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ABSTRACT

The both environmental and genetic factors have
roles inthe developmentof somediseases. Complex
diseases, suchas Crohn'sdisease orTypell diabetes,
are caused by a combination of environmental fac-
tors and mutations in multiple genes. Patients who
have beendiagnosed withsuch diseasescannoteas-
ily be treated. However, many diseases can be
avoided ifpeople athigh riskchange theirliving style,
one examplebeing theirdiet. Buthow canwe telltheir
susceptibility to diseases before symptoms are
found andhelp themmake informeddecisions about
their health? With the development of DNA
microarray technique, it is possible to access the
human genetic information related to specific dis-
eases. This paper uses a combinatorial method to
analyze the genetic data for Crohn's disease and
search disease-associated factors for given
case/control samples. An optimum random forest
based methodhas beenapplied topublicly available
genotype data on Crohn's disease for association
study andachieved apromising resulit.

Keywords: Genetic factor; Crohn's disease; Ran-
dom forest

1. INTRODUCTION

Crohn's disease (alsoknown as regional enteritis) is a
chronic, episodic, inflammatory condition of the gas-
trointestinal tract characterized by transmural
inflammation (affecting the entire wall of the
involved bowel) and skip lesions (areas of inflamma-
tion with areas of normal lining in between). Crohn's
disease is a type of inflammatory bowel disease (IBD)
and can affect any part of the gastrointestinal tract
from mouth to anus. As a result, the symptoms of
Crohn's disease canvary among affected individuals.
The exact cause of Crohn's disease is unknown. How-
ever, research shows that the inflammation seen in
the people with Crohn's disease involves several fac-
tors: the genes the patient has inherited, the immune
system itself, and the environment [1]. In other
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words, genetic factor has been invoked in the
pathogenesis of the disease.

Although the Crohn's disease cannot easily be
treated, it can be avoided if people athigh risk change
their living style, such as their diet. But how can we
tell the susceptibility of people to the disease before
symptoms are found and help them make informed
decisions about their health? With the development
of DNA microarray technique, itis possible toaccess
the human geneticinformation related tospecific dis-
eases. Assessing the association between DNA vari-
ants and disease has been used widely to identify
regions of the genome and candidate genes that con-
tribute to disease [2].

99.9% of oneindividual's DNA sequences are iden
tical to that of another person. Over 80% of this 0.1%
difference will be Single Nucleotide Polymorphisms
(SNP) and they promise to significantly advance our
ability to understand and treat human disease. A SNP
is a single base substitution of one nucleotide with
another. Each individual has many single nucleotide
polymorphisms that together create a unique DNA
pattern for that person. It is important to study SNPs
because they represent genetic differences among
human beings. Genome-wide association studies
require knowledge about common genetic variations
and the ability to genotype asufficiently comprehen-
sive set of variants in a large patient sample [3].
High-throughput SNP genotyping technologies make
massive genotype data, with a large number of indi-
viduals, publicly available. Accessibility of genetic
data makes genome-wide association studies for com-
plex diseases possible.

Success stories when dealing with diseases caused
by a single SNP or gene, sometimes called monogenic
diseases have been reported [4]. However, most com-
plex diseases, suchas psychiatric disorders, are char-
acterized by anon-mendelian, multifactorial genetic
contribution with a number of susceptible genes
interacting with each other [5]. A fundamental issue
in the analysis of SNP data is to define the unit of
genetic function that influences disease risk. Is it a
single SNP, a regulatory motif, an encoded protein
subunit, a combination of SNPs in a combination of
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genes, an interacting protein complex, a metabolic or
a physiological pathway [6]? In general, it may be
impossible to associate a single SNP or gene with a
disease because a disease may be caused by comr
pletely different modifications of alternative path-
ways, and each gene only makes a small contribution.
This makes the identification of genetic factors diffi-
cult. Multi-SNP interaction analysis is more reliable
but it is computationally infeasible. An exhaustive
searchamong multi-SNP combinationis computationally
infeasible even for a small number of SNPs. Further
more, there are no reliable tools applicable to large
genome ranges that could rule out or confirm associa-
tion with a disease.

