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ABSTRACT 

Several gene signatures have been identified to build 
predictors of chemosensitivity for breast cancer. It is 
crucial to understand how each gene in a signature 
contributes to the prediction, i.e., to make the predic-
tion model interpretable instead of using it as a black 
box. We utilized Random Forests (RFs) to build two 
interpretable predictors of pathologic complete re-
sponse (pCR) based on two gene signatures. One sig-
nature consisted of the top 31 probe sets (27 genes) 
differentially expressed between pCR and residual 
disease (RD) chosen from a previous study, and the 
other consisted of the genes involved in Notch sin-
gling pathway (113 genes). Both predictors had a 
higher accuracy (82% v 76% & 79% v 76%), a 
higher specificity (91% v 71% & 98% v 71%), and a 
higher positive predictive value (PPV) (68% v 52% & 
73% v 52%)) than the predictor in the previous study. 
Furthermore, Random Forests were employed to 
calculate the importance of each gene in the two sig-
natures. Findings of our functional annotation sug-
gested that the important genes identified by the fea-
ture selection scheme of Random Forests are of bio-
logical significance. 
 
Keywords: Random Forests; Breast Cancer; Chemosen-
sitivity; Gene Signature; Notch Signaling Pathway; 
Pathologic Complete response; Predictor 

1. INTRODUCTION 

Breast cancer is a clinically heterogeneous disease that 
demonstrates a wide variation in its clinical courses and 
response to chemotherapy. This complexity is a reflec-
tion of the molecular oncogenic aberration in DNA re-
pair, cell cycle control, cell survival, and signal trans-
duction in breast tumors. Microarray analysis has identi-
fied breast cancer subtypes with distinct gene expression 
profiles and clinical behavior [1,2,3]. There are several 
major molecular classes of breast cancers indentified by 
different research groups. Some studies [2,3] suggested 
five major classes of breast cancer: normal breast-like, 

luminal-A, luminal-B, basal-like, and human epidermal 
growth factor receptor 2 (HER2)-positive cancers. An-
other study [4] proposed three major classes: ER+/ 
HER2-, ER-/HER2-, and HER2+. The heterogeneity of 
breast cancer characterized by these subtypes brings 
great challenge to its research. In a significant proportion 
of breast cancer patients, chemotherapy does not result 
in response, but can induce significant side effects and 
financial costs. The ability to identify predictors of re-
sponse or resistance to cancer drugs will provide better 
treatment to the individual patient.  

Several studies have suggested that the gene-exp- 
ression profiles of chemo sensitive tumors are different 
from those of chemo resistant ones [5]. Gene expression 
profiling with a measurement of thousands of mRNA 
transcripts in a single experiment is widely used in hu-
man cancer research. Due to the high dimensionality of 
microarray data, a feature selection step to find a subset 
of discriminative genes, referred to as a signature, is 
often necessary for building robust predictors [6,7].  

Ayers et al. [8] developed a multigene predictor of 
pCR to sequential weekly paclitaxel and FAC (T/FAC) 
neoadjuvant chemotherapy for breast cancer patients. 
The study involved 42 patients: 24 patients were used in 
the training set and 18 patients in the validation set. pCR 
was obtained in 13 patients (31%). A gene set of 74 
markers (P < 0.09) was built using data from the training 
set and tested on the validation set. Overall, a 78% pre-
dictive accuracy was achieved, with a 100% positive 
predictive value for pCR, a 73% negative predictive 
value, a sensitivity of 43%, and a specificity of 100%. 
Later, a follow-up study [9] included 133 patients with 
stage I-III breast cancer, with a pCR rate of 26% (n=34). 
A 30-probe set Diagonal Linear Discriminant Analysis 
(DLDA-30) classifier was selected for independent vali-
dation. It showed a significantly higher sensitivity (92% 
v 61%) than a clinical predictor including age, grade, 
and estrogen receptor status. This 30-probe set pharma-
cogenomic predictor correctly identified all but one of 
the patients who achieved pCR (12 of 13 patients) and 
all but one of those who were predicted to have residual 
disease had residual cancer (27 of 28 patients). 
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Chemosensitivity is better predicted by multigene 
signatures than by a single molecular discrimination 
because biological phenomena occur through the con-
certed expression of multiple genes [10,11,12]. However, 
within a signature of genes, the important question of 
how each individual gene contributes to the prediction 
has not been studied. We attempted in this work to iden-
tify predictors and gene signatures that have better pre-
diction performance than the DLDA-30 and to quantify 
the importance of each gene in a signature in the predic-
tion of pCR. 

