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Abstract 
E-cadherin molecules are cell-cell molecular connectors, but also act attach-
ing cell surface to the cytoskeleton through catenin’s and additional partner 
proteins. Its main function is to regulate cellular adhesion and motility, and 
therefore acts as an invasion suppressor system. Its role is crucial in the in-
duction and maintenance of cell polarity and differentiation, and in the or-
ganization and maintenance of tissue architecture. Downregulation or loss of 
its function is associated with an invasive and aggressive phenotype in many 
types of human cancers. In alterations of animal development, E-cadherin 
dysfunction influence in premature lethality or epidermal barrier and im-
munity defects. However, new hypothesis over its promoter role in tissue in-
vasion is on focus. In addition to its tumor suppressor role, E-cadherin is a 
guiding molecule in collective cell migration increasing the metastasis risk 
during in vivo tumorigenesis. This E-cadherin function explains the retention 
of the functional E-cadherin expression, and that the epithelial-mesenchymal 
transition (EMT) is not required for the metastasis occurrence. However, like 
a switch, in some tumoral environments E-cadherin post-translational mod-
ifications may cause cell cluster migration. Like in development, in certain in 
vivo tumoral contexts, E-cadherin apparently involves signaling rather than 
cell contact formation. In this report, we explore the possibility of a novel role 
of thyroid hormones (THs) in the signal via E-cadherin-catenins, this not 
only should be involved in development and homeostasis, but also in cancer 
susceptibility of gastrointestinal tract. 
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1. Introduction 

The disorganization of cellular adhesion and motility is one of the crucial factors 
responsible for tumor initiation and progression. The genes involved are also 
contributors to malignancy along with genes responsible for cell proliferation 
and survival.  

Between the tumor suppressor genes, E-cadherin takes up a key place because 
most of human tumors are carcinomas derived from epithelial tissues, in which 
E-cadherin is the prototypic cell adhesion molecule, which functions by contact 
inhibition controlling cell survival and proliferation. Epithelial tumors often lose 
E-cadherin partially or completely as they progress toward malignancy [1] [2] 
[3] [4]. However, some cancers express normal or high levels of E-cadherins, 
such as epithelial ovarian cancer [5] [6] or inflammatory breast cancer [7] [8]. 
The loss of E-cadherin expression in association with the EMT often occurs 
during tumor metastasis. However, carcinomas and distal metastasis may retain 
E-cadherin expression [9] [10], and the EMT is not required for the metastasis 
occurrence [11]-[15]; in fact, clusters of tumor cells give rise to mammary me-
tastasis [16] [17].  

It is known that E-cadherin is involved in collective cell migration facilitating 
invasion and metastasis [10] [18]. It has been proposed that Rab11 acts coopera-
tively with E-cadherin in the promotion of collective cell migration, possibly also 
mediated by Rac1 activation and matrix metalloproteinase-2 expression and in-
dicates a poor prognosis in colorectal carcinoma [19]. Therefore, changes in 
E-cadherin function other than complete loss of expression may be important 
for these processes. In this sense, Petrova et al. [20] have proposed that 
E-cadherin adhesive activity in cancer cells can be regulated at the cell surface by 
an inside-out signaling mechanism probably involving allosteric regulation of 
the homophilic adhesive bond, analogous to integrin regulation [21] [22] [23]. 
Regulation of cadherin adhesive activity at the cell surface in response to growth 
factors has been shown to control tissue morphogenesis and epithelium forma-
tion [21] [24] [25]. Similar surface regulation has been proposed for C-cadherin 
in cell re-arrangements and tissue morphogenesis, during Xenopus gastrulation 
[24] [25] and for E-cadherin in epithelial cell migration and branching [21].  

In cancer, the idea that adhesion proteins act as invasion suppressors is in-
compatible with many experimental and clinical observations. Cellular context, 
including post-translational modifications and protein turnover, may critically 
regulate junction dynamics and cell motility and can collaborate with the mi-
croenvironment to alter tissue-level phenotypes [26]. 

2. E-Cadherin Dysfunction in the Adulthood 

Different mechanisms for E-cadherin inactivation in malignant tumors include 
mutations, epigenetic silencing, and increased endocytosis and proteolysis 
(Table 1). 

Thus, knowing the mechanisms that regulate the epithelial polarity and  
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Table 1. Representative abnormalities of E-cadherin. Based on [4] [65] [69]. 

