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Abstract 

Acinetobacter baumannii has greatly increased its degree of resistance to be-
come multidrug resistant (MDR) over the past 30 years and is on the red line 
of the most widely replicated bacteria according to World Health Organiza-
tion (WHO). The efflux pumps are the main cause for the increasing antibi-
otic resistance of A. baumannii originated from nosocomial infection. The 
progressive resistance of A. baumannii even on the recent drugs (tigecycline 
and fosfomycin) reduces to very effective antibiotic scale. With attention fo-
cused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple 
works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, vera-
pamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants 
(Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus euro-
paeus, and Rosmarinus officinalis) have the capability to have such com-
pounds according to their very significant synergistic effect with antibiotics. 
In this review we focused on the growth of antibiotic resistance to explain the 
mechanism of efflux pumps into these different super families and a compre-
hensive understanding of the extrusion, regulation and physiology role of 
drug efflux pumps in the essential development of anti-resistivity drugs. We 
recapitulated the evolution of the work carried out in these fields during the 
last years and in the course of elaboration, with the aim of increasing the 
chances of decreasing bacterial resistivity to antibiotics. 
 

Keywords 

Acinetobacter baumannii, RND Efflux Pumps, Efflux Transporters, Multidrug 
Resistant (MDR), Efflux Pumps Inhibitors (EPIs) 

 

1. Introduction 

Acinetobacter spp. was detected around the 20th century (1911) by famous bac-
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teriologist Beijerinck [1], but it was not until 1960 that A. baumannii was de-
clared in hospital. A. baumannii belongs to the large family of non-fermentable 
gram-negative bacteria capable of harming patients in surgical intensive care [2]. 
During the 20 past years it has developed a capital importance and its classifica-
tion among the nosocomial infections makes it a priority to all the public health 
organizations considering its increase and recurrence [3]. A. baumannii is much 
more present in humans and is the origins of multiple diseases like septic fever, 
pneumonitis pachymeningitis and other disease [4]. Over time it has gained its 
resistance through diverse modifications and is presently resistant to approx-
imately all the various groups of antibiotics even the most widely used drugs 
(fluoroquinolones, macrolides, trimethoprim, b-lactams, tetracyclines, aminog-
lycosides, and chloramphenicol) [5]. The bacterial efflux operation causes the 
formation of toxins and rejects antibiotics from the cells, which confers a specific 
invulnerability to antibiotics. Multidrug resistant (MDR) efflux pumps are now 
present in almost all microorganisms, in which bacteria is one of the main caus-
es of obstruction to action of drugs [6]; several works have concluded that MDR 
is on origin of the decline progressive of drugs sensitization by bacterial muta-
tion [7] that reduces largely the valid drug for cure. However using inhibitor 
components could restore bacterial susceptibility to antimicrobial agents. Efflux 
pumps inhibitors’ (EPIs) synthetic or natural component is the potential drugs 
for treatment of MDR or PDR A. baumannii. After describing the general me-
chanisms of efflux pumps systems in bacterial resistance, we will explain regula-
tion and physiology role of drug efflux pumps in the essential development of 
anti-resistivity drugs and report the evolution of the work done during the re-
cent years especially in EPIs. 

2. Mechanisms of Bacterial Resistance to Antimicrobial Agents 

The bacterial resistance to antibiotics has emerged in the face of several patho-
genic agents, besides A. baumannii, albeit efforts to treat these pathogenic germs 
still progressing [8]. Bacterial pathogens that have shown resistivity to a single 
drug or to several agents are considered MDR bacterial. With all the efforts 
united to resolve the problem via the outgrowth of new line of antibiotics, the 
bacteria does not cease also to mutate quickly to acquire new mechanism of re-
sistivity or to improve their resistance to antibiotics [1] [4] [5] [9] [10] [11] [12] 
[13]. Many reports showed that bacterial resistance to antibiotics is believed that 
the pathogenic bacterium transfers certain genetic gene of resistance to drugs 
from one species to another and automatically acquires resistant phenotypes 
against the majority of the pre-existing antimicrobial agents [14]. This mechan-
ism of opposition poses a critical problem to bacterial treatments. Another sig-
nificant cause of this obstruction is the proximity of drugs to environment, 
agriculture and others, leading to the emergence and development of resistances. 
Clinically, a low or high or inappropriate use level of antibiotics will also imply 
in the increase in bacterial resistance [15]. Presently following many research 
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there exist different mechanisms responsible for the bacterial resistance in addi-
tion 1) modification of drug target, 2) drug inactivation by enzymes, 3) modifi-
cation of cell wall protein, and 4) activation of drug efflux system. 

