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Abstract

Insulin, a blood glucose level mediator, is the mainstream therapeutic choice
for diabetes patients. Since patent protection for many originator products is
about to expire, manufacturers of follow-on insulin are determined to get
their products authorized. According to regulations, a fundamental require-
ment for biosimilar compounds is that the chemical structure should be the
same as that of the originator drug. Hence, the application of qualitative
analysis for insulin products is essential during the production and develop-
ment of biosimilars. In this study, the electrospray tandem MS/MS based de
novo sequencing method was developed and validated by analyzing two insu-
lin products with similar primary structures, namely recombinant human in-
sulin and insulin aspart. The results indicated that the complete sequences of
both reduced insulins are largely identifiable, although differentiation be-
tween leucine and isoleucine is not achieved. More importantly, the observed
mass accuracy was substantial. The method can, therefore be applied to qual-
ity control and drug development.
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1. Introduction

Diabetes is currently an incurable and potentially life-threatening disorder that
occurs in patients whose pancreas S cells cannot secrete a sufficient amount of
insulin into the blood, resulting in elevated blood glucose levels. In severe cases,
the gland could lose its function entirely. High blood sugar levels cause severe

impairments in all the body’s organs, particularly the kidneys, the nervous sys-
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tem, and the visual system. Diabetes affected approximately 382 million people
globally in 2013, and this figure is expected to reach 592 million by 2035 [1].
Another research report from the International Diabetes Federation (IDF) de-
monstrates that around 415 million people suffered from diabetes in 2015 and
that this number will reach 642 million by 2040, including a considerable num-
ber of patients from middle- and low-income countries [2]. Since diabetes pa-
tients require continuous treatment, the global cost associated with diabetic
treatment reached $673b in 2015, and is expected to exceed $802b by 2040 [2].
As the primary therapeutic solution for both type I and type II diabetes, a grow-
ing number of insulin products have been developed since the first patient was
successfully treated with animal-origin insulin in 1922 [3]. It is expected that the
global insulin market will reach $32 billion in 2019 [4]. The heavy financial bur-
den associated with diabetic treatment has been a common obstacle for many
countries, particularly developing countries. The good news is that the patents
for a series of insulin products are due to expire shortly, which represents an
opportunity to provide patients with access to more affordable follow-on drugs
[5].

However, the manufacture of biomedicines is more complicated than that of
chemical drugs. Based on the definition of “biosimilars” given by the European
Medicines Agency (EMA), a biosimilar is an exact copy of an approved reference
drug, and the consistency in physiochemical characteristics, safety, and clinical
efficacy between the biosimilar and the innovator product must be evaluated [6].
Due to the proprietary manufacturing process patented by the innovator, manu-
facturers of biosimilars must develop independent expression systems. Merely
copying the chemical and biological properties of an originator drug does not
ensure the new compound’s safety and bio-equivalency [7]. One of the biggest
safety concerns is immunogenicity, which can trigger immunological reactions
or compromise the drug’s efficacy. Potential immunoreactions include insulin
allergies, antibody-mediated insulin resistance, and others [8] [9]. The occur-
rence of immunoreactions is attributable to many factors, such as the drug’s
amino acid sequence, spatial structure, and other characteristics that are influ-
enced by the manufacturing process [5]. Three different manufacturing
processes based on recombinant DNA technology have been developed, two of
which use E. coli as an expression system, while the third uses yeast cells [10].
The detailed manufacturing process was summarized by [11]. The author
stresses that minor changes in environmental and processing conditions could
result in altered product structures which could, in turn, result in a latent poten-
tial for immunogenicity. For instance, a series of structural changes could occur
if production or storage is not performed correctly, including oxidation, deami-
dation, and polymer formation [12]. Therefore, robust quality control tech-
niques are indispensable [13].

To guarantee safety and efficacy, a drug’s amino acid sequence must be ana-

lyzed using advanced analytical techniques (e.g., peptide mapping, mass spec-
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trometry, and in-situ analysis) to ensure that the amino acid structure is consis-
tent with that of the originator drug within single batches and between batches
[14]. As a result of incredible advances in mass spectrometry (MS) technology,
MS-based de novo sequencing plays an increasingly crucial role in the identifica-
tion of proteins. De novo sequencing is emphasized due to its application of soft
ionization technology, the broad selection of mass spectrometers that supports
it, and the highly automated data manipulation that it offers [15].

In this study, the amino acid structures of recombinant human insulin and
recombinant insulin aspart were determined using the tandem MS/MS
ESI-QToF system. Data manipulation was performed using Unify. Furthermore,
identification accuracy was conducted via mass error calculation. By doing so,
the potential utilization of the method in the quality control of insulin biosimi-

lars and drug development could be evaluated.

