
Journal of Biomaterials and Nanobiotechnology, 2012, 3, 280-285 
http://dx.doi.org/10.4236/jbnb.2012.322034 Published Online May 2012 (http://www.SciRP.org/journal/jbnb) 

Numerical Investigation of Traveling Wave Electroosmotic 
Flows in a Microchannel* 

Bo Chen, Jiankang Wu, Han Chen 
 

Mechanics Department, Huazhong University of Science and Technology, Wuhan, China. 
Email: wujkang@mail.hust.edu.cn 
 
Received January 29th, 2012; revised February 28th, 2012; accepted March 10th, 2012 

ABSTRACT 

In this paper, a coordinate transformation method (CTM) is employed to numerically solve the Poisson-Nernst-Planck 
(PNP) equation and Navier-Stokes (NS) equations for studying the traveling-wave electroosmotic flow (TWEF) in a 
two-dimensional microchannel. Numerical solutions indicate that the numerical solutions of TWEF with and without 
the coordinate transformation are in good agreement, while CTM effectively improves stability and convergence rate of 
the numerical solution, and saves computational cost. It is found that the averaged flow velocity of TWEF in a micro- 
channel strongly depends on frequency of the electric field. Flow rate achieves a maximum around the charge frequency 
of the electric double layer. The approximate solutions of TWEF with slip boundary conditions are also presented for 
comparison. It is shown that the NS solution with slip boundary conditions agree well with those of complete PNP-NS 
equations in the cases of small ratios of Electric double layer (EDL) thickness to channel depth (λD/H). The NS solution 
with slip boundary conditions over-estimates the electroosmotic flow velocity as this ratio (λD/H) is large. 
 
Keywords: Traveling-Wave Electroosmotic Flow (TWEF); Coordinate Transformation Method (CTM); Electric  

Double Layer (EDL); Poisson-Nernst-Planck (PNP) Equations 

1. Introduction 

Microfluidics has emerged as a new area of multiphysi-
cal research associated with fluid mechanics, biology, 
chemistry and electricity [1]. Microfluidic devices have 
extensive applications in biochemical and biomedicical 
analyses. Electroosmotic microfluidic chips have many 
advantages such as easy fabrication, low costs, and high 
reliability. Electroosmotic flows (EOF) have been in-
creasingly recognized as an efficient fluid transport/ma- 
nipulation mechanism in microfluidic chips [2]. Good un- 
derstanding of electrokinetic flow behaviors is required 
for the optimal design of electroosmotic microfluidic 
devices. Most solid surfaces acquire an electric charge 
when brought into contact with electrolyte solutions. The 
charged wall surface attracts counter-ions and repels 
co-ions in the liquid. As a result, there is an excess of 
counter-ions over co-ions in a thin liquid layer near the 
solid wall. This thin and charged liquid layer is called the 
Electric double layer (EDL) [3,4]. Electroosmosis (EOF) 
is the charged liquid flow relative to the stationary wall 
surface under an electric field applied at a tangent to the 
wall. A lot of studies, such as [5-8] have been devoted to  