In [9], an exhaustive search of a good predictor of 
pCR was conducted. Different machine learning tech-
niques were tested including support vector machines 
with linear, radial, and polynomial kernels (SVM), Di-
agnal Linear Discriminant Analysis (DLDA), and K- 
nearest neighbor (KNN) using Euclidean distance. One 
interesting discovery was that SVM provided the worst 
performance of pCR prediction among all these different 
techniques in this particular data set. Random Forest has 
demonstrated its comparable performances to SVM in 
many bioinformatics applications. In the current study, 
we sought to explore the utility of Random Forests were 
utilized to construct two predictors based on two signa-
tures, the top 31 probe sets and the Notch signature, and 
take advantage of the feature selection capability of Ran-
dom Forests to measure the importance of each gene in 
these signatures. 

2. MATERIALS AND METHODS 

2.1. Patient Cohorts and Clinical Information 

One breast cancer patient cohort was obtained from a 
previous publication [9] (n=133). Needle-biopsy sam-
ples were collected from 133 patients with stage I, II, or 
III breast cancer who received preoperative weekly pa-
clitaxel and a combination of fluorouracil, doxorubicin, 
and cyclophosphamide (T/FAC). These 133 patients 
were divided into two subsets, one training set of size 81 
and one validation set of size 52. These data contain 
clinical information including patient age, gender, race, 
histological classification, stage, nuclear grade, ER (es-
trogen receptor), PR (progesterone receptor), and HER2 
(human epidermal growth factor 2) status, pathologic 
complete response, and residual disease. These data also 
contain each patient’s genome-scale gene expression 
profiles generated using Affymetrix U133A chip (Santa 
Clara, CA). pCR was defined as no residual invasive 
cancer in the breast or lymph nodes. pCR is presently 
accepted as a reasonable early indicator for long-term 
survival. 

2.2. Top 31 Probe Set Signature 

To build a predictor of pCR, the genes that are highly 
expressed in either the pCR cases or the RD cases need 

to be identified. To achieve this goal, t-tests for unequal 
variances for all the probe sets on Affymetrix U133A 
chip were carried out. The 31 probe sets (27 genes) with 
the smallest t-test P values (FDR=0.05%) were selected in 
[9], which was used as our first signature.  

2.3. Notch Signature 

Notch genes encode highly conserved cell surface re-
ceptors. The Notch signaling pathway consists of Notch 
receptors, ligands, negative and positive modifiers, and 
transcription factors. It plays a key role in the normal 
development of many tissues and cell types, through 
diverse effects on cell regulation, proliferation, and dif-
ferentiation. Aberrant Notch signaling has been observed 
in several human cancers including acute T-cell lym-
phoblastic leukemia and cervical cancer. Recent evi-
dences implied that it might be associated with breast 
cancer [13,14]. 

Selecting a gene signature based on differentially ex-
pressed genes between two conditions, such as pCR and 
RD in our study, is a common strategy nowadays. Here 
we endeavored to take a quite different approach, i.e., to 
identify a signature of genes involved in a particular 
pathway that has a key impact on human cancers.  

The Oligo GEArray Human Notch Signaling Pathway 
Microarray [15] was designed for profiling expression of 
113 genes involved in Notch signaling. Our second sig-
nature was these 113 genes as shown in Table 1. 

We were particularly interested in uncovering what 
genes in these two signatures are important for the pre-
diction of pCR and what biological or medical signifi-
cance they might have. 

2.4. False Discovery Rate 

The standard P value was designed for testing individual 
hypotheses. When applied in a multiple testing problem 
such as selecting informative genes in microarray data, it 
may result in many false positives. While there are a 
number of methods to overcome the problems due to mul-
tiple testing, False Discovery Rate (FDR) approach [16,17] 
was used to help select the top 31 probe sets in [9]. 

2.5. Random Forests 

Random Forest, proposed by Leo Breiman in 1999 [18], 
is an ensemble classifier based on many decision trees. 
Each tree is built on a bootstrap sample from the original 
training set. The variables used for splitting the tree 
nodes are a random subset of the whole variable set. The 
classification decision of a new instance is made by ma-
jority voting over all trees. About one-third of the in-
stances are left of the bootstrap sample and not used in 
the construction of the tree. These instances in the train-
ing set are called “out-of-bag” instances and are used to 
evaluate the performance of the classifier.
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Table 1. Genes in notch signaling related pathways [15]. 