2. Materials and Methods
2.1. Chemicals and Reagents

The reference standards of insulin human and insulin aspart were purchased
from USP (100 mg for insulin human and 7.62 mg for insulin aspart; MD, USA).
Acetonitrile (LC/MS grade) was obtained from Fisher Chemical (Geel, Belgium).
Formic acid was HPLC grade and purchased from ROE (DE, USA). Methanol
(HPLC grade) was bought from Sigma Aldrich (MO, USA). The HPLC grade
isopropanol was got from CNW (Anpel Laboratory Technologies, Shanghai,
China). Tris (2-carboxyethyl) phosphine hydrochloride (TCEP; Sigma Aldrich,
MO, USA) was used as the reductant in the reduction of disulfide bonds. The
deionized water used in the experiment was produced by MilliQ water system
(Millipore S.A.S., Molsheim, France).

2.2. Sample Preparation

The insulin stock solutions (0.1 mg/ml) were prepared by dissolving 5 mg hu-
man insulin and insulin aspart in 50 ml 0.1% formic acid solution, respectively.
The human insulin sample to be reduced was prepared by adding around 28.7
mg TCEP (10 mM) into an empty 15 ml centrifuge tube, followed by transfer-
ring 0.5 ml insulin human stock solution to the tube, and then adding 0.1% for-
mic acid solution to 10 ml. subsequently, the solution was mixed thoroughly,
until the TCEP was fully dissolved. The preparation of the insulin aspart sample
to be tested was same as that of the human insulin. Both insulin samples were
incubated at 55°C in water bath for 60 min to fully cleave the disulfide bonds. Af-

ter cooling to room temperature, the samples were injected and analyzed directly.

2.3. Chromatographic and Mass Spectrometric Settings

LC-MS/MS analysis was conducted by employing Acquity I Class Plus UPLC
(Waters, MA, USA) coupled with Vion IMS QToF (Waters, MA, USA). The

samples were kept cooled at 4°C in the autosampler, and the column oven tem-
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perature was 40°C. A Waters Acquity UPLC protein BEH C4 column (50 x 2.1
mm, 1.7 um, 300 A) was installed, which was highlighted by the significantly
reduced retention of protein in column compared to C18 ligand column. The
mobile phase A was 0.1% formic acid in water (v/v), and acetonitrile containing
0.1% formic acid was used as mobile phase B. The flow rate was set at 0.4 ml/min.
10 ul sample was injected for each analysis. The gradient initiated at 80% solvent
A, and decreased to 70% within 3 min, followed by a linear gradient from 70%
down to 40%. The fraction of solvent A was kept for 0.5 min, and then the col-
umn was re-equilibrated at the starting conditions from 7.6 min to 10 min.

Positive electrospray ionization (ESI) was used to generate the parental ions.
The acquisition mode was MSF, which was a unique mode provided by Waters.
The mass scan ranged from 500 m/z to 2000 m/z. The scan time was 0.2 s, dur-
ing which the low collision energy of CID was set at 6 eV, and the high collision
energy ramp started from 20 eV to 30 eV. The desolvation temperature and
source temperature were 400°C and 100°C, respectively. The desolvation gas
flow rate and cone gas flow rate were 650 L/H and 50 L/H, respectively. The ca-
pillary voltage was 3.2 kV. The data acquisition and manipulation were carried
out utilizing Unify 1.9.3.

3. Results and Discussion
3.1. The Reduction of Disulfide Bonds

Insulin consists of two peptide chains (namely A-chain and B-chain) connected
via two interchain disulfide bonds. An intrachain disulfide bond also bridges the
7% cysteine and the 11 cysteine within the A-chain. Since disulfide bonds are
challenging to break via collision-induced ionization (CID), it is necessary to
cleave the bond to obtain detailed debris ions [16]. In this study, recombinant
human insulin and insulin aspart was reduced using TCEP and incubation at
55°C over a period of 60 min. The underlying functional mechanism of TCEP
was outlined decades ago [17] [18]. The reduction is characterized by the re-
versible formation of a thiophosphonium compound, followed by the irreversi-
ble generation of thiols and phosphine oxide. The results showed that, under
these conditions, both insulins could be nearly fully cleaved. Two isolated pep-
tide chains for each insulin were detected and separated using UPLC. As shown
in Figure 1, human insulin’s A- and B-chains eluted at 3.24 min and 2.59 min,
respectively. Interestingly, the retention times of insulin aspart’s free A-chain
and B-chain (Figure 2) were almost identical with that of human insulin since
the amino acid sequences of human insulin’s A-chain and insulin aspart are
identical, and the B-chain’s primary peptide structures for both human insulin
and insulin aspart are very similar.