2.1. Alteration Drugs Target 

Every drug has a specific target for destruction of bacteria, and as such when the 
target is changed bacteria can easily resist to antimicrobial agents, and these have 
been observed in quinolones (DNA gyrase variation or Qnr intercede purpose de-
fense), aminoglycosides (16S rRNA methylation), and β-lactams (transformation 
in penicillin junction proteins). Reduced vulnerability to minocyclin and tigecyclin 
occurs via transformation in gene encoding S-adenosyl-L-methionine-dependent 
methyltransferase [16]. After undergone several transformation in gene lpx, pmrB 
and outer membrane induce the structure of lipopolysaccharide for causing po-
lymyxin resistance [17] [18] [19]. 

2.2. Drug inactivation by A. baumannii Enzyme 

A. baumannii synthesizes aminoglycoside-modifying enzymes well as AAD, 
APH, AAC3, and AAC6' that are frequently encrypted by a quota of aba ob-
struction island-homogeneous gene cassettes including class 1 integrons [20] 
[21]. A. baumannii also bring out a high quantity of antimicrobial -inactivating 
enzymes, which are encoded by plasmids and chromosome for the resistance of 
antibiotics developed from β-lactamine family [8]. These β-lactamases include, 
enzymes from 4 class: class A (CTX-M and VEB), class B (NDM, SIM, metal-
lo-enyzmes, IMP, and VIM), class C (AmpC-type ADC enzymes) and class D or 
OXA (OXA-23, OXA-51, OXA-58, and OXA-66) [22] [23] [24]. For example, 
broad-spectrum TEM variants and either narrow-spectrum TEM enzymes 
(ambler class A); are mutually capable to hydrolyze approximately all β-lactams. 
In peculiarity, class_B and class_D as well as β-lactamas are implicated to hy-
drolyze carbapenems, a latest resort of antibiotics opposite several major patho-
gens [25] [26] [27] A. baumannii also raising the presence of some enzyme link 
to the drug resistance like ADP-ribosyltransferase (rifamycin), chloramphenicol 
acetyltransferase (chloramphenicol), and alteration enzyme TetX1 (tetracyclin) 
[28] [29]. 

2.3. Modification of Cell Wall Protein: Permeableness Barrier of 
OM 

Target modification mechanisms, drug-specific inactivation, and efflux drugs 
crossways the cell membrane barriers play an essential role in influencing the 
sensitivity of Acinetobacter spp. to a wide range of antimicrobials. This trait is 
due to the non-appearance of conventional high permeability trimmers (porins 
of Enterobacteria spp.) [30] which has poor activity in Acinetobacter spp. and 
thus belong to the minor proteins [18]. First, matching who has correctly, study 
is A. baumannii and Pseudomonas aeruginosa (P. aeruginosa), OM also demon-
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strate very low permeability to cephalosporin’s [17] [31] [32]. 
The Omp A protein monomer, the major protein of OM A. baumannii, has 

been shown analytically as the main nonspecific slow porin [33] [34] which is 
identical to the slow pores OprF from P. aeruginosa and OmpA from E. coli 
[33]. Overexpressing OmpA gene in A baumannii would resulted in reduced 
sensitivity to chloranphenicol and aztreonam (8 times decrease MIC), both of 
which A. baumannii is intrinsically resistant [35] [36]; Nevertheless, there was 
only a moderate (≤2 times) effect on the colistine MIC values, tigecycline, and 
imipenem [37], a common antibiotics in A. baumannii infection treatment [12] 
[38].  

2.4. Drug Efflux Systems 

During the recent years because of the poor OM absorbency drug efflux systems 
has become one of the most complicated mechanisms of bacterial resistance and 
has played an essential role on drug resistance specially to A. baumanii [39]. The 
indulgence to amikacine and levofloxacin is the result of a negative control of 
the gene and protein CarO 31 - 36 kDa [10] and up regulation of 14 genes at OM 
by varying the amount of physiological NaCl. 

3. MDR Efflux Pumps: Structure and Regulation 

The structure of the efflux system is comprised of 3 well-defined parts each 
playing a function in the drug efflux mechanism, including the outer membrane 
(OM) [40], the internal membrane (IM) and the fusion protein at the interme-
diate level (MFP); Each part of the structure EP has a certain factor causing re-
sistance to approximately every groups of antibacterial [41] [42]. In reference to 
further research, it has been proven that there are five different families of efflux 
pumps present on A. baumannii: 
• major facilitation super family (MFS); 
• multidrug toxic composite extrusion (MATE) transporters; 
• resistance nodulation-division (RND) super family;  
• ATP binding cassette (ABC) transporters; 
• small multidrug resistance (SMR) family. 

