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ABSTRACT 

We have developed a web-server for predicting 
the folding rate of a protein based on its amino 
acid sequence information alone. The web- 
server is called Pred-PFR (Predicting Protein 
Folding Rate). Pred-PFR is featured by fusing 
multiple individual predictors, each of which is 
established based on one special feature derived 
from the protein sequence. The ensemble pre-
dictor thus formed is superior to the individual 
ones, as demonstrated by achieving higher 
correlation coefficient and lower root mean 
square deviation between the predicted and 
observed results when examined by the jack-
knife cross-validation on a benchmark dataset 
constructed recently. As a user-friendly web- 
server, Pred-PFR is freely accessible to the 
public at www.csbio.sjtu.edu.cn/bioinf/Folding 
Rate/. 
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1. INTRODUCTION 

Knowledge of protein three-dimensional (3D) structures 
plays an indispensable role in molecular biology, cell 
biology, biomedicine, and drug design [1]. However, 
each protein begins as a polypeptide, translated from a 
sequence of mRNA as a linear chain of amino acids. A 
protein can function properly only if it is folded into a 
correct shape or conformation [2]. Failure to fold into 
the intended 3D structure usually produces inactive 
proteins with different properties. Although many efforts 
have been made trying to understand the mechanism of 
protein folding (see, e.g., [3,4,5,6]), it still remains one 
of the most challenging problems in molecular biology. 
In addition to understanding how a protein chain is 
folded, it is also important to find the folding rates of 

proteins from their primary sequences. Protein chains 
can fold into the functional 3D structures with quite dif-
ferent rates, varying from several microseconds to even 
an hour [7,8]. 

Experimentally determining the three dimensional 
structure of a protein is often very difficult and 
expensive. However the sequence of that protein is 
easily known. Therefore, for quite a long time, scientists 
have tried to use the “least free energy principle” [2,9] to 
predict the 3D structures of proteins. Unfortunately, 
owing to the notorious local energy minimum problem, 
so far it can only be successfully used to address very 
limited structural characters, such as the handedness 
tendency and packing arrangement in proteins (see, e.g., 
[10,11,12]). In the past two decades, various statistical 
methods have been developed for predicting the struc-
tural classes of proteins and their folding patterns ac-
cording to the sequence information alone (see, e.g., 
[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28] and a 
review [29]). Encouraged by the results obtained via 
these statistical approaches, various methods were de-
veloped for predicting the folding rates of proteins be-
cause the information thus acquired would be very use-
ful for understanding the protein folding mechanism and 
the sequence-structure-function relationship [8,30]. In 
this regard, the approaches can be generally categorized 
into two groups: (1) the prediction of protein folding 
rates is based on the protein structure information; and 
(2) the prediction is based on the primary sequence in-
formation. 

For the first group, the features of proteins are ex-
tracted from their 3D structural information and hence 
the predictions are feasible only after the structures have 
been determined. Most of the methods in this group tried 
to derive the statistical significance of the correlation 
between the protein folding rate and the corresponding 
structural topological parameters, such as contact order 
(CO) [31], absolute contact order (Abs_CO) [32], total 
contact distance (TCD) [33], long-range order (LRO) 
[34], the fraction of local contact (FLC) [34], the chain 
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topology parameter (CTP) [35] and the most recent 
geometric contact number (Nα) [30]. 

For the second group, the features of proteins are 
mainly extracted from their primary amino acid sequences, 
such as the amino acid biochemical properties [36] and the 
effective folding length (Leff) [8] derived from the se-
quence-predicted secondary structure. The approaches in 
the second group are particularly useful when the 3D 
structural information of the protein concerned is not 
available. 

Although the aforementioned methods in predicting 
folding rates of proteins each have their own merits, they 
were all established by focusing on one (or a few) spe-
cific feature(s). As is well known, a protein folding sys-
tem is very complicated that involves many physical and 
chemical factors. For this kind of complicated biological 
system, it would be particularly effective to treat it by 
assembling many individual predictors with each oper-
ated based on its own special feature [37,38]. In view of 
this, the present study was devoted to develop a novel 
ensemble predictor for predicting the folding rate of a 
protein chain by incorporating its many different fea-
tures through an optimal fusion process. 

2. MATERIALS AND METHODS 

To develop a powerful statistical predictor, the first im-
portant thing is to obtain an effective benchmark dataset 
[39]. To realize this and also for facilitating comparison 
with the existing prediction methods, we use the bench-
mark dataset as described below. 