Notch Signaling Pathway:  

Notch Binding: DLL1 (DELTA1), DTX1, JAG1, JAG2. 

Notch Receptor Processing: ADAM10, PSEN1, PSEN2, PSENEN (PEN2). 

Notch Signaling Pathway Target Genes: 

Apoptosis Genes: CDKN1A, CFLAR (CASH), IL2RA, NFKB1. 

Cell Cycle Regulators: CCND1 (Cyclin D1), CDKN1A (P21), IL2RA. 

Cell Proliferation: CDKN1A (P21), ERBB2, FOSL1, IL2RA. 

Genes Regulating Cell Differentiation: DTX1, PPARG. 

Neurogenesis: HES1, HEY1. 

Regulation of Transcription: DTX1, FOS, FOSL1, HES1, HEY1, NFKB1, NFKB2, 
NR4A2, PPARG, STAT6. 

Other Target Genes with Unspecified Functions: CD44, CHUK, IFNG, IL17B, KRT1, 
LOR, MAP2K7, PDPK1, PTCRA. 

Other Genes Involved in the Notch Signaling Pathway: 

Apoptosis Genes: AXIN1, EP300, HDAC1, NOTCH2, PSEN1, PSEN2. 

Cell Cycle Regulators: AXIN1, CCNE1, CDC16, EP300, FIGF, JAG2, NOTCH2, 
PCAF. 

Cell Proliferation: CDC16, FIGF, FZD3, JAG1, JAG2, LRP5, NOTCH2, PCAF, STIL 
(SIL). 

Genes Regulating Cell Differentiation: DLL1, JAG1, JAG2, NOTCH1, NOTCH2, 
NOTCH3, NOTCH4, PAX5, SHH. 

Neurogenesis: DLL1, EP300, HEYL, JAG1, NEURL, NOTCH2, PAX5, RFNG, ZIC2 
(HPE5). 

Regulation of Transcription: AES, CBL, CTNNB1, EP300, GLI1, HDAC1, HEYL, 
HOXB4, HR, MYCL1, NCOR2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PAX5, 
PCAF, POFUT1, RUNX1, SNW1 (SKIIP), SUFU, TEAD1, TLE1. 

Others Genes with Unspecified Functions: ADAM17, GBP2, LFNG, LMO2, MFNG, 
MMP7, NOTCH2NL, NUMB, SEL1L, SH2D1A. 

Other Signaling Pathways that Crosstalk with the Notch Signaling Pathway: 

Sonic Hedgehog (Shh) Pathway: GLI1, GSK3B, SHH, SMO, SUFU. 

Wnt Receptor Signaling Pathway: AES, AXIN1, CTNNB1, FZD1, FZD2, FZD3, 
FZD4, FZD6, FZD7, GSK3B, LRP5, TLE1, WISP1, WNT11. 

Other Genes Involved in the Immune Response: CXCL9, FAS (TNFRSF6), G1P2, 
GBP1, IFNG, IL2RA, IL2RG, IL4, IL4R, IL6ST, IRF1, ISGF3G, OAS1, OSM, 
STAT5A, STUB1.  

 
Table 2. Performance measures of three predictors: DLDA-30, 
RF-31, and RF-Notch. 

Measures DLDA-30 RF-31 RF-Notch 

Accuracy 0.76 0.82 0.79 

Sensitivity 0.92 0.55 0.27 

Specificity 0.71 0.91 0.98 

PPV 0.52 0.68 0.73 

NPV 0.96 0.85 0.80 

2.6. Feature Selection Using Random Forests 

Random Forest calculates several measures of variable 
importance. The mean decrease in accuracy measure 
was used in [19] to rank the importance of the feature 
in prediction. This measure is based on the decrease of 
classification accuracy when values of a variable in a 
node of a tree are permuted randomly. In this study, two 
packages of R, randomForest and varSelRF [19], were to 
compute the importance of the genes in a given signature.  

3. RESULTS 

The first predictor, RF-31, was based on the top 31 
probe sets, and the second predictor, RF-Notch, was 
based on the Notch signature. As in the case of DLDA- 
30, the RF-31 and RF-Notch were trained on the training 
data (n=82) and the accuracy of the two predictors was 
tested on a separate validation set (n=51). 