Protein 
Human 

gene 
Tumor-associated  

abnormalities 
Tumor type Clinical correlates References 

E-CADHERIN CDH1 

Loss of heterozygosity Numerous Malignant progression [3] 

Promoter methylation Numerous Malignant progression [3] 

Germline mutations 
Gastric (DGC) 
Breast (ILC) 

Hereditary diffuse 
gastric cancer (HDGC) 
syndrome 

[51] 

Somatic mutations 
Gastric (DGC) 
Breast (ILC) 
Pancreatic 

Highly invasive [50] 

Upregulated expression 
Epithelial ovarian 
cancer 

Tumorigenesis [5] [6] 

Overexpression Breast (IBC) Tumor emboli [8] 

Upregulated exon 11 
splicing by promoter 
methylation and  
SFRS2 splicing factor 
upregulation 

Bone narrow 
Chronic lymphocytic 
leukemia 

[65] [69] 

No tumor-associated 
abnormalities 

Lesion type Clinical correlates References 

E-cadherin depletion 
for malformation of 
E-cadherin-catenins 
complexes of renal 
adherens junctions for 
mutated polycystin-1 

Accumulation of 
fluid-filled cysts and 
abnormalities in 
renal epithelial cell 
function 

Autosomal dominant 
polycystic kidney  
disease (ADPKD) 

[86] 

conditional gene  
ablation in the 
mouse/human in  
keratinocytes 

E-cadherin postnatal 
loss in keratinocytes 
leads to progressive 
loss epidermal  
differentiation 

Hailey-Hailey disease. 
Benign familial form of 
pemphigus and  
acantholysis, basal 
keratinocytes 
Hyperproliferative and 
degenerative responses 
of epidermis 

[78] 
[79] 

Disruption of 
E-cadherin-mediated 
junctions by siRNA 
between airway  
epithelial 

Th2 cell recruitment 
and promotion of 
Th2-type allergic 
inflammation 

Respiratory allergy 
Th2-mediated 

[139] 

Thinning of  
suprapapillary  
epidermis and marked 
dermal angiogenesis  
by altered E-cadherin 
expression 

chronic autoimmune 
and inflammatory 
skin disease 

Psoriasis [144] 

References: DGC: Diffuse gastric carcinoma; IBC: Inflammatory breast carcinoma; ILC: Invasive lobular carcinoma. 
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molecules involved in it, such as E-cadherin and β-catenin, will help to unravel 
the mechanisms that control the phenotype, mobility and aggressiveness of tu-
moral cells [27]. The tissue progress from a physiological state in which the 
growth and differentiation rate are normally regulated, to a pathological, hyper-
plastic and invasive state, frequently involve a decrease or E-cadherin miss-local- 
ization and nuclear trans-localization of β-catenin. Nuclear β-catenin, in turn, 
activates target genes involved in cellular proliferation and metastasis processes 
[28]-[33] (Figure 1). 

2.1. E-Cadherin in Epithelia Establishing and Maintenance 

Both in developmental and adult epithelia, E-cadherins are the main molecules 
involved in the establishment and maintenance of adherens junctions (AJs). 
These are molecular complexes highly organized, where E-cadherin allows the 
cells to contact each other, and also modulate the organization of actin sub-
membrane cortex [34] [35] [36] [37] and microtubules network [38] [39]. Both 
chemical and mechanic signals generated in the adhesive contact sites can act 
transducing through E-cadherin cytoplasmic domain to the nucleus, modifying 
the gene expression [37] [40]-[46]. 

Epithelial physiology depends not only of E-cadherin expression level [4] [47] 
[20], but also of its functionality in the cell surface. Epithelial AJs can weaken by 
mutations in E-cadherin gene, which decrease E-cadherin in the cell surface, and 
by changes in the phosphorylation level of adhesive complex molecules [44] [48] 
(Figure 1). 

2.2. E-Cadherin Mutations 

Somatic CDH1 gene mutations are the most common alterations in scattered 
cancers, such as diffuse gastric and lobular breast cancer, generating E-cadherin 
alterations detectable in about 50% of patients [49] [50]. Sixty-nine somatic mu-
tations of the CDH1 gene and few miss sense mutations (mainly splice site and 
nonsense truncated mutations) have been reported [50]. Major difference in 
mutation type between diffuse gastric and infiltrative lobular breast cancers also 
has been detected. While the exon skipping with in-frame deletions is found in 
diffuse gastric tumors, most mutations found in infiltrating lobular breast can-
cers were out-of-frame mutations, which yield secreted truncated E-cadherin 
products. In most cases, these mutations occur in combination with loss of he-
terozygosity [4]. 

In addition, germline CDH1 gene mutations have been reported in familial 
gastric cancer [51] [52] [53], generating truncated E-cadherin protein in the 
signal peptide domain [54] or affecting the mechanism of inside-out cell surface 
regulation [20]. 