Recently other studies have reported a sixth efflux family named PACE (pro-
teobacterial antimicrobial composite efflux) present in the A. baumannii [43]. 
However, because of inadequate data, we will concentrate much more on the 
first 5 families present in Figure 1 where a totally understanding of structure 
and regulation is not complete. 

3.1. RND Efflux Pumps 

The large family RND efflux is special of the rather complex compared to other 
family. it is very represented and has a special role in almost all major gram-negative 
bacteria and developing multiple resistance to antibiotic also call MDR such as A. 
baumannii, E. coli, and P. aeruginosa [46]. RND efflux on A. baumannii has  
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Figure 1. Structure of major families A. baumannii efflux pumps + PACE family a newly superfamily identify (adapted from [44] 
and [45]).  
 

mainly three gene (adeABC, adeIJK, adeFGH) and some special gene (adeDE, 
adeAA) [47]. 

3.2. adeABC 

The adeABC operon was newly discovered on the antibacterial agents of fluoro-
quinolones and aminoglycosides in the efflux system RND and divided into 3 
part: adeB on inner membrane efflux transporters, adeA on membrane fusion 
proteins, and adeC on external membrane proteins [48]. AdeB has the largest 
representation on A. baumannii strains (80%), adeA and adeC has 42%, and 40% 
respectively [49]. The gene adeABC have almost the same structure that genes 
MexAB-OprM for P. aeruginosa and genes AcrAB-TolC for E. coli [48] [50]. 
Because of this high proportion of adeB gene compare to the others, its inactiva-
tion would dramatically cause sensitization to antimicrobial drugs in the hospital 
for A. baumannii [51]. The increasing concentration of MIC would be beneficial 
to important drug classes like aminoglycosides, tetracyclines-tigecycline, 
β-lactams, fluoroquinolones, macrolides, trimethoprim, and chloramphenicol 
[52]. Despite the advancement of research, rifampicin, flusidic acid and some-
times colistin remain resistant to isolate A. baumannii. Single last chances of 
fight against A. baumannii isolates are tigecycline but show a hard resistance to 
adeABC and also it presents a high resistance efflux. The MIC levels of tigecyc-
line remain a clinical problem [42] [53]. Remarkably, about 20% of adeC was 
found to be involved in tigecycline resistance tests in A. baumannii demonstrating 
that in the adeABC gene, adeAB can keep walking without adeC except on [54]. 
The adeC plays a much more an almost negligible role in RND efflux system. 

The two components adeR and adeS are responsible for the regulation of the 
expression system of adeABC [55]. They are also called protein kinases and are 
found on both sides of adeABC in different trajectory. AdeRS, plays a determin-
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ing role in increasing resistance of adeABC. Some result shows that a dysfunc-
tion of adeR and or adeS will increase the resistance of tigecyclin, chlorampheni-
col, minocyline, erythromycine, cefotaxime, tetracycline, fluoroquinolones, and 
trimethoprim [19] [32]; as well increase the sensitization of amino-glycosides of A. 
baumannii isolate. Recently an intense sight of carbapenem resistance was dis-
covered in A. baumannii isolate from the adeABC system such as class D carba-
penemases, meropenem, and imipenem, and it remains a serious concern in 
clinical therapy [13] [56]. The ISAba1 insertion produced by the adeS mutation 
confers resistance over expression to tegecycline. 

3.3. adeIJK 

The second largest pump of the RND family’s adeIJK also comprises of adeI, 
adeJ, adeK genes which occur on the three parts of the pump efflux structure 
respectively. AdeIJK was described initially in the years 2008 [5] [26] with the A. 
baumannii clinical strains fluctuating between 86% and 100% in a presence of 
the predominant gene adeJ. With various reported a MIC dimness of adeIJK 
mainly the resistance of A. baumannii to β-lactamines, lincosamides, fluoroqui-
nolones, chloramphenicol, trimethoprime, and fusidic acid has been noticed 
[57]. The selection of the majority gene adeJ, will lead to an amplification in the 
sensitivity of chloramphenicol, macrolides, lincosamides, tetracyclines and qui-
nolones and β-lactams [58] [59]. The regulation of adeIJK is less complex than 
that of adeABC, but at about 750 - 850 kbp of adeIJK operon there is a regulator 
adeN belonging to the class of tetR [35]. The presence of this regulator adeN and 
mutation in different media led to an increase the resistance to antimicrobial 
drugs (ertapenem, aztreonam, tigecycline, meropenem, and minocycline) in A. 
baumannii [47]. Several studies have shown that the threshold of expression of 
adeIJK is lower than that of ABC, which indicated that the level of toxicity of 
adeIJK in the patient is well regulated [48] [52] [60]. It has been detected that 
adeIJK and adeABC have some similarity as the efflux of the same antibacterial 
drugs (fluoroquinolones, tetracyclines and chloramphenicol) [52] from A. bau-
mannii and properties comparable to P. aeruginosa mexAB-OprM. Studies on 
production and regulation adeABC and adeIJK resulted in the formation of bio-
films [36]. 