Random Forests produce non-deterministic outcomes. 
To reduce the possible variance of our results, the Ran-
dom Forests algorithm was run multiple times and then 
the average of the predictions was taken. The prediction 
results of the RF-31 and RF-Notch were based on the 
average of 20 repeated predictions, which are shown in 
Tables 2. The importance of each gene in the two sig-
natures was based on the averaged calculations by using 
the function randomVarImpsRF in varSelRF repeated 10 
times, as shown in Figure 1 and Table 3.  

The predictions of RF-31 and RF-Notch and the im- 
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Table 3. 31 genes of the highest importance in Notch signature. 

Importance 
Gene 

Symbol 
Probe Set ID P Value t-Test 

Higher 
Expression 

in 

0.000822 
CTNNB

1 
201533_at 0.46320 0.74521 RD 

0.000928 SNW1 201575_at 0.04458 2.07657 RD 

0.001295 
NOTCH

2 
202443_x_at 0.03601 -2.23736 pCR 

0.00185 
NOTCH

2 
202445_s_at 0.02239 -2.46026 pCR 

0.000658 HES1 203395_s_at 0.34906 -0.94767 pCR 

0.006243 ISGF3G 203882_at 0.01170 -2.75847 pCR 

0.007946 CXCL9 203915_at 0.01268 -2.73059 pCR 

0.000725 MFNG 204152_s_at 0.06783 -1.92262 pCR 

0.000826 LMO2 204249_s_at 0.01955 -2.44963 pCR 

0.002534 IL6ST 204863_s_at 0.01141 2.66874 RD 

0.003382 NEURL 204889_s_at 8.33E-05 4.15928 RD 

0.007544 
ADAM1

7 
205746_s_at 0.00049 -4.00315 pCR 

0.002078 IL2RA 206341_at 0.10542 -1.67547 pCR 

0.001054 RUNX1 208129_x_at 0.63212 0.48313 RD 

0.002165 NCOR2 208889_s_at 0.07027 1.85101 RD 

0.003526 NUMB 209073_s_at 0.06476 1.88058 RD 

0.000775 
MAP2K

7 
209952_s_at 0.05390 -1.98674 pCR 

0.001136 ERBB2 210930_s_at 0.03134 -2.28195 pCR 

0.001296 RUNX1 211180_x_at 0.19439 -1.3392 pCR 

0.00223 RUNX1 211181_x_at 0.00020 3.93243 RD 

0.000769 PSEN2 211373_s_at 0.87130 0.16266 RD 

0.003479 
NOTCH

2 
212377_s_at 0.00019 3.98301 RD 

0.000862 AXIN1 212849_at 0.00131 3.35556 RD 

0.001427 MYCL1 214058_at 0.01948 -2.47946 pCR 

0.005243 CFLAR 214618_at 0.00984 -2.76622 pCR 

0.000663 CD44 216056_at 0.22213 -1.24048 pCR 

0.000748 
MAP2K

7 
216206_x_at 0.43559 0.78876 RD 

0.001933 CFLAR 217654_at 0.05371 -2.02278 pCR 

0.000858 FZD4 218665_at 0.00180 3.25207 RD 

0.001928 IL17B 220273_at 0.08425 -1.76439 pCR 

 
portance of the genes in the two signatures are summa-
rized in Table 2 and Figure 1. The metrics of perform-
ance in Table 2 indicate the different strengths of the 
DLDA-30 and our RF-31 and RF-Notch. Both RF-31 
and RF-Notch had a higher accuracy, a higher specificity, 
and a higher PPV than  the DLDA-30. 

3.1. Importance of the Genes in Top 31 Probe 
Sets 

Of these 31 probe sets, five probe sets had a higher ex-

pression value in the pCR cases and 26 probe sets had a 
higher expression in the RD cases, demonstrating the 
dominance of the highly expressed genes in the patients 
with RD.  

Figure 1 displays several genes of top importance, in-
cluding MAPT, BBS4, MGC5370, BTG3, MELK, CA12, 
FGFR1OP, MTRN, FLJ10916, E2F3, RRM2, and KIF3A. 
MAPT, microtubule associated protein tau, was discov-
ered as the best single gene discriminator of pCR to pre- 
operative chemotherapy with Paclitaxel, 5-Fluoroutacil, 
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Figure 1. Two plots of the importance of the genes in the top 31 probe set signature and 
the Notch signature respectively. 