The number of mutations is growing daily (Genetic Home Reference, 
https://ghr.nlm.nih.gov/gene/CDH1). Therefore, the blockade of E-cadherin 
downregulation in tumors, could be one of the important approaches in future  
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Figure 1. E-cadherin dysfunction and cancer. In a differentiated and established epithe-
lium, the main function of E-cadherin is to regulate cellular adhesion and motility, and 
therefore acts as an invasion suppressor system (stage 1). Different mechanisms for 
E-cadherin inactivation in malignant tumors include mutations, epigenetic silencing, and 
increased endocytosis and proteolysis (stage 2). Downregulation or loss of its function is 
associated with an invasive and aggressive phenotype in many types of human cancers, 
because often occurs an EMT (stages 2 & 3). The tissue progress from a physiological 
state in which the growing and differentiation rate are normally regulated for several 
growth factors to a pathological, hyperplastic and invasive state, frequently involve a de-
crease or E-cadherin miss-localization and nuclear trans-localization of β-catenin. Nuc-
lear β-catenin in turn, activates target genes involved in cellular proliferation and metas-
tasis processes, and cytoskeleton remodeling (stages 2 & 3). TJ: tight junction; AJ: adhe-
rens junction; DS: desmosome; HD: hemidesmosome; P: phosphorylated amino acid: Ub: 
ubiquitin tag; T4: 3,5,3’,5’-tetraiodothyronine; T3: 3,5,3’-triiodothyronine; Colored nuc-
lear segment: purple E-cadherin gene, green β-catenin gene, red α-catenin gene; black 
TH-target gene others. 
 
gene therapy. Targeting of this molecule could prevent the metastatic potential 
of almost any epithelial tumor. Nevertheless, it will not be an easy approach 
since its downregulation is caused by multiple mechanisms, ranging from muta-
tions and gross deletions to gene transcription repression, as well as signal 
transduction through the E-cadherin adhesion complexes.  

Mutation of calcium-binding sites leads to loss of the adhesive function of 
E-cadherin and proteolytic degradation or cytoplasmic miss localization [28]-[32], 
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such as has been demonstrated in gastric carcinoma [55]. Most of the mutations 
affect the putative calcium-binding motif DTND [28], between EC2 and EC3 
[48] [56].  

CDH1 functional loss has been linked to diffuse-type gastric cancer suscepti-
bility [54], being the germline inactivating CDH1 mutations characteristic of the 
hereditary diffuse gastric cancer syndrome [57]. E-cadherin deficiency initiates 
the gastric signet ring-cell carcinoma in humans and mice [58]. These mutations 
should be responsible for the scattered tumor cell morphology and highly inva-
sive behavior typically associated with gastric cancer [48] [59] [60]. Additionally, 
in vitro studies have demonstrated that the carcinoma cell lines unable to ex-
press E-cadherin, as well as the use of antibodies and antisense RNAs against 
E-cadherin, increase the cell ability to invade collagen gels or tissues [61] [62] 
[63] [64], demonstrating the essential role of E-cadherin in the establishment of 
the nonmigratory cell phenotype in some tissue contexts.  

A few years ago, a new mechanism of E-cadherin gene downregulation was 
uncovered, suggesting important roles during tumorigenesis. It is based on an 
aberrant E-cadherin transcript (nonfunctional RNA), lacking exon 11, that 
results in a frameshift, premature termination codon and upregulation of the 
Wnt/β-catenin pathway in chronic lymphocytic leukemia (CLL) [65] (See [46]). 
These RNA transcripts are degraded by a nonsense-mediated decay pathway that 
is activated in all mammalian cells [66] [67] [68]. This E-cadherin gene inactiva-
tion mechanism in turn, results in fewer correctly spliced transcripts and so, a 
decreased E-cadherin expression. This alternative splicing also occurs in normal 
nonmalignant B lymphocytes, but the degree of exon 11 splicing in CLL is mar-
kedly upregulated [65]. Subsequently, Sharma et al. [69] found that this 
E-cadherin miss-splicing mechanism is activated in human tumor tissues, in-
cluding breast, prostate and head and neck cancer, expressing the exon 
11-skipped transcripts. Moreover, in tumor, both E-cadherin gene promoter 
methylation and SFRS2 splicing factor upregulation are involved in the 
E-cadherin miss-splicing [69].  

These evidences support E-cadherin roles on control of the cell adhesion and 
motility, as well as, its position of a tumor/metastasis suppressor gene. 

3. E-Cadherin Dysfunction in Ontogenetic Development 
3.1. E-Cadherin Dysfunction in Mammal Development 

During mammalian pre-implantation, E-cadherin mediates the compaction 
process and blastocyst formation, being an important player for the maintenance 
and function of epithelial cell layers at various stages [70] [71] [72]. Afterwards, 
the cadherin switching—downregulation of E-cadherin and its replacement by 
N-cadherin, occurs during gastrulation and neurulation (also in tumorigenesis) 
[73] [74].  