3.4. adeFGH 

Outstanding variation of adeABC and adeIJK, has induced the discovery of 
adeFGH operon sometime after adeIJK identification. The presence of adeFGH 
in the genus A. baumannii through exposure to certain antibacterial agents (nor-
floxacin) [22] [61] and is also a true source of multidrug. The genes of the 
adeFGH operon, the adeG is the most representative of more than 80% of the 
others [37]. AdeFGH has also become popular in the species of A. baumannii 
due to its severe resistance to fluoro-quinolones, tetracyclines, tigecycline, chlo-
ramphenicol, trimethoprim, sulfamethoxazole and moderate resistance to eryt-
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hromycin, rifampicin and aminoglycosides, [61] and also β-lactams. AdeFGH is 
regulated by LysR (LTTR), also called adeL. The adeL mutation will conduct to 
the adeFGH level rise. adeXYZ has also been found in A. baumannii genospecies 
3 and has the same structure and positioning of MFP, OM, IM with propositions 
80% (adeX), 89% (adeY) and 87% (adeZ) [39] [62] [63]. AdeXYZ and adeDE are 
also regularly present in A. baumannii GDG3 as opposed to GDG2 for ade IJK 
and adeABC. The engagement of adeXYZ in the resistance mechanism is not en-
tirely described. Some research showed that the suppression or perturbation of 
adeFGH or of another in the RND system does not greatly modify the sensitivity 
to the antibiotics [2] [64]. 

It has been found that the A. baumannii (GDG3) gene and specific resistance 
to certain antibiotics (ceftazidime, tetracycline, amikacin, ciprofloxacin, eryt-
hromycin, rifampin, meropenem, chloramphenicol) [16] [26], is due to adeDE 
gene in A. baumannii chromosome, and have resistance to imipenem. Unlike to 
other efflux system (adeABC, adeIJK), the adeDE gene does not have an outer 
membrane [27] [32]. Previous studies have demonstrated inconsistency between 
adeDE and adeABC-adeIJK due to the presence of adeABC-adeIJK/inter 
1-negative adeS in some isolates for the detection of adeE [65]. 

3.5. MFS Efflux Pumps 

MFS is the subsequent most studied efflux mechanism in species A. baumannii 
have identified some genes cmlA, tet(A/B), craA, and floR as the most present 
and appertain to the superfamily MFS [66]. Plural research has explained a par-
ticularity of resistance caused by tetA and tetB [61]. These two genes are not in-
volved in resistance to tigecycline, yet tetA leads to a tetracycline resistance while 
tetB induce the resistance to tetracyclin and minocyclin [67]. In A. baumannii 
isolate resistant to tetracycline, the overexpression rate of tetA is 30% - 45% 
whereas tetB is 32% - 72% [29] [67]. The cmlA gene of MFS is resistant to cer-
tain β-lactams, chloramphenicole, fluoroquinolones, tetracycline and rifampicin. 
craA is particularly resistant to chloranphenicol, imipenems, quinolones, ami-
noglycosides, and tetracyclines [68]. The MFS energy source is proton motive 
force (H+) facilitating H+ motive force inhibition to increase the sensitization of 
antimicrobial drugs [69]. Horizontal transmission was discovered by the associ-
ation of two tetB-tetR genes in plasmid and the ISCR2 element of the MDR iso-
late. It has been reported that floR gene and cmlA gene were associate with abaR 
gene in A. baumannii chromosome [70] [71] [72]. 