Itis importantto search forinformative SNPs among a
huge number of SNPs. These informative SNPs are
assumed to be associated with genetic diseases. Tag SNPs
generated by the multiple linear regression based method
[7] are good informative SNPs, but they are reconstruc-
tion-oriented instead of disease-oriented. Although the
combinatorial search method [8] for finding disease-
associated multi-SNP combinations has a betterresult, the
exhaustive searchisstill very slow.

Multivariate adaptive regression spline models [9,
10] are used to detect associations between diseases
and SNPs withsome degree of success. However, the
number of selected predictors is limited, and the type
of possible interactions must be specifiedin advance.
Multifactor dimensionality reduction methods [11,
12] are developed specifically to find gene-gene
interactions among SNPs, but they are not applicable
to alarge setof SNPs.

Random forest model has been exploredin disease
association studies [13], but it was applied on simu-
lated case-control data in which the interacting
model among SNPs and the number of associated
SNPs are specified, thus making the association
model simple and the association is relatively easier
to detect. For real data, such as Crohn's disease [14],
multi-SNP interaction is much more complex , which
involves more SNPs.

In Section 2 of this paper, we propose an optimum
random forest model for searching the disease-
associated multi-SNP combination for given case-
control data. In the optimum random forest model,
we generate a forest for each variable (e.g. SNP)
instead of randomly selecting some variables to grow
the classification tree. We can find the best classifier
(a combination of SNPs which includes the SNP) for
each SNP, and then we may have M classifiers if the
length of the genotype is M. We rank classifiers
according to their prediction rate, and the SNP with a
higher predictionrates is more disease-associated.

The association of multi-SNP combination can be

measured by thedisease susceptibility predictionrate.

In Section 3 we address the disease susceptibility pre-
diction problem [15,16, 17, 18]. The goal of discase
susceptibility prediction is to assess accumulated
information targeted to predicting susceptibility to
complex diseases with significantly high accuracy
and statistical power. The problem is based on the
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association study we described above. The Disease-
associated multi-SNP combination found in associa-
tion studies can be used to predict the susceptibility
to diseases. On the other side, the prediction results
can be used to evaluate the accuracy of the associa-
tion studies. A higher prediction rate means the
higher reliability of the association studies.

The proposed method is applied to analyze the
genetic data of the Crohn's disease. We find the dis-
ease-associated multi-SNP combination and apply it
to predict the susceptibility. The accuracy of the pre-
diction is higher than that of all previously known
methods. It can be also applied in disease prevention
and control in the near future. For example, after
training the available case-control genome data, we
can find those significant SNPs which are well asso-
ciated with the disease. When a patient comes, and
we obtain his/her genetic data, we don't need to check
the whole sequence, but only disease-associated
SNPs instead. This will save much money and time
for diagnosis and can be done before the onset of dis-
eases. Therefore, treatment could start earlier to pre-
vent or delaythe occurrence ofthe disease.

2. DISEASE ASSOCIATION SEARCHFOR
CROHN'SDISEASE

In this section we first give an overview of the ran-
dom forest tree and classification tree, then we will
describe the geneticmodel. Next wepropose the opti-
mum random forestalgorithm to search Tag SNPs.

2.1. Classification Trees and Random Forest
In machine learning, a Random Forestis a classifier
that consists of many classification trees. Each tree is
grown as follows:

1. If the number of cases in the training set is N,
sample N cases at random - but with replacement,
from the original data. This sample will be the train-
ing set for growing the tree.

2. If there are M input variables, a number m<<M
is specified such that at each node, m variables are
selected randomly out of the M and the best split on
these m is used to split the node. The value of m is
held constant during the forest growing.

3. Each treeis grown tothe largest extent possible.
There isno pruning [19].

A different bootstrap sample from theoriginal data
is used to construct a tree. Therefore, about one-third
of the cases are left out of the bootstrap sample and
not used in the construction of the tree. Cross-
validation is not required because the one-third oob
(out-of-bag) data is used to get anunbiased estimate
of the classification error as trees are added to the for-
est. Itis also used to get estimates of variable impor-
tance. After each tree is built, we compute the
proximities of eachterminal node.