Homozygous CDH1-knockout mouse embryos die around the time of im-
plantation, owing to the inability to form trophectodermal epithelium [75] [76]. 
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Therefore, the conditional inactivation has been used to evaluate the function of 
E-cadherin during embryogenesis and organogenesis in mammary gland [77], 
skin [78] [79] [80] [81], and thyroid gland [82]. Some of these studies demon-
strate that the postnatal loss of E-cadherin in mice epidermal keratinocytes re-
sults in the absence of AJs and improper cell differentiation, leading to progres-
sive loss of hair follicles [78]. Others result in hyperplasia and hair follicle loss, as 
well as compensatory elevation of P-cadherin [79]. Notably, a more severe phe-
notype is observed when CDH1 is deleted from the mouse epidermis [81]. Loss 
of E-cadherin in the epidermis results in mice perinatal death, owing to an ab-
sence of epidermal barrier function as a consequence of faults in tight junction 
formation.  

Variation of the observed phenotypes has been attributed to differences in the 
time points at which E-cadherin was inactivated [73]. However, new insights in-
to E-cadherin function in epidermal sheet formation and maintenance have been 
obtained by combining conditional gene ablation and RNA interference [80]. 
Loss of mouse E-cadherin results in delayed epidermal sheet formation, and 
when P-cadherin is also suppressed, the defects extend to adherent junctions, 
desmosomes, tight junctions and cortical actin dynamics [80]. In the differen-
tiating alveolar epithelial cells of mouse mammary glands, the CDH1 deletion 
results in massive cell death at the time of parturition, without tumorigenesis 
[77]. In contrast, the somatic inactivation of E-cadherin and p53 in mice leads to 
metastatic lobular mammary carcinoma through induction of anoikis resistance 
and angiogenesis [83]. Apparently, E-cadherin has a role in thyroid gland de-
velopment but not in the maintenance of follicular cell adhesion [82]. 

In vitro studies show that E-cadherin is not only necessary for AJ formation 
but also its adhesive activity is crucial for the assembly of other junctional com-
plexes such as desmosomes, gap and tight junctions [84] [85]. These data suggest 
that initial cell-cell adhesion mediated by the cadherin complex is a key step in 
setting up other cell junctions, cell polarity, and three-dimensional tissue organ-
ization. Surprisingly, in vivo studies suggest an E-cadherin signaling role rather 
than adhesive in the stratified epithelium morphogenesis [81].  

3.2. E-Cadherin Dysfunction in Anuran Development 

To check the preceding hypothesis, we carry out an in vivo study by altering 
phosphorylation level of adhesion protein-complexes in toad tadpoles (Rhinella 
arenarum) via inhibition of protein tyrosine phosphatases [44]. Again, neither 
disassembly of epidermal cell junctions nor histological changes were observed, 
although when E-cadherins and β-catenins deeply modified their expression le-
vels. Cells significantly decrease surface E-cadherin and the submembrane 
β-catenin, also modifying the expression pattern morphology, preserving E- 
cadherin only in the puncta and increasing the cytosolic and nuclear β-catenin. 
The histological analysis did not reveal blistering or loss of cellular shape or tis-
sue architecture, suggesting no major roles of E-cadherin in epidermal cell con-
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tact formation and maintaining in vivo. A possible explanation for this could be 
that the loss of E-cadherin would be offset by the transcriptional upregulation of 
“vicariant” adhesive molecules avoiding cell-cell contact disorganization, such as 
has been suggested by Roitbak et al. [86]. Interesting, E-cadherin gene inactiva-
tion in mouse produces perinatal death due to the inability to maintain a func-
tional epidermal water barrier and reveals that the key tight junctional compo-
nents were improperly established, resulting in altered tight junctional architec-
ture and epidermal resistance [81]. Surprisingly, desmosomes and AJs were 
formed normally and no obvious defects in cell contacts were detected. This fact 
suggests that E-cadherin is specifically required for tight junctions but not for 
other contact formation. This apparently involves signaling rather than cell con-
tact formation in vivo [81].  

In addition, E-cadherin internalization and recycling at cell surface are a ma-
jor route for remodeling and maintenance control of AJs [87] [88] [89], as well 
as its degradation via lysosomes [90] [91] [92]. There is evidence that a small 
pool of cell surface E-cadherin is constitutively and constantly trafficked through 
endocytosis and recycling. This pool is markedly increased in pre-confluent cells 
and when cell-cell contacts are weakened or disrupted by distinct mechanisms 
[87] [88]. Obviously, the decrease of cell surface E-cadherin and their cytosolic 
absence suggest that it is internalized and then shuttled to lysosomes via 
AJ-protein tyrosine phosphatase (PTP) inhibition [44]. Lysosomal targeting of 
E-cadherin is an important post-transcriptional mechanism to deplete cellular 
E-cadherin during Src-induced epithelial to mesenchymal transitions [90], whe-
reas surface recycling targeting will be very important during organ and tissue 
remodeling, such as metamorphosis [45] [46] (Figure 1). Interesting, phos-
pho-site mutations indicate that dephosphorylation of specific Ser/Thr residues 
in the N-terminal domain of p120-catenin mediates adhesion activation me-
diated by E-cadherins [21]. Thus, physiological regulation of the adhesive state 
of E-cadherin involves physical and/or conformational changes in the EC inter-
face regions of the ectodomain at the cell surface that are mediated by cate-
nin-associated changes across the membrane. 