3.6. MATE Efflux Pumps 

The first and most frequent gene of the MATE family present in A. baumannii is 
the adeM gene. It represents between 63% - 100% in MDR of A. baumannii [26] 
[71]. AdeM protein contains about 447 amino acids and multiform hydrophobic 
regions. The antimicrobial drugs resistant due to adeM gene are not related to 
adeABC and totally known. In certain studies it was noted that adeM is not as-
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sociated with the resistance of β-lactams, or cephalosporin [73] [74]. But it could 
have an implication of resistance in that of amino glycosides, trimethoprim, flu-
oroquinolones, erythrocin, and chloramphenicol. The MATE family is powered 
by double reservoir of energy PMF (motive force of the proton) and sodium ion 
gradient Na+ [75]. This high energy source could be a particular reasons why 
adeM gene is seen as an important target for elaboration of efflux pumps inhibi-
tory antibiotics that could help restores A. baumannii sensitization [76] [77]. 
The recapitulate of Efflux pumps family in A. baumannii and Antimicrobial 
drug target was listed in Table 1. 

3.7. SMR Efflux Pumps 

AdeS gene was characterized in 2009 initially in the efflux pump system by in-
creasing the MIC (5 - 6 times) on an E. coli strain for the resistance of novobi-
ocin and erythromycin. AdeS gene is the main efflux pump of SMR family  

 
Table 1. Efflux pumps families in A. baumannii and antimicrobial drug. 

Efflux pumps 
families 

Efflux pumps genes 
and (regulators) 

Energy 
resource 

Substrates 

RND adeABC 
(adeSR, baeSR) 

Proton motive 
force (H+) 

Aminoglycosides, Benzalkonium Chloride, Β-Lactams, Tetracycline, Chloramphenicol, 
Deoxycholate, Ethidium Bromide, Erythromycin, Tigecycline Fluoroquinolones, Nalidixic 
Acid, Methyl Viologen, Sodium Dodecyl Sulfate. 

adeAA2B (baeSR) Tigecycline 

adeFGH (adeL) Sodium Dodecyl Sulfate, Tetracycline, Tigecycline, Nalidixic Acid, Sulfonamides, Ethidium 
Bromide, Fluoroquinolones, Erythromycin. 

adeIJK (adeN, 
baeSR) 

Azithromycin, Benzalkonium Chloride, Β-Lactams, Farnesol, Chloramphenicol, 
Clindamycin, Crystal Violet, Deoxycholate, Fusidic Acid, Erythromycin, Fluoroquinolones, 
Minocycline, Nalidixic Acid, Rifampicin, Sodium Dodecyl Sulfate, Triclosan, 
Tetraphenylphosphonium, Trimethoprim, Tetracycline. 

MFS craA Proton motive 
force (H+) 

Chloramphenicol 

cmlA Chloramphenicol 

floR Chloramphenicol, Florfenicol 

tetA(B) (tetR) Tetracycline 

MATE abe M Proton motive 
force (Na+/H+) 

Acrifl Avine, 6-Diamidine-2-Phenylindole, Daunomycin, Doxorubicin, Fluoroquinolones, 
Gentamicin, Rhodamine 6G, Tetracycline. 

SMR abeS Proton motive 
force (H+) 

Acridine Orange, Acrifl Avine, Benzalkonium Chloride, Β-Lactams, Chloramphenicol, 
Ciprofl Oxacin, Deoxycholate, Ethidium Bromide, Tetraphenylphosphonium, 
Erythromycin, Novobiocin, Sodium Dodecyl Sulfate, 

Smr (A1S_0710) Deoxycholate, Sodium Dodecyl Sulfate 

ABC macAB-tolC (baeSR) ATP hydrolysis 
(P-gp) 

Erythromycin, Gramicidin 

PACE aceI Proton motive 
force (H+) 

Chlorhexidine 

Acinetobacter Genospecies 3 

RND adeDE Proton motive 
force (H+) 

Ceftazidime, Amikacin, Ciprofloxacin, Chloramphenicol, Erythromycin, Ethidium 
Bromide, Meropenem, Rifomycin, Tetracycline 

RND adeXYZ Β-Lactams, Ciprofloxacin, Tetracycline, Rifampin, Chloramphenicol 
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present in A. baumannii. This gene adeS belongs to a particular resistance for 
fluoroquinolones, novobiocin, erythromycin, detergents (benzalkonium chlo-
ride), chloramphenicol, and dyes [8] [21] [49]. AdeS is identical at 52% to emrE 
(E. coli) found in the genome A. baumannii genome. AdeS is composed of about 
108 acid amines. Because of its constant need for energy (H+), the suppression of 
this energetic source would restore susceptibility to drugs on MDR A. bauman-
nii [70] [78] [79]. 