In every classification tree in the forest, put down
the oob samples and make prediction the classifica
tion of the oob samples. In suchway we can compute
the importance score for variables in each tree based
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on the number of votes cast for the correct class. All
variables can be ranked and those important variables
can be found in this way.

Random forest is a sophisticated method in data
mining to solve classification problems, andit can be
used efficiently in disease association studies to find
most disease-associated variables such as SNPs that
may be responsible for diseases.

2.2. Genetic Model

Recent work has suggested that SNPs in human popu-
lation are not inherited independently; rather, sets of
adjacent SNPs are present on alleles in a block pat-
tern, so called haplotype. Many haplotype blocks in
human have been transmitted through many genera-
tions without recombination. This means although a
block may contain many SNPs, it takes only a few
SNPs to identify or to tag each haplotype in the block.
A genome-wide haplotype would comprise half of a
diploid genome, including one allele from each
allelic gene pair. The genotype is the descriptor of
the genome which is the set of physical DNA mole-
cules inherited from the organism's parents. A pair of
haplotype consists ofa genotype.

SNPs are bi-allelic and can be referred as 0 for
majority allele and 1, otherwise. If alleles on both
haplotypes are the same, then the corresponding geno-
type ishomogeneous, and can berepresented as 0 or 1.
If the two alleles on the two haplotypes are different,
the genotypeis heterozygous, represented as 2.

In Figure 1, there are four chromosomes, we
assume the firsttwo chromosomes belongto one per-
son and the other two chromosomesbelong to another
person. We can find on most sites the four chromo-
somes are identical, but on somesites they are differ-
ent, nucleotides on these sites are SNP. The haplotype
is the concatenation of SNPs and a genotype is com-

SNP SNP SNP SNP
S l | |

Chromosome 1 AACACGCCA... TTCGGGGTC...
Chromosome2 AACACGCCA .. TTCGAGGTC..
Chromosome3 AACATGCCA... TTCGGGGTC... AGTCTACCG
Chromosome4 AACACGCCA... TTCGGGGTC... AGTCTACCG

R

AGCTTCGGTAAG
ACATTCAGTAAT
CGATTTGTGAAG
ACAGTCGTGATG

!

001000010000
010000110001
100001001000
010100001010

AGTCGACCG
AGTCGACCG

Haplotype 1
Haplotype 2
Haplotype 3
Haplotype 4

Haplotype 1
Haplotype 2
Haplotype 3
Haplotype 4

022000211000
220202001020

Genotype 1
Genotype 2

Figure 1. SNP, haplotype andgenotype.
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posed of two haplotypes.

The case-control sample populations consist of N
individuals who are represented in genotype with M
SNPs. Each SNP attains one of the three values 0, 1,
or 2. Thesample Gis an (0,1, 2)-valued N x M matrix,
where each row corresponds to an individual, each
column corresponds to a SNP.

The sample G has 2 classes, case and control, and
M variables, and each of them represents a SNP. To
construct a classification tree, we split the sample S
into 3 child sub-samples, depending onthe value (0, 1,
2) of the variable (SNP) on the splitting site (loci). In
fact we can construct a binary tree (split sample
according to homozygous or heterozygous), but there
is no way to tell the difference between major allele
(1) and minor allele (0). In order to distinguish them
we split the sample into 3 sub-samples instead of 2.
We grow the tree to the largest possible extent. The
construction of the classification tree for case-
control sample is illustrated in Figure 2. In the first
level, we split the sample (30 genotypes, 14 cases and
16 controls) into 3 sub-samples (17, 8, 5) at loci 5

(the 5" SNP). In the second level, the first sub-
sample splits at loci 9 and the second sub-sample
splits at loci 7. No splitting is required for the third
sub-sample because it is a terminal node with only
one class. Inthe third level, the only splitnode splits
at loci 3. The relationship of a leaf to the tree on
which it grows can be described by the hierarchy of
splits of branches (starting from the trunk) leading to
the last branch from which theleaf hangs. The collec-
tion of split site is a Multi-SNPs combination (MSC),
which can be viewed as a classification tree. In this
example, MSC = {5,9, 7,3}and m = 4, which is a col-
lection of 4 SNPs, represented astheir loci.