3.3. Animal Developmental Timing and E-Cadherin Functional  
Activity 

Substantial differences found on results between in vitro and in vivo studies, as 
well as on the time points at which E-cadherin is evaluated during morphogene-
sis and organogenesis, clearly suggest that E-cadherin and their linking-catenins 
have tissue- and cell context-specific roles depending of on animal-developmental 
timing. Thus, blocking antibodies against E-cadherin and catenins provoked 
notable alterations of early development [93] [94] [95]. Tail-bud embryos of 
Rhinella arenarum toad treated with anti-E-cadherin did not exhibit significant 
developmental delay, but suffer severe alterations, including shortening and 
folding of neural tube and notochord, deformed and ectopic pharynx and seg-
mented somitogenic mesoderm, globular tail, malformed ear and eye vesicles, 
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and apparent absence of heart tube and gills. Surprisingly, the epidermis seems 
to be normally developed [94]. Although E-cadherin is an epithelial marker, 
these results suggest differential roles of E-cadherin into epidermal ectoderm, 
neuroectoderm, endoderm and mesoderm, during early development. This is so, 
that in vitro and in vivo, E-cadherin maintains the pluripotency of embryonic 
stem cells [96]-[100]. 

In the Rhinella arenarum toad, it has been proposed that the epidermal and 
digestive tract E-cadherins establish exploring contacts at stage 15, transient 
contacts that increase from stage 17 onwards, and it turns into a zippering 
framework structure from stage 25 onwards, which coincides with the transition 
from embryonic into larval life [44] [45]. From stage 25 onwards, this frame-
work increases and becomes organized in the puncta contacts between two or 
more cells. Even though, a drastic skin remodeling by the disassembling and 
reassembling of adhesive contacts is produced at the metamorphic climax, 
E-cadherin expression in cell boundaries is stable, when live larval, apoptotic 
larval, and live preadult cells coexist [44] [45] [46]. Functionally, the quick dis-
assembly and the weak force associated at cadherin EC1 interaction could be 
advantageous in the early exploration phase of junctional remodeling that must 
occur during the establishment of the first tissue patterns [101] [102]. 
Afterwards, in the development, the continuous pattern and puncta observed 
could represent steady contacts, where the interaction between all cadhe-
rin-ectodomains should generate the force to stabilize the new tissue structure 
formed, which must be able to support strong tensions and deformations [44] 
[101] [103] [104]. It is known that the strong adhesion foundation by cadherins 
depends on their association with the actin cytoskeleton, a connection mediated 
by β- or γ- and α-catenin [105], and on their surface stabilization mediated by 
p-120-ctn [89]. Some studies demonstrate that the phosphorylation of β-catenin 
reduces their affinity for E-cadherin by approximately 85% [106] and increases 
the free cytosolic pool of β-catenin, regulating its function as a signaling mole-
cule during epithelial cell migration [107]. Additionally, it is known that to reach 
a stable manner, it is necessary both to maintain a dephosphorylated pool of 
β-catenin as well as, low levels of free cytoplasmic β-catenin [108]. This state can 
be accomplished both by recruitment of active PTPs, and/or β-catenin-destruction 
multiprotein complexes [106] [109]. PTP inhibition promotes tyrosine phos-
phorylation of zonula adherens proteins, increasing the movement of macromo-
lecules and neutrophils across the endothelium barrier [110]. Opening of the 
paracellular pathway theoretically permits disengagement of homophilically 
bound VE-cadherin ectodomains and lateral mobility in the lipid bilayer as a 
VE-cadherin–catenin complex. This would permit more dynamic and efficient 
zonula adherens disassembly/reassembly in response to rapidly changing phy-
siological demands [109]. In contrast, PTP inhibition caused E-cadherin-disa- 
ppearance of both membrane and cytosol suggesting lysosomal targeting, and 
β-catenin mobilization from AJs and activation of nuclear signal pathway [44]. 
Therefore, the mechanisms by which the tyrosine phosphorylation state of pro-
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teins of the zonula adherens act regulating both cadherin function and concen-
tration remain poorly understood.  

