As mentioned in previous section, for decreasing execu-
tion time of algorithm, we can calculate approximation 
coefficients from DWT, which have a large amount of 
image energy, and then use them in LHRI algorithm.  

It should be noted that using DWT and its inverse in 
proper portions of algorithm is extremely important. In 
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general we can do it in two forms. We apply them and 
choose the best one by comparing them.  

In the first method, we determine DWT of original 
image, and then approximated wavelet coefficients are 
used as LHRI input. We calculate IDWT before applying 
local histogram range image (LHRI) on primary image. 
Subsequently, the obtained matrix is defined as LHRI 
matrix in next algorithm processes. 

The difference between the second method and former 
is in using LHRI matrix coefficients on approximation 
coefficients of prior image, which is obtained with DWT. 
We finally use inverse transform for conclusion, to make 
similar output size with input image. We applied two 
introduced methods on almost fifty ultrasound images, 
and came to the conclusion that the former method seg-
ments images with more details. Figure 2 shows block 
diagram of proposed combined method. Step by Step 
implementation of this algorithm on an example image is 
demonstrated in Figure 3. 

More specifically, if we apply DWT for more than one, 
the execution time of algorithm decreases considerably, 
and algorithm accuracy is reduced. Therefore, there is a 
trade-off between them. The experimental results show 
that two levels of decomposition have the best efficiency.  

Input image size become quarter for adding each de-
composition level in DWT, whereas wavelet computa-
tion time is low. Therefore, total computation time is 
reduced in similar ratio approximately. As a result, the  

execute time decreases in 1 16  ratio for applying two 
decomposition levels. 

5. SIMULATION RESULTS 
We applied our algorithm on two images of carotid and 
breast lesion to evaluate the results. At first, we get 
DWT from input images. We should choose optimum 
filter which used in this transform. As [18] proved, we 
choose biorthogonal filter. Figure 4(a) shows original 
ultrasound breast lesion. Figure 4(b) illustrates seg-
mented image by LHRI alone. As shown in Figure 4(c), 
 

 
Figure 2. Block diagram of combined method. 

 

 
Figure 3. Step by step implementation of main algorithm. 
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(a)                               (b)                              (c) 

Figure 4. Segmentation of the ultrasound breast lesion image. (a) original image; (b) LHRI 
method result; (c) the method used in this study. 

 

 
(a)                             (b)                              (c) 

Figure 5. Segmentation of the ultrasound carotid image. (a) original image; (b)LHRI method 
result; (c) the method used in this study. 

 

 
(a)                              (b)                                (c) 

 

 
(d)                               (e)                               (f) 

Figure 6. Breast lesion ultrasound image segmentation, (a, c, and e) original images, (b, d, and f) 
segmented results respectively. 

 
segmentation result by LHRI & wavelet method is simi-
lar to the former, whereas execution time is reduced con-
siderably. We can prove these results for Figure 5, too. 
Table 1 shows the amount of simulation time for two 

algorithm implementations with 1.86 GHz CPU by Mat-
lab software for Figure 4. These times are illustrated for 
Figure 5 in Table 2. Figure 6 illustrates three breast 
lesions that are segmented by proposed method. 
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Table 1. Execution time of simulation for Breast lesion. 

 LHRI DWT IWT Total  
Algorithm 

LHRI  
Algorithm 1.054 sec - - 1.054 sec 

LHRI + 
Wavelet 0.127 sec 0.156 sec 0.016 sec 0.297 sec 

Decrement 
percent  87.95% - - 71.82% 

 
Table 2. Execution time of simulation for carotid. 

 LHRI DWT IWT Total  
Algorithm 

LHRI  
Algorithm 6.227 sec - - 6.227 sec 

LHRI +  
Wavelet 0.549 sec 0.235 sec 0.078 sec 0.862 sec 

Decrement  
percent 91.18% - - 86.15% 

 
We can see that the modified method by Wavelet seg- 

mented images with details and reduced implementation 
time about 90% of primary algorithm. 

6. CONCLUSIONS 
LHRI method segments envelope ultrasound images 
effectively. However, also its computation load is prac-
tically high. We show that DWT can decrease execution 
time without any change in segmentation result. Conse-
quently, the required memory for algorithm implementa-
tion, is reduced. To obtain more accurate results while 
decreasing the computation load, we will use the modi-
fied wavelet and more advanced morphological proc 
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