2.3. Searching for Disease Associated Multi-
SNPs
To fully understand the basis of complex diseases, it
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—3 control

5 Split condition
-
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L

Number of sampless sent to
child node
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C-3  Teminalnode(leaf)

/

Splitnode

Figure 2. Classification tree forcase-control sample.

JBISE



W.D.Mao et al./J. Biomedical Science and Engineering 1 (2008) 52-58 55

is important to identify the critical genetic factors
involved, which is a combination of multiple SNPs.
For a given sample G, S is the set of all SNPs (de-
noted by loci) for the sample, and a multi-SNPs com-
bination (MSC) is a subset of S. In disease associa-
tions, we need to find a MSC which consists of a com-
bination of SNPsthat are wellassociated with thedis-
ease. To find such MSC, we need first rank all SNPs
according to their association degree (measured as
weight) with diseases. Based on the sorting, we can
find the n most disease associated SNPs for a given
threshold n.

Although there are many statistical methods to
detect the most disease associated SNPs, such as odds
ratio or risk rates, the result is not satisfactory. We
decide to usethe random forestto find them.

2.4. Optimum Random Forest

Werandomly generate a group of MSCs for each SNP.
The size of the MSC should be much less than the size
of set S (m << M). Each MSC can be represented as a
tree and all trees make the forest F. All trees (or
MSCs) ofthe forest F;(i=1, 2, ..., M) must include the

i" SNP and the other (m-1) SNPs canbe randomly cho-

sen from S except the i" SNP. In this way, the M for-
ests cover all SNPs in S.

We grow a classification tree for every MSC in
each forest /7, We run all the testing samples down

these trees to get the classifier for each sample in the
training set, then we can get a classification rate for
each tree inF;. The MSC,; is the representative for the

forest F; and the MSC; has the highest classification
rate among alltrees in /. Each member (SNP) of the
MSC, is assigned a weight Wy (€ MSC) based on the

classification rate. The weights for SNPs in the same
MSC are the same. We can find M MSCs for the M for-

ests. Ifa SNPis nota member of MSC;, thenw, ;= 0.

The weight foreach SNP WJ G=1,2,...,M)in M is
the sum ofweights from all MSCs.

M
W, = Z Wi
i=l

In the general random forest (GRF) algorithm, the
MSC is selected completely randomly and m << M. It
may miss someimportant SNPs ifthey are notchosen
for any MSC. In our optimum random forest (ORF)
algorithm, this scenariois avoided because we gener-
ate atleast one MSC for each SNP. On the other hand,
in GRF, the classifier (forest) consists of trees where
there is a correlation between any two trees in the for-
est, and the correlation will decrease the rate of the
classifier. But in ORF, we generate a forest by ran-
domly choosing MSC and samples for each tree and
the prediction fortesting samples isin this forestonly,
which is completely independent from the other trees.
In this way, we extinguish the correlation among
trees.

All SNPs are sorted according to their cumulative
weights. The most disease-associated SNP is the one

(1)
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with the highest weight. The contribution to diseases
of each SNP is quantified by its weight, but in GRF
there is no way tell the difference of contribution
among SNPs. The GRF can only tell the difference
among classifiers (trees).

3. DISEASE SUSCEPTIBILITY PREDICTION

In this section we first describe the input and the out-
put of prediction algorithms and then show how to
apply the optimum random forest to the disease sus-
ceptibility prediction.

Data sets have n genotypes and each has m SNPs.
The input fora prediction algorithmincludes:

(G1) Training genotype setg; = (gl.,j ,i=01, ...,n,
j=1,..m, gi,/E{O,I,Z}

(G2) Disease status s(g;) € {0,1}, indicating ifg,, i
=0, 1, ..., n,is incase (/) orin control (0) , and

(G3) Testing genotype g, without any disease sta-
tus.

We will refer to the parts (G1-G2) of the input as
the training set and to the part (G3) as the test set. The
output of prediction algorithms is the disease status
of the genotype s(g,).