 
Doxorubicin [20]. Its expression correlates closely with 
ER expression in human breast cancer. In the top 31 
probe set signature, there were four probe sets of gene 
MAPT with very high t-test statistic. The multiple selec-
tion of MAPT in the signature demonstrates its signifi-
cance. BBS4, Bardet-Biedl syndrome 4, is a member of 
the Bardet-Biedl syndrome (BBS) gene family associ-
ated with the Bardet-Biedl syndrome. MGC5370 is an 
alias name of gene MDM2, which is a target gene of the 
transcription factor tumor protein p53. Over expression of 
this gene can result in excessive inactivation of tumor 
protein p53, diminishing its tumor suppressor function. 
This gene had a very high expression value in our patient 
with RD. BTG3, a member of the BTG/Tob family, is a 
transcriptional target of p53. It has a role in DNA damage 
response. Its antiproliferative action through inhibition of 
another gene E2F1 was discovered recently [21]. This 
gene was highly expressed in our patients with pCR, 
which is consistent with this recent discovery. There were 
two probe sets of gene BTG3 in the top 31 probe sets, 
which further illustrates this gene’s significance. MELK, 
maternal embryonic leucine zipper kinase, is a potential 
marker of proliferating mammary epithelial progenitor 
cells that are highly expressed in multiple human cancers, 
including human breast cancer. CA12, Carbonate dehy-
dratase XII, is a member of a large family of zinc metal-
loenzymes that participate in various biological proc-
esses, and was found to be overexpressed in 10% of 
clear cell renal carcinomas. FGFR1OP is Fibroblast 
Growth Factor Receptor 1 (FGFR1) Oncogene Partner. 
Fusing this gene and the FGFR1 gene has been found in 
cases of myeloproliferative disorder. This gene plays an 

important role in normal proliferation and differentiation 
of the erythroid lineage. MTRN, Meteorin, glial cell 
differentiation regulator, is a gene clearly involved in 
cell differentiation. FLJ10916 is an alias name of gene 
THNSL2, threonine synthase-like 2, which functions in 
lyase activity, pyridoxal phosphate binding, and meta-
bolic process. E2F3, E2F transcription factor 3, is a 
member of the E2F family of transcription factors. The 
E2F family is essential in the control of cell cycle and 
action of tumor suppressor proteins. RRM2, Ribonucleo-
tide reductase M2 polypeptide, provides the precursors 
necessary for DNA synthesis. During mitosis, Kinesin 
family member 3A (KIF3A) has a critical function in the 
equal segregation of chromosomes between two daugh-
ter cells. 

Based on the above functional annotation, it is evident 
that these top important genes are not only vital in the 
prediction of pCR but also strongly implicated in tu-
mourigenesis.  

3.2. Importance of the Genes in Notch  
Signature 

Of the 31 genes with highest importance values in Notch 
signature, 17 probe sets had a higher expression value in 
the pCR cases and 14 probe sets had a higher expression 
value in the RD cases as seen in Table 3. This somewhat 
even distribution of the probe sets between the pCR and 
RD cases was in contrast to the top 31 probe set signature, 
which could be attributed to the functions of Notch sig-
naling pathway. 

The top important genes in Notch signature were the 
following: CXCL9, ADAM17, ISGF3G, CFLAR, NUMB, 
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NOTCH2, NEURL, IL6ST, and RUNX1. NOTCH2 is a 
multifunctional gene involved in apoptosis, cell prolif-
eration, cell differentiation, neurogenesis, and regulation 
of transcription. There are three probe sets of NOTCH2 
and two probe sets of CFLAR in Figure 1, reflecting these 
genes’ importance. CXCL9, ISGF3G, and IL6ST are all 
involved in immune response. Since the functions of 
these genes are illustrated through their pathways in Ta-
ble 1, we will not elaborate on them any further here.  

There were 15 genes in the top 31 probe set signature 
with importance values above 0.003, and there were 
seven such genes in Notch signature. This was expected. 
Because of their high t-test statistics, the top 31 probe 
sets should be more sensitive to the random permutation 
employed in the importance calculation than those in the 
Notch signature. Nonetheless, in Figure 1 the Notch 
signature genes displayed their significance. 

4. CONLUSIONS 

Random Forests were employed to study the prediction 
of pathologic complete response in breast cancer, and the 
results improved the predictions of the DLDA-30. Func-
tional annotation demonstrated that the important genes 
identified by the feature selection scheme of Random 
Forests are of biological significance. 
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