The peaks were identified based on the parent ion clusters, and the combined
corresponding spectra for human insulin and insulin aspart are shown in Figures
3-6. Generally, intact insulin molecules can be adequately ionized using ESI, and

multiple protonated ions (ranging from four-fold to six-fold) are observable [16].
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Figure 1. The reduction of intact recombinant human insulin at 55°C for 60 min using TCEP. Both peptide chains were nearly
completely cleaved, and the isolated peptide chains were distinguishable.
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Figure 2. The reduction of intact recombinant aspart insulin at 55°C for 60 min using TCEP. Both peptide chains were nearly
completely cleaved, and the isolated peptide chains were distinguishable.
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Figure 3. The precursor ion clusters for the human insulin A-chain. The doubly and triply charged precursor ion clusters of
A-chain were observed. However, the quintuply and sextuply charged precursor ions of the intact human insulin coeluted with the
human insulin A-chain.
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Figure 4. The precursor ion clusters for the human insulin B-chain. The triply, quadruply and quintuply charged precursor ions
of B-chain were observed.
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Figure 5. The precursor ion envelopes for the isolated A-chain of insulin aspart. The doubly and triply charged ions of A-chain
were obtained.
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Figure 6. The precursor ion envelopes for the isolated B-chain of insulin aspart. The triple-, quadruple- and quintuple-fold pro-
tonated precursor ions of B chain were obtained.
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As depicted in Figure 3, the double- and triple-charged precursor ion clusters
of the A-chain were detectable. However, the coexistence of the quintuple- and
sextuple-charged precursor ions of intact human insulin was also observed, sug-
gesting that a certain amount of intact insulin was not reduced using TCEP. On
the contrary, human insulin was absent in the B-chain peak, although the triple-,
quadruple-, and quintuple-fold protonated precursor ions were identifiable in
the B-chain (Figure 4).

Regarding insulin aspart, the double- and triple-charged ion clusters of the
A-chain and the triple-, quadruple-, and quintuple-charged clusters of the
B-chain are shown in Figure 5 and Figure 6. Simultaneously, intact insulin
aspart was not detected within the two peaks.

Many researchers have reduced insulin’s disulfide bonds via TCEP under var-
ious experimental conditions. For instance, Hjorth, Hubdlek et al investigated
high molecular weight proteins in a human insulin product manufactured by
Novo Nordisk A/S [12]. The researchers reduced the disulfide bond using 4.8
mM TCEP at 37°C for 30 min. The sample’s peaks contained partially reduced
product, which is consistent with previous research findings (data not dis-
played). Gray, claiming to have successfully cleaved insulin, performed the re-
duction at 60°C for 10 min using 10 mM TCEP [19]. According to research
conducted by Thevis, Thomas ef a/, human insulin could be reduced using 10
mM TCEP at 60°C for 10 min [20]. However, the results did not indicate
whether the disulfide bond was fully cleaved. Although partially reduced product
may be present, its effect on the de novo sequencing of free peptide chains can

be safely disregarded in this study.

3.2. The Primary Structure of Free Insulin Peptide Chains

In this study, a hybrid quadruple ToF mass spectrometer coupled with CID was
employed to evaluate the amino acid sequence of isolated insulin peptide chains.
The fragmentation pattern observed in CID is the typical N- and C-terminus
fragmentation described by Biemann and Roerpstorff [21]. Therefore, the amino
acid structure was determined through the recognition of b- and y-debris ions,
based on the secondary mass spectra. The data processing was completed auto-

matically in Unify.

3.2.1. Recombinant Human Insulin

To acquire copious fragment ions, a collision-energy ramp (20 eV - 30 eV) was
used inside the CID compartment. The spectrum results were especially useful, but
interpreting the data was problematic. Unify was used to post-analyze the spec-
trum results. Through the assignment of y- and b-type ions, the entire sequences
of two free peptide chains were pinpointed. The complete sequence exposure of
human insulin (A-chain) is indicated in Figure 7. The pinpointed daughter ions
comprised 15 y-ions and 16 b-ions. However, the Gly-Lle/Leu-Val-Glu-Gln se-
quence was unconfirmable, conceivably due to the collision energy not being suffi-

ciently high to fully cleave the peptide inside the CID chamber.
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Figure 8 demonstrates the fragmentation ion spectrum (fluctuating between
1000 m/z and 1085 m/z). Some isotopic envelopes have not yet been established,
although virtually all the essential clusters are assignable. Daughter ion clusters
were observable at 1016.46 m/z, 1028.42 m/z, 1034.47 m/z, 1046.43 m/z (respectively
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Figure 8. The assignment of daughter ion clusters for free human insulin A-chain ranging between 1000 m/z and 1085 m/z.
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signifying b10*-H,O, y8*-H,O, b10", and y8*). Conversely, the ion clusters observed
at 1057.43 m/z, 1068.40 m/z, 1074.48 m/z, and 1085.39 m/z remain unidentified.