We use leave-one-out cross-validation to measure
the quality of the algorithm. In the leave-one-out
cross-validation, the disease status of each genotype
in the dataset is predicted while the restof the datais
regarded as thetraining set.

We describe several universal prediction methods
below. These methods are adaptations of general com-
puter-intelligence classifyingtechniques.

Closest Genotype Neighbor (CN). For the test
genotype g,, find the closest (with respect to Ham-

ming distance) genotype g; in the trainingset, and set
the status s(g,) equals tos(g,).

Support Vector Machine Algorithm (SVM). Sup-
port Vector Machine (SVM) is a generation learning
system based on recent advances in statistical learn-
ing theory. SVMs deliver a state-of-the-art perfor-
mance in real-world applications and have been used
in case/control studies[18, 20]. There are some SVM
softwares available and we decide to use libsvm-2.71
[19] with the following radial basis function:

exp(-7 " |u-v| ")

General Random Forest (GRF). We use Leo
Breiman and Adele Cutler's original implementation
of RF version[19]. This version of RF handles unbal-
anced data to predictaccurately. RF tries to performa
regression on the specified variables to produce the
suitable model. RFuses bootstrapping toproduce ran-
dom trees and it has its own cross-validation tech-
nique to validatethe model forpredicti on/classification.

Most Reliable 2 SNP Prediction (MR2) [17].
This method chooses a pair of adjacent SNPs (site of
s; and s;,;) to predict the disease status of the test

genotype g, by voting among genotypes from the
training set which have the same SNP values as g, at
the chosen sites s; and s,, ;. They choose the 2 adja-
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cent SNPs with the highest prediction rate in the
training set.

LP-based Prediction Algorithm (LP). This
method assumes that certain haplotypes are suscepti-
ble to the disease while others are resistant to the dis-
ease. The genotype susceptibility is then assumed to
be a sumof susceptibilities ofits two haplotypes.

We want to assign a positive weight to susceptible
haplotypes and a negative weight to resistant haplotypes
such that for any control genotype the sum of weights
of its haplotypes is negative and for any case geno-
type it is positive. We would also like to maximize
the confidence of our weight assignment which can
be measured by the absolute values of the genotype
weights. In other words, we would like to maximize
the sum of absolute values of weights over all geno-
types.

This method is based on a graph X = {H, G}, where
the vertices H correspond to distinct haplotypes and
the edges G correspond to genotypes connecting its
two haplotypes. The density of Xis increased by drop-
ping SNPs which do not collapse edges with an oppo-
site status. The linear program assigns weights to
haplotypes that, for any non-diseased genotype, the
sum of weights of its haplotypes is less than 0.5 and
greater than 0.5 otherwise. We maximize the sum of
absolute values of weights over all genotypes. The
status of the testing genotype is predicted as sum of
its endpoints [15].

Optimum Random Forest (ORF). In the training
set, the optimum random forest algorithm we
described above is used to sort all SNPs, and find out
the m most disease associated SNPs for a given
threshold m. The m most disease associated SNPs
(Tag SNPs) are usedto build the optimum random for-
est to test the left-out sample. In leave-one-out test,
since the training set is different after leaving one
sample out, we may have different Tag SNPs for dif-
ferent training sets. The m variables (SNPs) are used

to grow many different classification trees by per-
muting the order of the splitting site (Note that the
tree {3, 9, 5}is different from the tree {5, 9, 3}). We
may use the m Tag SNPs to grow many (say, 500)
trees and choose the best tree (classifier) to predict
the disease status of the testing genotype. The best
tree has the highest average prediction rate (over
1000 trials) in the training set. Then we run the test
ing genotype down the best treeto get its disease sta-
tus. The Optimum Random Forest algorithm is illus-
trated in Figure 3.

4. RESULTS & DISCUSSION

In this section we first describe the genetic data ofthe
Crohn's disease and then discuss our experimental
results.

4.1. Data Set

The genetic data is derived from the 616 kilobase
region of human Chromosome 5q31 thatmay contain
a genetic variant responsible for Crohn's disease by
genotyping 103 SNPs for 129trios [14]. All offspring
belong to the case population, while almost all par-
ents belong to the control population. In the entire
data, there are 144 case and 243 control individuals.
The missing genotype data and haplotypes have been
inferred using the 2SNP phasing method [21].