2.1. Benchmark Dataset 

The large dataset recently constructed by Ouyang and 
Liang [30] was used in the current study. It contains 80 
proteins whose folding rates have been experimentally 
determined. Of the 80 proteins, 45 belong to the two- 
state folding behaviors without the visible intermediates 
while the other 35 belong to the three-state or multi-state 
folding kinetics that exhibit the obvious intermediate 
state during the folding process under the experimental 
conditions. If classified according to their structural 
classes,18 are all-  proteins, 32 all- , and the remain-
ing 30 are  proteins (where  means the mix of 

 and α  [40]). The folding rates of the 80 pro-
teins range from f  to f , spanning 
more than eight orders of magnitude of f

α

ln K

β

K

αβ
+β

αβ

ln
α/β

6.9  12.9
K . For users’ 

convenience, the benchmark dataset, denoted as bench , 
is given in the Online Supporting Information A, which 
can also be downloaded from the web-site at 



www.csbio.sjtu.edu.cn/bioinf/FoldingRate/. It is instruc-
tive to point out that fK  in bench  is actually an ap-
parent folding rate constant (see Appendix A). Therefore, 
to develop a statistical method for predicting 



fK  of a 

protein according to its sequence information alone, 
there is no need to discriminate whether the protein is 
two-state or multi-state folding. 

2.2. Sequence Feature Extraction 

As mentioned above, although the features extracted 
from the 3D structures of proteins are very useful for 
predicting their folding rates, they can be used only 
when the corresponding PDB codes are available. Owing 
to such a limit, in this study we will focus on those fea-
tures that can be derived from the amino acid sequential 
information alone, either directly or indirectly. 

(a) Amino acid properties. Protein is composed of 
different amino acids, which show different physical, 
chemical, and conformational properties and hence may 
have correlations with the folding rates. In this study, the 
following four amino acid properties were used: c , the 
propensity to be at the C-terminal of -helix [41]; S , 
the propensity to form β -strand [41]; , the com-
pressibility [42]; and SA , the solvent accessible 
surface area in an unfolding protein chain [43]. Suppose 
a protein P is expressed by 

α
α β

τ
SA

1 2 3 4 5 6 7R R R R R R R R LP            (1) 

where 1  represents the 1st residue of the protein , 

2  the 2nd residue, and so forth. Thus, the protein’s 
scores in the aforementioned four amino acid properties 
can be formulated as 

R P
R
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where 0
,i j  ( 1, 2,3, 4i  ) respectively represent the 

original , , , and SA  for the  cα

, 2, ,
Sβ τ

0)

SA -thj

( 1 2j    native amino acid, and their values can 

be obtained from [41,42,43]; 0
,{ }j i j

0
,2 ,i

Max
0
,1,i 

 means tak-

ing the maximum one among   …, , 

and 

0
,20i

0
,{ }j i jnMi  the corresponding minimum one. For 

reader’s convenience, the values thus obtained for ,i j  

( 1, 2,3, 4;i j 1, 2,  ,  20)    (cf. Eq.3) are given in 

Table 1. 
(b) Protein size effect. Many studies have indi-

cated that the protein chain length  and its fractional 
powers ( , , or ) or logarithm  have a 

good correlation with the folding rates, suggesting that 

L
1/2L 2/3L 3/5L ln( )L
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L

β

 and its various expressions forms could be useful 
features for predicting protein folding rates [8,30]. In the 
present study,  was adopted. ln( )L

 

β

(c) Information derived from secondary 
structure prediction. Given a protein sequence, its 
secondary structure can be predicted by means of vari-
ous secondary structure prediction tools. In the present 
study, based on the information thus obtained by using 
PSIPRED [44], we have the secondary structure content 
ratios for the protein , as formulated by P

α β C 1                     (4) 

where ,  and  are the ratios of the -helix, 

-sheet, and coiled-coil residues for the protein . 

Note that although the secondary structure content con-
tains three components ( ,

α  C α
P

α β , ), they were treated 

as one feature because of the normalized condition im-
posed by Eq.4. Moreover, based on the secondary struc-
ture prediction results, the effective protein folding chain 
length can be derived, as given by [8]: 

C

effL L H h HL L N                  (5) 

where  is the total number of amino acids for the 
entire protein chain; 

L

HL  the number of predicted heli-

cal conformation residues; HN  the number of predicted 

helices; and  the number of an hL  -helix turn (  is 

generally ; for a standard -helix, ). In 

the current study,  was set at 3, and  used 

as the feature input. 

hL

3.6

)
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2.3. Prediction Algorithm 

According to the above section, we have a set of seven 
different kinds of specific features, as can be summa-
rized by the following equation: 

1 c

2 S

3

4featu

5

6 α β C

α                                

β                                 

τ                                  

SASA                         

ln( )                          

( , ,

L

 
 
 
 
 

    



7 eff

)                

ln( )                       L 

    (6) 

To study the folding rate of a protein chain, the key is 
to determine K , the so-called folding rate constant. 