3.8. ABC Efflux Pumps 

ATP binding cassette (ABC) of super family efflux pumps are recognized to be 
censurable for multidrug-resistance due of P-glycoprotein (ABCB1) [80]. ABC 
proteins are including in the cytoplasm (inner) membrane of germ, and mem-
branes in eukaryotes. In the human body, ABC proteins encodes for 49 proteins, a 
particular fraction has been distinguished in function and biochemistry terms to 
others [39] [81]. They have been organized into 7 sub-families established on phy-
lo-genetic examination. P-glycoprotein (ABCB1) contains 170 kDa trans-membrane 
glycoprotein and practically the most at largely studied transporters that pro-
mote cancer cells to develop drug resistance. Unlike the other family of efflux 
pumps, ABC family is powered by hydrolysis energy sources of ATP (ADP + Pi) 
which gives cellular resistance to large number of drug molecules [82] [83]. The 
ABC proteins functionally contain two areas for substrate transport and 2 areas 
of NBD (nucleotide binding) with ATP hydrolyse in the process. ABC family is 
recognized in A. baumannii to have resistance to erythromycin and gramicidin, 
but it is very present on cancer cells [30]. 

3.9. PACE Efflux Pumps 

The proteo-bacterial antimicrobial compound efflux family (PACE) is uncom-
mon of the newest families of efflux pumps identified in the latest 15 years [84]. 
PACE family described on plural gram-negative bacteria like E. coli, K. pneu-
moniae, Vibrio parahaemolyticus, Salmonella enterica, P. aeruginosa, Entero-
bactre cloacae, and serovar Typhi [36] [43] [85]. Its homologous aceI gene found 
to be resistant to chlorhexidine and its overexpression also lead to resistance to 
dequalinium, benzalkonium chloride, and acriflavine. In A. baumannii, aceI also 
induces the resistance of chlorhexidine and oxidants [85]. The aceI gene of 
PACE family could be the 6th group of MDR efflux pumps [44]. 

3.10. Mechanisms of Transporters in the Efflux Pump Systems 

According to structural and bioenergetics characteristics, carriers could be sepa-
rated into two major groups [80] [86], 1) transporters that hydrolyze ATP as an 
energy source; they are also summons ABC transporters (ATP binding cassette) 
[81], and 2) transporters that use the proton H+ (and/or Na+ sodium MATE 
family) for energy source [81]. Transporter of proton is the main common con-
veyance present in gram-negative bacteria especially in multidrug resistant. The 
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mechanisms of transporter expression and regulation in bacterial present a 
complex structure with different variable which are still understudy [53] [87]. 

The First Transporters: ATP binding cassette Transporters. The mamma-
lian P-glycoprotein (P-gp, MDR1) is one of the particularly studied ABC trans-
porters, and their utilization in chemotherapy has shown that their expression 
confers resistance to cytotoxic compounds [88]. Ubiquitous ABC transporters 
have many different functions in transport including drugs, metabolites and the 
flow of toxins [89]. ABC transporters particularly constitutes, of two hydro-
phobic transmembrane domains and two cytoplasmic domains which binding 
ATP [90]. 

The Second Transporters in MDR bacterial efflux pumps system are 
represented in four families: RND, MFS, MATE, and SMR family [81] [89]. The 
MFS protein have 12 or 14 transmembrane segments (TMS) coming from two 
separate congregate and they are also responsible for transport of drugs, sugars, 
and intermediate metabolites [66]. Membrane proteins of the SMR family are 
engaged in the activity of lipophilic cationic drugs in A. baumannii [91]. These 
are the slightest known drug efflux proteins, with just 4 TMS predicted. They 
can function as either hetero- or homo-oligomeric complexes. Unlike pumps 
MFS families, RND and SMR, which act as anti-proton/anti-drug, the 12-TMS 
collapse pumps MATE family afresh recognize [108] are mainly anti-drugs Na+ 
[90]. RND efflux systems presented a 3D structure of proteins of tripartite which 
is not totally understood by the configuration of these systems [26] [60]. It was 
also noted that RND pumps of A. baumannii and gram-negative a tripartite sys-
tem. RND efflux protein are combined of 12 TMS including 2 large periplasmic 
which provide specify substrate [92] [93]. 