4.2. Measures of Prediction Quality
To measure the quality of prediction methods, we
need to measure the deviation between the true dis-
ease status and the result of predicted susceptibility,
which can beregarded as measurementerror. We will
present the basic measures used in epidemiology to
quantify the accuracy of our methods.

The basic measuresare:

Sensitivity: the proportion of persons who have
the disease andwho are correctlyidentified as cases.

Specificity: the proportion of people who do not

Input:
Disease status of GIV>M  gN.M
The threshold m,
Testing genotype g:.

Training genotype set GN'M  N: the number of samples, M: the number of SNPs

Sorting the M SNPs, find the M SC with the m most disease-associated SNPs

For i = 1 to 500,

Permute the order of M SC, generate a tree T},

For j = 1 to 1000,

Randomly generate a bootstrapped sample S; from G,

Run S; down the tree T; to get the classification tree,
Predict testing sample G; (G} = G — 8;) to get the prediction rate p; ;,

Compute the average prediction rate p; for T;,
Find the best tree T}, which has the highest p,
Run g¢ down the best tree T} to get the disease status.

Output:

Disease status of the test genotype s(gt).

Figure 3. Optimum Random ForestAlgorithm.
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have the disease and who are correctly classified as
controls.

The definitions of these two measures of validity
are illustrated in Tablel.

In this table:

a = True positive, people with the disease who test
positive

b = False positive, people without the disease who
test positive

¢ = False negative, people with the disease who
test negative

d = True negative, people without the disease who
test negative

From Tablel, we can compute Sensitivity (accu-
racy in classification of cases, Specificity (accuracy
in classification of controls) and accuracy:

Sensitivity = - 2)
Specificity = ;- 3)
Accuracy = —%4 4)

Sensitivity is the ability to correctly detect a dis-
ease. Specificity isthe ability toavoid calling normal
as disease. Accuracy is the percent of the population
that are correctly predicted.

4.3. Results and Discussion

The normalized weights of 103 SNPs are shown in
Figure 4. SNPs with higher weights are more associ-
ated with thedisease.

In Table 2 we compare the optimum random forest
(ORF) method withthe other 5methods we described
in Section 3. The best accuracy is achieved by ORF -
74.4%. From theresults we can find that the ORF has
the best result since we select the most disease-
associated multi-SNPs to build the random forest for
prediction. Because these SNPs are well associated
with the disease, the random forest may produce a
good classifier to reflect the association.

Table1. Classification contingency table.

True Status

+ -
Classified + a b
Status _ c d

Table 2. The comparison ofthe prediction ratesof 6 prediction

methods.
Measures Prediction Methods
CN SVM GRF MR2 LP  ORF
Sensitivity 455 20.8 34.0 30.6 37.5 70.1
Specificity ¢3.3 88.8 852 852 88.5 76.9
Accuracy 546 63.6 66.1 655 69.5 74.4
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Figure 5 shows the receiver operating characteris-
tics (ROC) curve for 6 methods. A ROC curve repre-
sents the tradeoffs between sensitivity and specificity.
The ROC curve also illustrates the advantage of ORF
over all previous methods.

If the size of MSC is m, and the total number of
SNPs is M, to geta good classifier, then m should be
much less than M. The prediction rate depends on the
size of MSC, as shownin Figure 6. In ourexperiment,
we found that the best size of MSC is 19.

5. CONCLUSION

In this paper, we discussthe potential ofapplying ran-
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dom forest on disease association studies. The pro-
posed genetic susceptibility prediction method based
on the optimum random forest is shown to have a
high prediction rate and the multi-SNPs being
selected to build the random forest are well associ-
ated with diseases. Actually the cause ofcomplex dis-
eases is the combination of the environmental,
genetic factors and some other factors such as infec-
tion and races. In our future work we are goingto ana-
lyze the interactive contribution of these factors for
the development of complex diseases. Our next pro-
ject is going to find the relationship between the
genetic factor and race in the development of Type 2
Diabetes. The integrated software will be available
soon for publicuse.
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