EOF in microchannels with DC electrical fields where a 
high voltage is usually required. Recently, electroos- 
motic flows driven by AC electrical fields with asymme-
try electrodes have been studied [9-12]. It is found that 
the AC field with low voltage can produce directional elec- 
troosmotic flow rates in a microchannel, but the flow rate is 
small. Ramos [13-16] also found directional flow rates of 
electroosmotic flows in a microchannel driven by travel- 
ing wave electrical fields. A group of discrete electrodes 
are embedded beneath the solid wall and electrically in- 
sulated from the liquid. A traveling wave electrical field 
can be created by applying AC voltage of the same am- 
plitude and frequency on all electrodes, and a lag phase 
angle is imposed between two neighboring electrodes in 
sequence. Traveling-wave electroosmotic flow (TWEF) 
is a nonlinear electrokinetic flow phenomenon. The trav- 
eling wave electric field attracts/repulses ions periodi- 
cally to induce charge density inside the channel. The 
electric force on the fluid ρeE is a nonlinear interaction 
between the applied electric field and induced charge 
density. It is called induced charge electroosmosis (ICEO) 
[17]. Experimental study [13] showed that the averaged 
electroosmotic flow velocity of TWEF in a microchannel 
achieves a maximum around the charge frequency of 
EDL. Exact analytic solutions of TWEF in a microchan- 
nel have not been available. Numerical solution is also  
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difficult because of the locally high gradient near the 
solid wall and multiphysical interactions of fluid flow, 
electricity and ion migration. Furthermore, the gradient is 
much greater in the direction perpendicular to the wall 
(transverse direction) than that in the direction tangent to 
the wall (longitudinal direction). Therefore, a refined grid 
is needed in the region near the wall. However, the grid 
size in the transverse direction may be much smaller than 
that in the longitudinal direction. Such kind of grid often 
leads to poor numerical solutions. It is difficult to man- 
age numerical convergence and grid refinement. The 
coordinate transformation method (CTM) [18] is one of 
the effective methods for solving complex electrokinetic 
flows. CTM amplifies EDL thickness and does not 
change computational domain, so that numerical conver- 
gence can be greatly improved. The numerical solutions in 
a transformed system with a coarse grid can be as accu- 
rate as those in a non-transformed system with a refined 
grid. The objective of this study is to use CTM for numeri- 
cal investigation of TWEF behaviors based on complete 
electrokinetic equations and to make comparison with ap- 
proximate NS solutions with slip boundary conditions. 

2. Physical and Mathematical Description of 
TWEF in a Microchannel 

A two-dimensional microchannel with embedded elec- 
trodes is shown in Figure 1. A group of discrete mi- 
cro-electrodes is embedded on the bottom wall of the 
channel. Electrodes are insulated from the liquid. No 
electrode is on the top wall of the channel that is electri- 
cally insulated. A traveling wave electrical field can be 
created by applying AC voltage on all electrodes with the 
same amplitude and frequency, but a lag phase exists 
between every two neighboring electrodes. The traveling 
wave electric potential on the bottom wall can be ap- 
proximately expressed by , where, 
V0, ω, k are the amplitude, angle frequency and wave 
number of the traveling wave, respectively. 

0 coswV V t kx  

2πf   
is the physical frequency, and 2πk L , where L is the 
wave length. It is expected that the traveling wave elec- 
troosmotic flow behaves periodically in the longitudinal 
direction of the channel (x), thus a part of the channel (L 
× H) is needed for numerical analysis, as shown in Fig- 
ure 1, where H is the channel depth. The microchannel is 
filled with a symmetrical electrolyte solution. 
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Figure 1. Sketch of a two-dimensional microchannel with 
traveling wave electroosmotic flows. 

3. Governing Equations and Boundary  
Conditions of TWEF in THE  
Microchannel 

The continuity equation and Navier-Stokes (NS) equa-
tion for incompressible fluid flow read as: 

0 V .                     (1) 

  2
ep

t
             

V
V V V .     (2) 

where, V is velocity, ρ is fluid density, μ is dynamic vis- 
cosity of the fluid, p is pressure, and ρe is the volume 
charge density of the solution. The last term in Equation 
(2) (–ρeΔΨ) is the electric force acting on the fluid, where 
Ψ is electrical potential. No-ship boundary conditions on 
channel walls and periodical flow conditions at the inlet 
and outlet of the channel are imposed. The electric po- 
tential of TWEF is governed by the Poisson equation [1] 

  ,e
e F c c


 

         .     (3) 

where c+, c– are mole concentrations of positive and 
negative ions, respectively, ε is solution permittivity, and 
F is Faraday’s constant. The traveling wave electric po- 
tential on the bottom wall of the channel is 

0 cosw V t k   x .           (4) 

and 

0
n





.                      (5) 

on the insulated top wall. Periodic conditions of the po- 
tential Ψ at inlet and outlet of the channel are imposed. 
The ion concentrations are governed by the Poisson- 
Nernst-Planck (PNP) equations reflecting charge conser- 
vation law. 
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 .  (6)  

where D is ion diffusivity, R is the gas constant, T is the 
absolute temperature, zi is the ion valence, and Ji is the 
ion flux. Furthermore, n·Ji = 0 on the channel wall, and 
periodic conditions of ion concentration are imposed at 
inlet and outlet of the channel. In general, the dimen- 
sionless flow variables are defined as follows: 
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where, D  is the characteristic thickness of the electric 
double layer, ε and σ are permittivity and electric con- 
ductivity of the solution, respectively, and c0 is the ion 
concentration of the bulk solution. 