Likewise, the fragmentation ion mapping for B-chain human insulin indicated
that nearly the entire B-chain peptide sequence was pinpointed, although two
unassigned gaps were detected between the 3" and 4% residues, and the 28" and
30" residues (Figure 9).

As shown in Figure 10, both single- and double-charged daughter ions were
created. Neutral H,O (18 Da) and NH; (17 Da) losses from y- and b-daughter
ions were identified as satellite ions. Between 590 m/z and 715 m/z, two
double-charged b-type ions, two-double charged y-ions, and one single-charged
y-ion were observed (determined as b11%*, b12*, y11**, y12**, and y5*), in addi-
tion to the satellite ions. However, for both free peptide chains, some isotopic
clusters could not be allocated. For now, the differentiation of leucine and iso-

leucine is still problematic.

3.2.2. Recombinant Insulin Aspart
Insulin aspart is a recombinant human insulin analog, where the proline (in the
28" position) in B-chain human insulin is substituted with aspart.

Unlike the results garnered from A-chain human insulin, the occurrence of
y18* and y19* ions suggests that the 18", 19" and 20" amino acid sequences are
determinable (Figure 11). However, distinguishing between leucine and isoleu-
cine remains challenging. In the range of 1445 m/z - 1535 m/z, all the critical ion
clusters were allocated, including y12*, bl4', and the observed satellite ions
(Figure 12).

The fragmentation ion mapping for B-chain recombinant insulin aspart shows
two undetermined gaps (ie, Asn-Gln and Thr-Asp-Lys; Figure 13). Thevis,
Thomas et al. created b4 and y2 ions through an ESI-CID-Qtrap configuration
with a high-collision offset voltage of 70 V [22], suggesting that high-collision
energy was necessary for superior fragmentation behavior in insulin aspart. It is
important to note that isoleucine and leucine remain undifferentiated. Thomas,
Schinzer et al. attempted to pinpoint molecules with matching molecular masses
by way of adding another dimension of separation (e.g., using an ion mobility
spectrometer) [23]. Using an ion mobility spectrometer, Asbury and Hill Jr.
claimed to have obtained a 0.668 resolution between leucine and isoleucine [24].
Therefore, additional research with the tandem MS/MS system is required to
differentiate between leucine and isoleucine.

As shown in Figure 14, double- and triple-charged ions were observed in the
spectrum. In the range of 895 m/z - 1000 m/z, almost all the important isotopic
envelopes were assignable (including b16**, b17%, y15* - yl17*, and y24** -
y26°*). Curiously, satellite ions with neutral NH; or H,O losses were not detected

within this range.

3.2.3. The Evaluation of Identification Accuracy
Mass accuracy was assessed via mass error. The measured isotopic mass and the

mass error for each free insulin chain are presented in Table 1. Note that the
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Figure 11. The fragmentation ion mapping of recombinant insulin aspart A-chain.
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Figure 12. The discerning of daughter ion clusters for free insulin aspart A-chain ranging from 1445 m/z to 1535 m/z.
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Figure 13. The fragmentation ion map of recombinant insulin aspart B chain.
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Figure 14. The identification of daughter ion clusters for free insulin aspart B chain ranging from 895 m/z to 1000 m/z.
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Table 1. The observed mass and the mass accuracy for each isolated insulin peptide chain.

Peptide name Peptide sequence Expected mass (Da) Measured mass [M+H]* (Da) Mass error (ppm)
Human insulin A chain GIVEQCCTSICSLYQLENYCN 2382.0001 2383.0117 1.8
Human insulin B chain  FVNQHLCGSHLVEALYLVCGERGFFYTPKT 3427.6846 3428.7033 3.3
Insulin aspart A chain GIVEQCCTSICSLYQLENYCN 2382.0001 2383.0080 0.3

Insulin aspart B chain ~ FVNQHLCGSHLVEALYLVCGERGFFYTDKT 3445.6588 3446.6760 2.9

criterion for mass accuracy defined by USP is 500 ppm. The results showed that
the mass error for each peptide chain was below both the in-house criterion (e,
10 ppm) and USP standard, indicating that the mass accuracy was highly satis-
factory.

4. Conclusion

For this study, recombinant human insulin and insulin aspart were analyzed us-
ing the ESI-QToF technique. The results showed that nearly all the necessary
fragmentation ion information could be obtained through de novo sequencing.
However, discriminating between leucine and isoleucine was challenging using
this tandem MS/MS system. Therefore, an additional dimension of separation
(e.g., using an ion mobility spectrometer) may be necessary. The observed mass
error was also deficient, suggesting that Unify can accurately interpret the se-
quencing data. Therefore, this method shows great potential for the identifica-
tion of recombinant human insulin and the analogue products during quality

control and drug development.
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