4. Mechanisms of Efflux Pumps Inhibitors (EPI) 

In fighting bacterial resistance which has increased, it would be useful to employ 
inhibitors of resistance efflux pumps to restore the fundamental action of antibi-
otic. Efflux pumps are the newest bacterial resistance mechanism allowing resis-
tance to almost all antibiotics [94]. Some molecules (chemical or natural) have 
the capacity to act specifically on the efflux system to restore the action of anti-
biotics and commonly called efflux pumps inhibitors (EPIs) [95]. In the A. bau-
mannii species several chemical inhibitors have already been tested [96]. Only 
certain inhibitor has shown conclusive results but remains difficult to apply in 
clinical due to high levels of toxicity for the human organism [97] [98]. To dis-
cover adequate EPI, different strategies can be considered depending on the 
cause gene or the level of cellular resistance [99]. Given the enormous variety of 
drugs, it would be cost-effective and economical to focus more on the classes of 
antibiotics that could have a serious impact on A. baumannii with respect to 
pharmacokinetics and toxicity. Finally, the screening of banks or chemical 
compounds emitted by biodiversity may allow the identification of performing 
compounds, which could be further enhanced by experiments with struc-
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ture-activity relationships [100]. The mechanisms implicated in inhibition of ef-
flux pump systems are not clearly understood [6] [101] but it has been suggested 
that inhibition of efflux pump performance in A. baumannii may be completed 
by different channel, Figure 2 present the various target of EPI such as 1) 
Change regulatory steps of efflux pumps expression; 2) Inhibit the practical con-
struction of the multi-component pump; 3) Obstruct the outer membrane ways 
(adeC, adeK) with a plug; 4) Disintegrate the energy resource of efflux, di-
rect-specific or indirect-general via a destruction of energy mechanisms of the 
bacterial transporters; 5) Apply a non-antibiotic molecule to the affinity sites of 
the efflux pump for competitive or no inhibition; 6) Modify the chemical struc-
ture of useful antibiotics in order to reduce its relationship for efflux identifica-
tion and limiting sites or to obstruct the efflux transport. 

PAβN and 1-(1-naphthylmethyl)-piperazine (NMP) are commonly used for 
the mechanism of inhibition efflux pump, they were tested in combination with 
different antimicrobial drugs facing A. baumannii [96] [102]. At MIC values ≥ 
400 μg/ml (PAβN) and 200 ≥ 400 μg/ml (NMP) we observed intense antibacteri-
al activity in the behavior of these two agents. The work done by Pannek S et al. 
on these two EPI reveals a reversal of the resistance phenotype or a limitation in 
the sensitization of bacterial cells with a low concentration at 25 μg/ml [101]. 
When MIC decrease eight-fold some antimicrobial drugs like levofloxacin, 
chloramphenicol, linezolid, ciprofloxacin, clarithromycin, tetracycline, and ri-
fampicin, restores sensitivity to drugs with a density 100 μg/ml of the two EPIs,  

 

 
Figure 2. Various targets for inhibition of complex efflux pump (adapted from [6] and [102]). 
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which means that one or both EPIs have a affirmative effect [55] [103]. It was 
also noticed that PAβN and NMP, either at 100 μg/ml, restored the susceptibility 
on tigecycline (double-reduction of MIC) and fluoroquinolone (decrease MIC 2 
- 16 times) [104] [105]. 

In other studies, PAβN at 10 μg/ml decreased predominantly MIC concentra-
tions of trimethoprim, clindamycin and chloramphenicol [97] [102]. Twice a 
time on clinical isolates, whereas PAβN at 20 μg/ml reduced nicidixic acid MIC 
to 16-fold but showed little effect on sensitiveness to ciprofloxacin [106]. At 100 
μg/ml PAβN are also sensible minocycline activity by decreasing ≥ 04-fold MIC 
values [107]. Delightful, one study has propose a contradictory effect of NMP at 
64 μg/ml on susceptibility to tetracyclines (i.e., increased susceptibility to mino-
cycline, tetracycline, doxycycline) and tigecycline (reduced susceptibility) [107] 
[108] [109]. Presumably, the EPIs have powerful effect on resistivity reversal 
with molecules that have relatively acute MIC values such as clindamycin, chlo-
ramphenicol, linezolid rifampicin, trimethoprim clarithromycin [107] [108] 
[110]. Moreover, another study also examine the effect of phenothiazines, ome-
prazole (prochlorperazine, chlorpromazine, and promazine), verapamil and re-
serpine, on susceptibility cells with phenothiazines being the only emissary ca-
pable to re-establish sensibility to some antibiotics (≥8 time MIC decrease) [97] 
[109]. 

