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Abstract 
Boundary Element Method (BEM) is widely used in electrocardiographic 
(ECG) problem. Formulations of these problems based on mathematical and 
numerical approximations of the known source in heart and the volume con-
ductor that can transfer voltages on the surface of the body. To analyze the 
electric potentials on body surface or epicardial surface, a set of discrete equa-
tions derived from a boundary integral equations need to be solved. Solving 
these equations means to get the potential distribution eventually. In the 
process of solving, transfer matrix of discrete equations has received consi-
derable attention, how to get an appropriate transfer matrix is an important 
issue. This paper found that the direction of normal vector could affect the 
results when calculating the transfer matrix and presents a method analogous 
to Mesh Current Method to deal with this direction problem. Several simula-
tions have been carried out to verify the accurate results with the correct di-
rection of normal vector using new method within a torso model given si-
multaneous epicardial and body surface potential recordings. 
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1. Introduction 

Electrocardiographic problem, namely given the potential distribution at epicar-
dial surface to calculate the distribution at body surface (Forward Problem), or 
vice versa (Inverse Problem), draws lots of attentions in biomedical area these 
years, as electrocardiography can be a powerful tool for diagnosis in clinic [1] [2] 
[3]. The potential distribution at epicardial surface and body surface are linked 
by a transfer matrix determined by the shape of heart and torso. Thus, both for-
ward and inverse problem need to calculate the transfer matrix elements deter-
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mined by the geometry properties. 
The boundary element method (BEM) is often an appropriate way to compute 

the transfer matrix, despite the different inner physical properties of the con-
ductor medium when the medium is isotropic [4]. Barr et al. gives an overall 
theory of dealing with forward problem and inverse problem based on BEM [5]. 
Horácek et al. calculate transfer coefficients based on triangle-to-triangle discre-
tization [6] [7], rather than node-to-node discretization used by Barr et al. to 
construct appropriate matrices, these matrices are consisted of coefficients that 
relate to the potentials and their gradients on the epicardial surface of the con-
ductor and the potential on the body surface [8] [9]. The corresponding boun-
dary integral equation should be solved through discretizing the surface into 
triangle elements [10] [11]. Munck et al. uses analytically integrated elements to 
discretize the boundary integral equation linearly [12] [13]. 

The transfer matrix plays an important role in both forward problem and in-
verse problem. In the calculation of the matrix, the direction of normal vector of 
the triangle segments should be paid attention to carefully. Some methods are 
designed to deal with this issue by the commercial programs. Take one method 
as an example, first, it finds a point that is definitely outside the mesh, and cal-
culates the centers of the triangles. Then, it computes the distances between the 
centers of the triangles and the outer point which was found previously. After 
that, it finds the triangle closest to the point that is for sure outside the mesh 
based on the distances that have been calculated before. Next, the normal vector
n  of this triangle is computed out based on right hand’s rule according to index 
sequence of the three vertexes, and also the vector from the center of the nearest 
triangle to the outer point outP . If outP n⋅  is negative, the order of the vertex 
index of each triangle would be adjusted to invert n . However, this approach 
lets mistakes occur sometimes, it can’t make all the directions turn into right in 
some cases, which results in incorrect potential distribution eventually. 

Therefore, this paper presents a new method to figure out the correct triangle 
normal direction to get the accurate potential distribution on surface. 

2. Basic Theory andMethod 

2.1. Derivation of Transfer Matrix 

First, deriving the integral equations. The potential oφ  at point O can be ex-
pressed as Equation (1) using Green’s second law, and the point O is assumed as 
an observation point which inside the volume but very close to surface, 

2 2

1 1 1
4 4 4H H B

H
o H H H B BS S S

nr n r ndS dS dS
rr r

φ
φ φ φ

π π π
∇ ⋅⋅ ⋅

= − − +∫ ∫ ∫ .   (1) 

where BS  is the body surface, HS  is the epicardial surface. r is the distance 
that extends from the observer to elements of integration dS. Bφ is the potential 
distribution on body surface, Hφ  is the potential distribution on epicardial sur-
face. r  is an unit vector in the direction of r. n  is an outward pointing vector 

https://doi.org/10.4236/jbm.2018.61001


C. C. Tang et al. 
 

 

DOI: 10.4236/jbm.2018.61001 3 Journal of Biosciences and Medicines 
 

of unit magnitude normal to surface element dS. 
So, two equations can be obtained from Equation (1) for observation positions 

located on body and epicardial surface, respectively, 

2 2

1 1 1 0
4 4 4B H H

H
B B B H H HS S S

nr n r ndS dS dS
rr r

φ
φ φ φ

π π π
∇ ⋅⋅ ⋅

− + − − =∫ ∫ ∫ , (2) 