For reader’s convenience, a brief discussion about the 
role of fK  (or its logarithm fln K ) on the protein 

folding rate is provided in Appendix A. According to 
Eq.6, we can construct the following seven linear re-

gression models for predicting the protein folding rate 
constants: 

 (1)
f 1 1ln α  cK a b    (7.1) 

 (2)
f 2 2ln βK a b S    (7.2) 

 (3)
f 3 3ln τK a b    (7.3) 

  (7.4) (4)
f 4 4ln SASAK a b  

 (5)
f 5 5ln ln( )K a b L   (7.5) 

 (6)
f 6 6,1 α 6,2 β 6,3 Cln K a b b b        (7.6) 

 (7)
f 7 7 efln ln( )fK a b L 

( )i

  (7.7) 

where fK  ( 1, 2, ,7i )   is the protein folding rate 
constant predicted based on the specific feature i-thi   
(cf. Eq.6), while i  and i  are the corresponding pa-
rameters determined by using the regression analysis on 
a training dataset such as 

a b

bench . For the details of how 
to use the regression procedures to determine i  and 

, refer to [45]. Note that f


a

ib (6)K  of Eq.7.6 is involved 
with more parameters because the 6-th feature 6  
contains three sub-features (cf. Eq.6). 

All the above seven formulae (Eqs. 7.1–7.7) can be used 
to predict the protein folding rates but they each reflect the 
effect (s) of only one (or one kind) of specific feature (s). 
To incorporate the effects from all the seven kinds of fea-
tures, let us consider the following formulation: 

7
( )

f f
1

ln ln i
i

i

K w K


                (8) 

where  is the weight that reflects the impact of the 

 specific feature 
iw

-thi i  on the protein folding rate. If 

the impacts of the seven features were the same, we 
should have 1/iw 7  . Since they are 

actually not the same, it would be rational to introduce 
some statistical criterion to reflect their different impacts, 
as formulated below. 

( 1, 2, ,7i   )

Given a statistical system consisting of  samples, 
the Pearson Correlation Coefficient (ACC) is defined by 

N

  
1

2 2

1 1
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       (9) 

where ix  and  are, respectively, the observed and 

predicted results for the  sample, while 
iy

-thi x  and y  

the corresponding mean values for the  samples. 
Since  reflects the correlation of the predicted 
results with the actual ones, its value can be used to 

N
PCC
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measure the quality of a prediction method. If all the 
predicted results are exactly the same as the observed 
ones, we have the perfect correlation of . For 
different prediction algorithms, Eq.9 will yield different 
values of . Therefore, the weight  in Eq.8 can 

be formulated as 

PCC=1

iPCC w

( )
f

7

j
( )
fPCC( iK

( )
f1

PCC( )
    ( 1,2,

PCC( )

i

i
j

K
w i

K
  ,7)      (10) 

where  is the Pearson Correlation Coeffi-

cient (Eq.9) obtained with the  folding rate pre-

dicting formula in Eq.7 on the benchmark dataset 

)

-thi

bench  

by the jackknife cross-validation. 

The prediction method by fusing the seven individual 
methods as formulated by Eq.7 is called the Pred-PFR 
(Predictor of Protein Folding Rate). 

3. RESULTS AND DICSUSSIONS 

In statistical prediction, the following three 
cross-validation methods are often used to examine a 
predictor for its effectiveness in practical application: 
independent dataset test, subsampling test, and jackknife 
test [40]. However, as elucidated in [38] and demon-
strated by Eq.5 of [39], among the three cross- valida-
tion methods, the jackknife test is deemed the most ob-
jective that can always yield a unique result for a given 
benchmark dataset, and hence has been increasingly and 
widely used by investigators to examine the accuracy of 
various predictors (see, e.g., [46,47,48,49,50,51,52,53, 
54]). To demonstrate the quality of Pred-PFR, here let 
us also use the jackknife cross-validation on the bench-
mark dataset bench  (see the Online Supporting Infor-

mation A). 