Recently some research demontrated the collision on colistin susceptibility of 
colistin-susceptible and colistin-resistant bacteria gram(-) including A. bauman-
nii by using the effect of CCCP (carbonyl cyanide m-chlorophenyl hydrazone), 
NMP, PAβN, omeprazole, verapamil, reserpine [108] [111]. The expression sta-
tus of any drug efflux pump was not evaluate, and only carbonyl-cyanide m 
-chlorophenyl hydrazone (CCCP) was reveal to particularly offers influence on 
reversing colistine resistant for A. baumannii. Nevertheless, proton channel 
suchlike CCCP act on dislocation of proton motive energy crossways the cytop-
lasm membrane and do not active on pump perse [111]. Efficacy of EPI car-
bonyl-cyanide m-chlorophenyl hydrazone (CCCP) on colistin resistance is exot-
ics [98] [108]. Serum agents, N-tert-butyl-2-(1-tert-butyltetrazol-5-yl) sulfany-
lacetamide and (E)-4-(4-chlorobenzylidene) amino) benzenesulfonamide were 
combined to find accumulation and potentiating the improvement of the mino-
cycline activity of several antimicrobials opposite A. baumannii [73] [74]. 

The perfect results of EPIs could stimulate the action of new antimicrobial 
drugs. The compound, 3-(phenylsulfonyl)-2-pyrazinecarbonitrile, is an agent 
developed fronting resistant nosocomial pathogens [112] [113]. The combine of 
PAβN can decrease this MIC value by four time of A. baumannii at MIC is 64 
μg/ml [97] [102]. Another lately kibdelomycin natural antibiotic was found, ex-
hibits a broad-spectrum effect with the MIC 90 value of 0.125 facing A. bau-
mannii [112], this agent appears to be a distressed substratum of efflux pumps. 
Finally, any agents that can traverse the OM of A. baumannii are expected to 
counter the activity of the efflux pumps in augmentation the drug ingress to 
their targets [114] [115]. 

https://doi.org/10.4236/jbm.2019.71006


F. T. D. Temgoua, L. Wu 
 

 

DOI: 10.4236/jbm.2019.71006 60 Journal of Biosciences and Medicines 

 

In this regard, many plant extracts of EPI (in addition steroidal alkaloids con-
essine) are clever to break down the OM barrier to exert a synergistic efficacy on 
the amelioration of the activity of divers antimicrobials facing A. baumannii 
[116] [117] [118]. Natural efflux pump inhibitors (plant extracts): Biricodar and 
timcodar, Falvone, Berberis, Mahonia, Dalea versicolor, Lycopus europaeus, 
Rosmarinus officinalis, are the most common use against bacteria [116]. The 
analytical results of the natural inhibitor Rosmarinus officinalis and Lycopus 
europaeus have shown great efficacy on efflux pumps to restore the sensitivity of 
antibiotics against MDR strains of A. baumannii and P. aeruginosa [119]. The 
natural extract Geranium coespitosum, Punica granatum and Euphorbiaceae can 
inhibit the potentiating activity of strains MDR Staphylococcus aureus to restore 
the sensibility of erythromycin, fluoroquinolone, gentamicin, ampicillin, tetra-
cycline, chloramphenicol [120] [121]. Extracts of Berberis aetnensis coming 
from volcano region can reduce the resistance of ciprofloxacin for P. aeruginosa, 
S. aureus, and E. coli [122] [123]. The natural inhibitors Mellisa officinalis, 
Daucus carota, Levisticum officinale, Glycyrrhiza glabra, has demonstrated a 
great activity facing S. tyhimuriun and K. pneumoniae by restore the sensibility 
of tetracycline, chloramphenicol and fluoroquinolones [94] [95]. 

5. Conclusion 

Drug efflux mechanisms are serious global problems for the fight of nosocomial 
infections including A. baumannii in clinic. RND families are the greatly com-
plex and resist numerous types of antimicrobial drugs. Despite of the develop-
ment and use of chemical molecules (NMP, PAβN, omeprazole, verapamil, re-
serpine, CCCP) as an EP inhibitor, many research having present results that are 
approximately conclusive in vitro always face elevated degree of toxicity to the 
physical body if it is applied in clinic. Hence the importance for future research 
focuses more on natural inhibitor extract from plants (Berberis, Mahonia, Dalea 
versicolor, Lycopus europaeus, Rosmarinus officinalis). The development of 
these new type inhibitors could constitute a better and effective voice to resolve 
definitively the bacterial MDR problem (including A. baumannii). Therefore, 
control pharmacokinetic, pharmaco-dynamic complete and combined will give 
high efficacy and acceptable degree of toxicity. 
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