2 2

1 1 1 0
4 4 4B H H

H
B B H H H HS S S

nr n r ndS dS dS
rr r

φ
φ φ φ

π π π
∇ ⋅⋅ ⋅

− − − =∫ ∫ ∫ . (3) 

To solve the Equation (2) and Equation (3) numerically, these equations 
should convert to simultaneous linear equations. Therefore, the surface S, con-
sist of BS  and HS , need to subdivide in small triangles, which means the inte-
gration area will be partitioned into triangle elements. And Equations (2) and 
Equation (3) can be simplified by the element of solid angle i

efdΩ  which is 
subtended at an observation point of the i-th location on surface e by an area 
element on surface f: 

2
i
ef f

r nd dS
r
⋅

Ω = .                        (4) 

As it can be seen here, if the direction of n  is wrong, the sign of r n⋅  
wouldn’t be correct, therefore, it will have influence on the solid angle, which 
means the result of potential distribution may not be right. 

Substituting Equation (4) in Equation (2) and Equation (3), and calculating 
the surface solid angle integration approximately by discretized triangle solid 
angle summation as the way shown in Equation (5). The coefficients of the 
components of gradients term are noted in Equation (6). 

1
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N

Y XY XY YS
d Pφ

π
Ω = Φ∑∫ ,                    (5) 

1
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4
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Y
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Y

Y XY YS

n dS G
r
φ

π
∇ ⋅

= Γ∑∫ .                    (6) 

The different rows of matrices XYP  and XYG  corresponds to different loca-
tions of the observer on surface X. As the theory showing, each of the P’s and G’s 
is a matrix of coefficients depending entirely on the geometry. In all cases the 
number of columns corresponds to the number of locations on the surface Y of 
integration [1]. Based on the derivation above, the equation about the potential 
distributions on epicardial surface and body surface can be derived as 

B BH HZφ φ= , where BHZ  is the transfer matrix described in Equation (7). 

( ) ( )11 1
BH BB BH HH HB BH HH HH BHZ P G G P G G P P

−− −= − − .         (7) 

2.2. Normal Direction Judge Methods 

As it has been shown in the theory, the direction of n  is very important, the 
method of Barnard et al. requires the additional computation of the normal to 
the plane triangle to establish the correct sign. So the direction of n  must be 
confirmed before any further calculation. 
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A new method is proposed to ensure the direction of n  of each triangle ele-
ment to be outward. The basic idea of this method comes from the application of 
Kirchhoff’s laws. There are two applications of Kirchhoff’s laws and Ohm’s law, 
the Branch Current method and the Mesh Current method. The Mesh Current 
method can solve a circuit with less variables and less equations by simply de-
termine unknown currents of each mesh in a network. Like its name, mesh cur-
rent, means a current that loops around the essential mesh. It encompasses all 
the component of the mesh. First, there are some loops need to be identified 
within the circuit. As can be seen in Figure 1(a), one loop formed by DCV , 1R  
and 2R  while the other loop formed by 2R , 3R . These current meshes are 
connected with each other by loops. 1I  and 2I  is the current of each mesh re-
spectively. The direction of each current is chosen arbitrarily, and the intersect-
ing component will be “went through” by two currents based on the assumption 
of the method. Second, get all the voltage drops though each resistor according 
to the direction of mesh currents. Then use the Kirchhoff’s Voltage laws, get eq-
uations state as 

1 0n
kk V

=
=∑ . Solve a set of equations can get respective mesh 

current. 
In the theory of Mesh Current method, if all mesh currents are chosen in a 

same direction, either clockwise or counterclockwise, the direction of two mesh 
currents that go through the intersecting side of two meshes must be opposite. 
So, that kind of law can be used in determining the direction of n  in turn. In 
other words, if applying the theory of Mesh Current method to determine the 
direction of n , some principles should be followed: the direction of n  gives 
the direction of rotation according to the right-hand rule, the direction of rota-
tion of each triangle element shows a direction of each side of the triangle. If two 
triangles have contrary direction on their common side, it means the directions 
of n  of them are at the same side. This can be seen in Figure 1(b). 

In that case, if the direction of n  of a triangle could be determined, the di-
rection of n  of the neighborhood of this triangle also could be determined. 
Therefore, in this new method, it needs to figure out a reference normal vector 
(RNV) at first, then determine the others’ direction according to the direction of 
 

 
(a)                                        (b) 

Figure 1. (a) A circuit for Mesh Current method; (b) Geometry for two adjacent triangle 
elements.  It contains two triangles with four nodes. Triangle t1 with n1, n2 and n3, tri-
angle t2 with n2, n3 and n4. If the order of t1’s nodes is n1, n2, n3 and the order of t2’s 
nodes is n3, n2, n4, the direction of normal vector of these two triangles are the same. 