Dimensionless Poisson equation is written as: 

2
2

1

D

q


   .                (10) 

Dimensionless Nernst-Planck equation reduces to 

D

q
q q c

t
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V .         (11) 
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

V .         (12) 

Dimensionless Navier-Stokes equation is written as: 

0 V .                  (13) 

 1 2 2
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t
    
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V V V+ = . (14) 

where, Sc D  ,    2
Ra D RT F   . Equations 

(10)-(14) are the dimensionless coupled governing equa-
tions of TWEF in a microchannel. 

Coordinate Transformation Method for TWEF  
in a Microchannel 

Coordinate transformation is introduced by defining 

x  ,   af y y   , 0 1  .        (15) 

where , 0a  * y  , 2* 2y   in Equations (10)-(14) 
are expressed as: 
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Poisson Equation (10) in the transformed coordinate 
system    is written as: 
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where, 
 
 

  
 

 i j . 

Nernst-Planck Equations (11)-(12) in the    sys-
tem are written as: 
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Flow Equations (13)-(14) in the    system are 
written as: 
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4. Numerical Example and Discussion 

Typical microchannel geometric data and physica1 pa- 
rameters are given as follows. The computational channel 
length and depth are 20 μm,  10 μmL H  , as shown in 
Figure 1, ρ = 993.3 kg/m3, c0 = 10–2 mol/m3, μ = 6.919 × 
10–4 Pa/s, T = 310 K, ε = 7.2036 × 10–10 F/m, F = 96,490 
C/mol, R= 8.314 J/(k·mol), λD = 100 nm, D = 2 × 10–9 
m2/s, c0 = 10–2 mol/m3, U0 = 2 × 10–4 m2/s, σ = 1.45 × 10–4 
(mS)/m, a = 0.2 in coordinate transformation Equation 
(15). Averaged TWEF velocity is defined as  

 
0 0

1
, d d

H P
U u y t t y

HP
   , where P is the period of 
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TWEF. Dimensionless averaged velocity is defined as 

0U U U . COMSOL Multiphysics was used to solve 

TWEF Equations (18)-(23) in the transformed system 
(  ) and Equations (10)-(14) in the physical system 

( x y ). To validate our numerical solutions, an approxi-

mate solution of the NS equations with electroosmotic slip 
velocity boundary conditions is also presented for com-
parison with that of the complete TWEF equations. 
When the voltage amplitude of the traveling wave elec-
tric field is low, and the ratio of EDL thickness to chan-
nel depth (

D H ) is small, the effects of EDL on the 

electrokinetic flow can be replaced by a local slip veloc-
ity su E    [9-11]. It is called Helmholtz-Smolu- 

chowski velocity, where ξ and E are the local wall zeta 
potential and wall electric field intensity, respectively. 
This velocity serves as the slip boundary condition when 
solving the NS equations without solving Poisson-Nernst- 
Planck (PNP) equations [19]. This slip boundary model 
simplifies numerical computation, but it may produce 
errors. The local grids close to electrodes in the physical 
system and transformed system are shown in Figure 2 
and Figure 3. The total number of grids in the trans-
formed system is much smaller than that in the physical 
system. 

Figure 4 to Figure 7 show effects of the TWEF fre-
quency on the averaged flow velocity. Dimensionless 
frequency is defined as 0 0 0,  1 ,f f f f T  0T   

D H D , where 0  is the charge time scale of EDL in 
the microchannel. Numerical results indicate that aver-
aged electroosmotic velocity looks like Gaussian distri-
bution with respect to the electric field frequency, and 
achieves a maximum around 

T

1f  , corresponding to 
the charge time of the electric double layer in the micro-  

 

 

 

Figure 2. Local grid near the wall in physical system, total 
800 finite-elements. 