3.4. Thyroid Hormones Influence in the E-Cadherin Cell Activity  

Searching for some of those physiological demands, which control the cell sur-
face E-cadherin function and concentration, as well as some response to this di-
lemma, we analyzed the response to 3,5,3’-triiodothyronine (T3), a key hormone 
of vertebrate development, of E-cadherin, β-, α- and p120-catenin, and small 
proteins G. We found morphometric and molecular evidences of positive gene 
control exerted by T3 on E-cadherin expression, as well as its cytoskeleton con-
necting proteins β- and α-catenin, and Rac1 in gut epithelial cell during anuran 
metamorphosis [45] [46] [111] [112]. Other studies also shown direct transcrip-
tional upregulation of the mouse β-catenin gene by THs [113], and expression 
induction of type 2 deiodinase and E-cadherin by T3 [114]. 

Although when THs have a key role in the development of anurans, recently, 
it has been established that TH signaling is involved not only in development 
and homeostasis but also in cancer susceptibility in the mouse intestine [115]. 
Thus, in intestine, TRα1 binds directly both in vitro and in vivo, to β-catenin 
gene-intron 1 specific TRE sequence (TRE-int1) increasing its expression [113] 
(Figure 1). This positive control is an autonomous way and is parallel to positive 
regulation of proliferation-controlling genes such as type D cyclins and c-myc, 
which are well-known targets of the Wnt/β-catenin pathway [113] (Figure 2). 
Moreover, Sirakov and Plateroti [115] shown in turn, that the increase of 
β-catenin/Tcf4 is correlated with reduction of TRα1 transcriptional activity on 
its target genes, and also that TRα1 activates and synergizes Wnt pathway, in-
ducing crypt cell proliferation and promoting tumorigenesis [116]. Additionally, 
Guigon et al. [117] demonstrated a direct repression of the β-catenin gene by li-
ganded TRβ through interaction with negative TREs located in the CTNNB1 
promoter (Figure 2). This trans-repression is mediated by interaction between 
TRβ with Retinoid X Receptor (RXRβ), and binding of complexes to TREs lo-
cated in the human CTNNB1 promoter between −807 and −772 and consisting 
of two hexamers separated by 14 nucleotides. Thus, the liganded TRβ acts as a 
tumor suppressor via expression inhibition of a potent tumor promoter, the 
CTNNB1 gene.  

Even though TH signaling controls the proliferation of the intestinal epithelial 
progenitors in both amphibians and mammals, it has been suggested that in 
contrast to mammals, the TH control on the Wnt/β-catenin pathway appears to 
dilute in amphibians [115] [118]. However, our studies in anuran gut (Rhinella 
arenarum and Xenopus laevis) suggests an important positive control of 
β-catenin, in addition to α-catenin, E-cadherin and Rac1 small GTPase, during 
organ developmental remodeling [45] [46] [111] [112].  

These and other data show a complex molecular network controlling tissue 
homeostasis. In mammals, THs also exert profound effects on fetal epidermal  
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Figure 2. TH signaling is involved in development, homeostasis and cancer susceptibility in 
the mouse intestine. E-cadherin trans-interaction triggers activation of the phosphatidylino-
sitol-3-kinase (PI3K)-Akt-protein kinase B pathway bound to β-catenin, generating phos-
phatidylinositol-(3,4,5)-triphosphate (PIP3), recruitment of guanine nucleotide exchange 
factors, activation of Rac1 or Cdc42 and Akt, and reduction of Rho activation. In addition, 
TRα or TRβ forms a cytoplasmic complex with the p85 subunit of PI3K, inducing protein 
kinase B/Akt nuclear translocation and inhibition of the Wnt/β-catenin pathway through its 
interaction and consequent sequestration of β-catenin. The process results in down-regulation 
of cell proliferation. Simultaneously, T3 binding to TRs causes co-repressors are displaced 
and co-activator proteins are recruited to the ligand-bound TR complex, facilitating 
T3-dependent activation of the target genes. Besides, THs also exert rapid nongenomic ac-
tions that are initiated at the cell membrane mediated by integrin αvβ3, activating of the 
mitogen-activated protein kinase (MAPK) intracellular cascade, and thus modulating the 
membrane potential and actin cytoskeletal components anchored at the cell membrane. 
TH-activated MAPK, in turn, can rapidly translocate to the nucleus inducing serine phos-
phorylation of TRs, inducing angiogenesis or tumor cell proliferation. Nuclear targets for 
phosphorylated TRs include the transcription factors p53, STAT1a and STAT3, E-cadherin, 
β- and α-catenin, and TRα1 bind to β-catenin gene-intron 1. This positive control is parallel 
to that on type D cyclins and c-myc, which are known targets of the Wnt/β-catenin path-
way. In turn, the increase of β-catenin/Tcf4 is correlated with reduction of TRα1 transcrip-
tional activity on its target genes, and TRα1 activates and synergizes Wnt pathway, inducing 
crypt cell proliferation and promoting tumorigenesis. Opposite exist a direct repression of 
the β-catenin gene by liganded TRβ through interaction with negative TREs located in the 
CTNNB1 promoter. 
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differentiation, barrier formation, hair growth, sebum production, wound heal-
ing, epidermal oxygen consumption, keratinocyte proliferation, and keratin gene 
expression [119]-[125]. Both in rat and mouse liver, in vitro and in vivo admin-
istration of T3 lead to an increased β-catenin cytoplasmic stabilization and nuc-
lear translocation, with concomitant increase in cyclin-D1 expression via 
β-catenin-TCF4. In contrast, liver from T3-treated mice did not exhibit changes 
in Ctnnb1 expression, but increased the β-catenin phosphorylation at Ser675, a 
downstream event of protein kinase A (PKA) pathway [126]. These results sug-
gest T3 action on receptor tyrosine kinase (RTK) of cell membrane—possibly 
EGFR, insulin receptor IGF-1, etc. PKA activation, in turn, phosphorylates 
β-catenin for nuclear translocation and binding with TCF4, thereby modulating 
gene transcription, such as cyclin-D1 gene and others (Figure 2).  