DCV

R1 R3

R2

I1 I2

t1

t2

n1 n2

n3 n4
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the RNV. The triangle element of which n  is ensured correct and is referred as 
reference triangle (RT). Check the n  of triangle elements in the neighborhood, 
which share one of RT’s sides, and then check the neighborhood of these three 
triangles, and so on. Eventually, we can finish examination on all triangle ele-
ments of the model. 

3. Simulation Results 

The result of simulation can be carried out when using the one auto-solid angle 
approximation [3]. Data of epicardial surface potential distributions include a 
number of different sequences of cardiac excitation and repolarization, along 
with the geometric location (x, y, z coordinates) of each body and heart elec-
trode. For the purpose of contrast, this paper introduces the result of node-to- 
node discretization as a reference distribution. 

The simple model this paper chooses to simulate has 602 epicardial points and 
771 body surface points, with a cylinder-shaped heart, which is shown in Figure 
2(a) and Figure 2(c). The surface BS  of this model is represented as 1538 tri-
angle elements. The surface HS  of this model is represented as 1200 triangle 
elements. The comparatively complex model we apply our method for has 337 
epicardial points and 771 body surface points, with a relatively real-shaped heart, 
which is shown in Figure 2(b) and Figure 2(c). The surface BS  of this model 
is represented as 1538 triangle elements. The surface HS  of this model is 
represented as 976 triangle elements. 

3.1. Simple Model 

The simulation on simple model shows in Figure 3. Figure 3(a) gives the poten-
tial distribution on epicardial surface which has been set as a known distribu-
tion. Figure 3(b) shows the potential distribution on body surface, which is a 
reference result here. And the potential distribution on body surface calculated 
by a commercial program and the program with new method is shown in Figure 
3(c) and Figure 3(d), respectively. 

As it can be seen in Figure 3(a), the potential on heart surface is set to in-
crease from the bottom to the top monotonously. Consequently, Figure 3(b) 
and Figure 3(d) show a reasonable monotonous potential distribution on the 
body surface. However, the bottom part of Figure 3(c) have significant differ-
ences with Figure 3(b) and Figure 3(d), it shows an unreasonable reverse below 
the middle area, which means it is inaccurate. 

3.2. Comparatively Complex Model 

To verify the feasibility of the new method, a more genuine heart model is used 
for compares. The simulation results on comparatively complex model are 
shown in Figure 4. Figure 4(a) gives the potential distribution on epicardial 
surface which has been set as a known distribution. Figure 4(b) shows the po-
tential distribution on body surface, which is a reference result here. And the  
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(a)                        (b)                       (c) 

Figure 2. (a) Simple heart model; (b) Comparatively complex heart model; and (c) Body 
model. 
 

 
(a)                                       (b) 

 
(c)                                       (d) 

Figure 3. (a) Potential distribution on epicardial surface; (b) Reference potential distribu-
tion on body surface; (c) Potential distribution on body surface calculated by a commer-
cial program; (d) Potential distribution on body surface calculated by the method this 
paper presented. 
 
potential distribution of body surface calculated by a commercial program and 
program of the new method are show in Figure 4(c) and Figure 4(d) respec-
tively. 

The results shown in Figure 4 are analogous to the results in Figure 3. The poten-
tial on heart surface also increases from the bottom to the top monotonously. Figure 
4(b) and Figure 4(d) still keep this property. But Figure 4(c) appears some abnor-
mal distribution on the shoulder area, which exhibits its inaccuracy. 

4. Conclusion 

The direction of the normal vector of discretized triangle element is quite 
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Figure 4. (a) Potential distribution on epicardial surface; (b) Reference potential distribu-
tion on body surface; (c) Potential distribution on body surface calculated by a commer-
cial program; (d) Potential distribution on body surface calculated by the method this 
paper presented. 
 
important for transfer matrix calculation in the electrocardiographic problem. It 
could be wrong sometimes if we do not deal with it appropriately. This paper 
presents a method analogous to mesh current method to judge the normal direc-
tion of triangles. Principle and process of this method are analyzed and ex-
plained in detail. The new method shows its accuracy in a simple and a more 
realistic heart shape model in the electrocardiographic problem. This method 
also has an inconvenient part, namely, an initial n  of a triangle element needs 
to be determined first. Sometimes it should be checked manually if needed. 
What’s more, though the method does not require that either surface has any 
particular shape such as that of a sphere, it can’t work correctly when geometry 
is extremely complex. However, the new method this paper presented can deal 
with most situations with high accuracy. 
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