Now, let us use fPCC( )K  to represent the Pearson 

Correlation Coefficient (Eq.9) obtained with Pred-PFR 
(Eq.8) on the benchmark dataset ben ch  by the jack-

knife cross-validation. For facilitate comparison of the 
ensemble predictor with the individual predictors, the 

values of f )PCC(K  and those of  

 are given in Table 2. 

( )
f )iPCC(K

( 1, 2, ,i   7)

Furthermore, to show the accuracy about the predic-
tion in a more intuitive manner, let us introduce the 

 (RRMSD oot Mean Square Deviation) as defined by 

2

1

( )
RMSD

N

i i
i

x y

N






            (11) 

where ix ,  and  have the same meanings as 

Eq.9. Obviously, the smaller the value of , the 

more accurate the prediction. If all the predicted results 
are identical to the corresponding observed ones, we 
have 

iy N

RMSD

RMSD 0 . 

Similar to the case of , let us use PCC fRMSD( )K  to 

represent the value of  obtained with the ensem-
ble predictor Pred-PFR (Eq.8) on the benchmark dataset 

RMSD

bench
RMSD

 by the jackknife cross-validation, and 

 that by the   formula 

of Eq.7. All these  values are also given in Table 
2. 

( )
f( )iK

PCC

-ti

D

h ( 1i  , 2, ,7)
RMS

As we can see from the table, the overall  value 
yielded by the ensemble prediction formula (Eq.8) is 0.88, 
which is the closest to 1 in comparison with those by the 
individual prediction formulae (Eqs 7.1-7.7). Such an 
overall  value is even higher than that by the pre-
diction method using the 3D structural information [30] 
on the same benchmark dataset. Moreover, it can be seen 
from Table 2 that the overall RMSD value generated by 
the ensemble prediction formula is the lowest one in 
comparison with those by the seven individual prediction 
formulae. The highest correlation and lowest deviation 
results indicate that the Pred-PFR ensemble predictor 
formed by the fusing approach is indeed more powerful 
than the individual predictors. 

PCC

4. CONCLUSIONS 

Pred-PFR is developed for predicting the folding rate of 
a protein based on its sequence information alone. It is 
an ensemble predictor formed by fusing multiple indi-
vidual predictors with each based on one special feature. 
As expected, the ensemble predictor is superior to the 
individual predictors. The web-server for Pred-PFR is 
freely accessible to the public at www.csbio.sjtu.edu. 
cn/bioinf/FoldingRate/. 
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APPENDIX A. THE PROTEIN FOLDING 
RATE CONSTANT Kf 

For a given protein, its folding rate is generally re-
flected by the apparent rate constant fK  as defined 

by the following differential equation 

unf

fo

dP

dP

d

old
f unfold

lded
f unfold

( )
P ( )  

d
( )

P ( )   

t
K t

t
t

K t
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
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

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Table 1. The values of the four amino acid properties that have been normalized according to the Max-Min normalization procedure 
of Eq.3. For more explanation about the four amino acid properties, see the relevant text. 

Amino acid code cα  Sβ  τ  SASA  

Single letter 
Numerical index 

 j 1, j  2, j  3, j  4, j  

A 1 0.58 0.82 0.34 0.21 
C 2 0.20 0.25 0.61 0.56 
D 3 0.96 0.23 0.12 0.20 
E 4 0.90 0.00 0.00 0.29 
F 5 0.34 0.12 0.75 0.84 
G 6 0.12 0.70 0.28 0.00 
H 7 0.09 0.33 0.37 0.51 
I 8 0.16 0.33 0.92 0.79 
K 9 0.11 0.29 0.27 0.35 
L 10 0.10 0.33 0.69 0.69 
M 11 0.18 0.38 0.51 0.83 
N 12 0.30 0.40 0.39 0.24 
P 13 1.00 1.00 0.13 0.23 
Q 14 0.45 0.27 0.54 0.39 
R 15 0.00 0.73 0.42 0.58 
S 16 0.23 0.48 0.28 0.15 
T 17 0.47 0.38 0.61 0.27 
V 18 0.13 0.42 1.00 0.57 
W 19 0.56 0.45 0.75 1.00 
Y 20 0.18 0.08 0.82 0.82 

 
Table 2. The jackknife test results by using different formulae on the benchmark dataset bench  (see the Online Supporting Informa-
tion A). aNote that PCC  may also have negative value (see Eq.9). However, the correlation strength of the predicted results with the 
observed ones is generally measured by its absolute value. 