TH treatment also causes astrocytes differentiation through both an initial ac-
tivation of PKA, with a peak activity at 2 h, falling back to basal levels thereafter 
and a biphasic response on the cellular phospho-MAP kinase (p-MAPK or 
p-ERK) levels [127]. The induction was accompanied by a parallel increase in 
phospho-CREB activity, which, however, persisted at the end of the astroglia 
cells transformation [127]. Moreover, E-cadherin expression is highly and post-
natally regulated in the peripheral nervous system in concert with the 
N-cadherin disappearance and the development of myelinating Schwann cell li-
neage. Thus, E-cadherins maintain the structural integrity of noncompact mye-
lin regions. The molecular signal that regulates the cadherin switch in Schwann 
cell is unclear but has been demonstrated that the axonal effect is mediated 
through cAMP-PKA activation-dependent of RTK activation [128]. 

Interesting, human RTK proteins are classified into 20 subfamilies based upon 
structural features in their extracellular regions, which include the cadherin do-
mains, cysteine-rich domains, immunoglobulin-like domains, leucine-rich do-
mains, Kringle domains, fibronectin type III repeats, discoidin I-like domains, 
acidic domains, and EGF-like domains [129]. 

Ligand binding to RTKs stimulates lateral contacts between a pair of EGFR 
molecules, resulting in EGFR dimerization mediated by interactions between 
extracellular regions, transmembrane domains, and cytoplasmic regions result-
ing in stimulation of tyrosine kinase activity and autophosphorylation by an in-
termolecular process [130]. RTKs recruit a variety of signaling molecules that 
stimulate the activities of a variety of intracellular signaling pathways including 
the RAS/MAPK, the PI-3K/Akt, and the Jak2/STAT pathways, among others 
[130].  

It is known that EGF concentration is upregulated by exogenous T3 and de-
velopmentally regulated in mouse [131] and rat [132], showing even sex- and 
tissue-dependent opposite levels [131]. In rat, during the postnatal period, the 
TRβ-mRNA levels first, and EGF-mRNA levels, afterwards, show a dramatical 
increase [132]. However, whereas the neonatal T4 treatment augmented the 
mRNA levels of EGF, it decreased the levels of EGF-receptor and did not signif-
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icantly affect the levels of mRNA for TR. In other studies, T3 induces the expres-
sion of full-length EGFR-mRNA and accelerates their turnover rate, apparently 
because the 3’ end of full-length EGFR-mRNA has a role in their destabilization 
by T3, controlling cell proliferation. Results suggest that the mode of action of 
TH mediates the growth promoting and developmental effects by the transient 
induction of full-length EGF receptor, which is 3’ truncated in hepatoma cells 
[133]. In contrast, T3 could operate as a cell proliferative agent through a me-
chanism involving an autocrine/paracrine EGF/EGFR-dependent tyrosine kinase 
regulation [134]. 

E-cadherin, in turn, can negatively regulate, in an adhesion-dependent man-
ner, the ligand-dependent activation of divergent classes of RTKs [135], pro-
moting cell differentiation.  