 

 

Figure 3. Local grid near the wall in transformed system, 
total 200 finite-elements. 
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Figure 4. Averaged electroosmotic velocity versus electric 
frequency 0 = 1, = 0.01DV λ . 
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Figure 5. Averaged electroosmotic velocity versus electric 
frequency 0 = 10, = 0.01DV λ . 
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Figure 6. Averaged electroosmotic velocity versus electric 
frequency 0 = 1, = 0.1DV λ . 
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Figure 7. Averaged electroosmotic velocity versus electric 
frequency 0 = 10, = 0.1DV λ . 
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channel. The averaged velocity behavior is consistent with 
experimental results [16]. It can be seen, from Figure 4, 
that the numerical solutions with and without coordinate 
transformation are in good agreement. The slip boundary 
solution also agrees with that of the complete PNP equa-
tions, but the peak value is slightly larger. In this case, 
both the voltage amplitude of the electric field and EDL 
thickness are small, 0 0 0 1V V   , , 0 25 mVV  D   

D H  = 0.01. 
In the case of large voltage applied on the electrodes 

( 0 10V  ) in Figure 5, it can be seen that the averaged 
velocity increases with the increase of the voltage ampli-
tude of the electric field, and the peak frequency（when 
velocity is maximum ) of the PNP solution is slightly 
lower than that of the slip boundary solution. In the case 
of large voltages, the slip boundary solution is less accu- 
rate. In the case of a shallow channel and small wall 
voltage ( 0.1D D H   , 0 1V  ) in Figure 6, the slip 
boundary solution over-estimates the flow velocity. The 
error is about 60% relative to that of the PNP solution. In 
the case of a shallow channel and high applied voltage 
( 0.1D D H   , 0 10V  ) in Figure 7, it can be seen 
that the slip boundary solution leads to a considerable 
error both in the flow velocity and the peak frequency. 
The slip boundary approximation is not valid for rela- 
tively large ratio of D H , and complete PNP-NS equa- 
tions have to be used which accurately describe the mul- 
tiphysical interaction between the fluid flow, electricity 
and ion transport in the microfluidic system. 

The effects of EDL thickness (dependent on fluid prop- 
erties) on the electroosmotic flow velocity is illustrated in 
Figure 8. It can be seen that averaged flow velocity de- 
creases with the increase of the EDL thickness  
( D D H  ). In addition, the slip boundary solution is 
accurate for small D , and over-estimates flow velocity 
as D  is large. 

The effects of wave length of TWEF on the electroos- 
motic flow velocity is shown in Figure 9 where 0 1,V   

0.01D  . It can be seen that when the wave length in- 
creases the averaged velocity decreases and the peak 
frequency is shifted to lower values. 
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Figure 8. Averaged electroosmotic velocity versus Dλ , 

0 = 1.V  
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Figure 9. Averaged electroosmotic velocity versus electric 
frequency 0 = 1, = 0.01DV λ . 

5. Conclusions 

The numerical investigation of traveling wave elec-
troosmotic flows (TWEF) in a microchannel is carried 
out in this study using a coordinate transformation method, 
based on fully coupled nonlinear Poisson-Nernst-Planck 
equations and Navier-Stokes equations. Conclutions are 
summarized as follows. 

1) Grid refinement is required for accurate numerical 
solution due to high gradients of TWEF near the solid 
wall and multiphysical interactions between fluid flow, 
electricity and ion transport. The coordinate transforma-
tion method adopted in this study effectively decreases 
gradients of flow variables and improves stability and 
convergence. The numerical solutions in the transformed 
system with a coarse grid can be as accurate as those in 
the physical system with a refined grid. 

2) Averaged velocity of TWEF in the microchannel 
behaves like a Gaussian distribution with respect to the 
electric field frequency, and achieves a maximum when 
the frequency of TWEF approaches the charge frequency 
of the electric double layer, i.e.,    2π D H D  . 
The averaged velocity is small as the electric frequency 
is far away from the charge frequency. The averaged 
velocity decreases when EDL thickness in the microcan-
nel or the wave length of TWEF increases. 

3) Slip boundary model simplifies numerical computa- 
tion of TWEF in the microchannel. The slip boundary 
solution is accurate in the case of small ratio of EDL 
thickness to channel depth, and over-estimates averaged 
TWEF velocity when the ratio ( D H ) is large. 
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