S

 
Prediction formula PCC  a (cf. Eq.9) RMSD (cf. Eq.12) 

(1)
fln K  (see Eq.7.1) -0.68 3.16 
(2)
fln K  (see Eq.7.2) 0.27 4.17 
(3)
fln K  (see Eq.7.3) -0.52 3.71 
(4)
fln K  (see Eq.7.4) -0.39 3.99 
(5)
fln K  (see Eq.7.5) 0.79 2.67 
(6)
fln K  (see Eq.7.6) 0.29 4.14 
(7)
fln K  (see Eq.7.7) 0.85 2.23 

fln K  (see Eq.8) 0.88 2.03 

 
where  and  represent the concentrations 

of its unfolded state and folded state, respectively. Suppose 
the total protein concentration is , and initially only the 

unfolded protein is present; i.e.,  and 

 when . Subse-quently, the protein sys-

tem is subjected to a sudden change in temperature, solvent, 
or any other factor that causes the protein to fold. Obvi-
ously, the solution for Eq.A1 is 

unfoldP (t

) 0t 

)



foldedP ( )t

0t 

0C

unfold 0P ( )t C

foldedP (

 JBiSE 

 
 

unfold 0 f

folded 0 f

 P ( ) exp          

P ( ) 1 exp

t C K t

t C K t

  
       

         (A2) 

It can be seen from the above equation that the larger 
the fK , the faster the folding rate will be. However, the 

actual process is much more complicated than the one as 
described by Eq.A1 even if the system concerned con-
sists of only two states. The reason is the folded state 
may reverse back to the unfolded state, as described by 
the following equation 

12

21
unfold foldedP

k

k
 P                  (A3) 

where  is the forward rate constant for  con-
verting to folded , and 21  is the corresponding reverse 
rate constant. Thus we have the following kinetic equation 

12k unfoldP
P k

unfold
12 unfold 21 folded

folded
21 folded 12 unfold

dP ( )
P ( ) P (

d
dP ( )

P ( ) P (
d

t
k t k

t
t

k t k
t

   

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

)

)

t

t

     (A4) 
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Eqs. A3 and A4 can be expressed by an intuitive graph 
called directed graph or digraph  [55,56] as shown in 
Fig.1a. To reflect the variation of the concentrations of 
unfolded and folded proteins with time, the digraph  is 

further transformed to the phase digraph  as shown in 
Fig.1b, where  is an interim parameter associated with 
the following Laplace transform 






s

 

 

unfold unfold0

folded folded0

P ( ) P ( ) exp d

P ( ) P ( ) exp d

s t ts

where unfold  and folded  are the phase concentrations of 
 and , respectively [55,56]. Thus, using the 

P
P

P
unfold folded

graphic rule 4 [55,56], also called “Chou’s graphic rule 
for non-steady-state enzyme kinetics” [57], we can imme-
diately obtain the solutions of Eq.A4, as given by 

P

 

 

21 0 12 0
unfold 12 21

12 21 12 21

12 0 12 0
folded 12 21

12 21 12 21

P ( ) exp

P ( ) exp

k C k C
t k

k k k k

k C k C
t k

k k k k

      

        

k t

k t

     (A6) 
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Accordingly, it follows 

 
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 

 
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Comparing Eq.A7 with Eq.A1, we obtain the following 
equivalent relation 
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(A8) 
meaning: the apparent folding rate constant fK  is a 
function of not only the detailed rate constants, but also 

. Accordingly, t fK  is actually not a constant but will 

change with time. Only when  and k , 12 21k k 12 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) The directed graph or digraph  [55,56] for the 
two-state protein folding mechanism as schematically ex-
pressed in Eq.A3 and formulated in Eq.A4. (b) The phase di-
graph  obtained from  of panel (a) according to the 
graphic rule 4 [55,56], which is also called “Chou’s graphic 
rule for non- steady-state enzyme kinetics” in the literature (see, 
e.g., [57]). The symbol  in panel (b) is an interim parameter 
(see Eq.A5) and the related text for further explanation). 
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and fK  be treated as a constant. 

It can be imagined that for a three-state or multi-state 
folding system, fK  will be much more complicated. 

We can also see from the above derivation that using 
graphic analysis to deal with kinetic systems is quite 
efficient and intuitive, particularly in dealing compli-
cated kinetic systems. For more discussions about 
graphic analysis and its applications to kinetic systems, 
see [55,58,59,60,61,62]. 
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