It is evident that a cross talking between E-cadherin, EGF/EGFR, T3/TRs is 
necessary to modulate opposite and coordinate process such as cell proliferation 
and differentiation during tissue remodeling. The numerous data and cell con-
text revisions show that T3 and its nuclear receptors modify expression of dif-
ferent genes/proteins involved in cell cycle control, from growth factors (such as 
EGF and TGF-β) to cell surface receptors (EGFR, E-cadherin), as well as pro-
teins acting at the cell membrane (Ras), various transcription factors (c-Fos, 
c-Myc, E2F1, β-catenin, p53), cyclins, Cip/Kip family of cdk2 inhibitors, and p53 
inhibitor Mdm2 [45] [46] [113] [136]. Therefore, the function of THs and their 
receptors on cell proliferation, differentiation, apoptosis/survival, adhesion and 
migration is not homogenous, because it strongly depends on the cell type, its 
developmental state (progenitor or differentiated), its pathophysiological state 
(normal or tumor cell), and the so-called “tissue and cellular context”.  

Although TH-dependent processes are highly coordinated, these are not nec-
essarily synchronized in all tissues, and the proper function of the organism re-
quires tissue-specific changes in TH action. These varying local requirements 
cannot be governed by global mechanisms such as an alteration of thyroid gland 
function or by modulation of hormone concentrations at plasma level, but in-
stead require tissue-specific regulation, such as those mediated by deiodinases. 
Thus, the activation of the β-catenin/TCF complex and type 3 deiodinase (D3) 
expression, a selenoenzyme that inactivates T3, have been detected frequently in 
tumors [114]. Further, D3 is a direct transcriptional target of the β-catenin/TCF 
complex, increasing its expression in human intestinal adenomas and carcino-
mas, compared to healthy intestinal tissue [114]. Experimental attenuation of 
β-catenin reduces D3 levels and induces the type 2 deiodinase (D2), the D3 an-
tagonist that converts T4 into active T3, thereby increasing T3-dependent tran-
scription. In the absence of D3, a T3 excess causes the reduction of cell prolifera-
tion and promotes differentiation in cultured cells and in mouse xenograft mod-
els. This seems to occur via induction of E-cadherin, which sequester β-catenin 
at the plasma membrane promoting cell differentiation (Figure 1 and Figure 2). 
These results suggest that deiodinases could be at the interface between the 
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β-catenin and the TH pathways. Dentice and coworkers sustain that the syn-
chronized regulation of intracellular T3 concentration is a route by which the 
multiple effects of β-catenin are generated and may be targeted to reduce the 
oncogenic effects of it in intestinal cells. 

Recently, we have implemented a murine model of colorectal cancer (CRC), 
in which four weeks post-induction, it is verified a slight increase of E-cadherin 
mRNA level, a significant decrease of β-catenin mRNA level and an almost con-
stant α-catenin mRNA level. Simultaneously, an extremely significant increase in 
RhoA mRNAs is produced, suggesting loss or weakening of adhesive bonds me-
diated by cadherin E. In vivo treatment with L-T4 does not seem to greatly in-
fluence the transcription of the genes responsible for cell adhesion mediated by 
E-cadherin-catenins, whereas impacted on RhoA, Rap1 and Cdc42 expression. 
Conversely, L-T4 produced a significant and very significant decrease in RTa 
and RTb respectively. While the cell differentiation marker (intestinal alkaline 
phosphatase) showed no changes, suggesting the maintenance of the intestinal 
phenotype at this stage of the CRC, there was a significant decrease in the PCNA 
and integrin α5β3 mRNAs, suggesting an effective role of L-T4 as pro-differen- 
tiating by controlling cell proliferation and migration. However, a striking and 
extremely significant positive effect on the expression of HIF1A was detected. 
Bioassays and complementary techniques will be necessary to analyze longer 
treatment times and the adhesive behavior, which depends on the concentration 
of cadherin E on the cell surface.  

3.5. E-Cadherin in Nontumoral Pathologies 

Between pathological states, reduced E-cadherin occurs in gastroesophageal ref-
lux disease, asthma, and eczema, in which contributes to loss of epithelial integr-
ity, impairment of barrier function, and production of pro-inflammatory cyto-
kines [137] [138] [139]. E-cadherin binds lymphocyte integrin αEβ7 and regu-
lates the activation and localization of epidermal and intestinal intraepithelial 
lymphocytes [140] [141] [142] [143]. Future studies will contribute to understand 
E-cadherin roles in immunology state. 

4. Conclusion 

Although E-cadherin and their partner components have been extensively stu-
died, the majority has hardly been examined in the complexity of in vivo system. 
Thus, the E-cadherin function/dysfunction presented here should be regarded as 
a “work in progress”. We strongly believe that the most interesting and impor-
tant features of E-cadherin-dependent adhesions, consists in acting in a delicate 
balance between the cell motility inhibition and collective cell migration of cell 
clusters promotion. In these cellular contexts, thyroid hormones influence the 
differentiation and metabolic cell state, acting on E-cadherin receptor and gene. 
Knowing the role of thyroid hormones in the progress of cancer possess is a new 
challenge in the control of this disease. 
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