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Abstract 

The application of porous medium has a myriad of applications in different 
industries: automotive, aerospace, civil (commercial, residential), environ-
mental noise control, and biomedical. In the past, design questions involving 
porous material were addressed with seat-of-the-pants decisions that led to 
multiple/iterative prototypes and experiments that were costly and time con-
suming. The objective, in this series of publications pertaining to porous me-
dium, is to establish tools that will lead to effective and accurate simulations 
involving porous medium. In this third installment of this series the focus is 
on establishing the constitutive equations using tensors and then applying 
Transfer Matrix Method (TMM) to calculate diffuse field Transmission Loss 
(TL) across structures that comprises of layers of different porous medium. 
The constitutive equations are obtained by relating information regarding the 
micro-structure make-up to macro level properties. In order to apply the 
TMM, the equations for wave propagation across different mediums need to 
be developed and in turn represent these propagation properties in a matrix 
format. Additionally, the boundary condition between each layer type is de-
fined in order to ensure numerical stability. The author’s current research ef-
fort is running simulations for the automotive industry to predict NVH en-
vironments. Therefore, TL calculations pertaining to the materials that are 
utilized in the interior of automobiles are used, in this paper, as a test bed for 
the developed analytical tools. Case in point, the TL for a multi-layered ma-
terial consisting of one panel and two different layers of foam is calculated 
and compared to experimental data. Future publication goals will be to apply 
these tools in the biomedical field; an example will be to model and run si-
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mulations of different organs like the liver and lungs that are porous in na-
ture. 
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1. Introduction 

This paper is the third installment from a series of publications pertaining to 
modeling of porous medium. The first paper, Teagle et al. [1], derived a coupled 
set of fluid/structure equations for a porous medium applying asymptotic and 
homogenization techniques. In [1] it is shown that there are mainly 3 modes of 
energy transformation: 1) The first mode is through the connection between the 
micro and macro structural framework of the porous skeleton, 2) The second is 
via the viscous boundary layer, and 3) The third interaction is through thermal 
(entropy) boundary layer. The combination of the viscous boundary layer and 
how tortuous the porous material is, results in the encapsulation of the fluid me-
dium. This, in turn, changes the apparent mass of the structural medium. Details 
pertaining to these encapsulating phenomena can be found in the work by 
Johnson, et al. [2]. In [2] the concepts of tortuosity, viscous length, and viscous 
permeability are explained. The thermal interchange is described in Teagle, et al. 
[3]. In [3], the mathematical description of the thermal energy dissipated by the 
thermal boundary layer is explained along with the relaxation process. This 
thermal exchange changes the acoustic bulk modulus of the porous medium and 
thus the speed of sound inside the porous layer. These thermal phenomena are 
then represented by the parameters of thermal length and thermal permeability. 

This paper is a continuation of [1]. The equations of motion derived in the 
aforementioned publication will be presented in a form that is used for calcula-
tion of TL for porous material used in the automobile industry. The combina-
tion of 1) the change of density due to the viscous effect and 2) the change of 
acoustic bulk modulus due the thermal exchange will be applied. Additionally, a 
matrix representation of the wave propagation (for both forward and reflected 
propagating wave) that incorporates the aforementioned viscous and thermal 
effects is developed. Each porous layer makes contact with another type of por-
ous medium, elastic panel, or air. This study will establish the correct boundary 
conditions between mediums in order to run numerical simulations that lead to 
stable and unique solutions. In order to translate these boundary conditions to 
the numerical model, interface matrices are developed. In continuation, the 
global matrix that represents the multi-layered material is assembled and apply-
ing the definition of impedance the diffuse field TL is calculated. In the TMM 
formulation it is assumed that each layer is of infinite extent. A correction ap-
plying Green’s function technique is applied. 
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2. Formulation 
2.1. Basic Tensor Calculus and Notation 

Tensor calculus and concepts from differential geometry are used extensively in 
this paper. This notation affords a level of abstraction that leads to an efficient 
explanation of the stresses, strains, and their relationships. Here, the usual nota-
tion ( )i ijA T  and ( )i ijA T  represent contravariant and covariant vectors (ten-
sors of order 2). Physical tensors like stress, that are neither contravariant or co-
variant, are designated here as oτ



 or ( )o ijτ  (with over bar and void of any ij 
subscript/superscript or ij subscripts in parenthesis). The relationship between 
physical tensors, like stress, and their cotravariant and covariant counterparts 
are the following 

( ) ( )
( ) ( )

1ij
i j ij

i j

h h
h h

τ τ= =oτ


                     (1) 

where ( )ih  are scaling factors that satisfy the following 
2

( ) ( ) ( ) ( )1 1( ) m m i j
i j i ji jdr h h e e dx dx⋅= =

= ∑ ∑                 (2) 

It should be noted that ( ) ( ) ( ) ( )i j i jh h e e⋅  is the components of the metric tensor 

ijg . The Einstein summation convention is used in which covariant index fol-
lowed by the identical contravariant index is implicitly summed over, thus con-
tracting the order of the tensor. In this paper, if 2 tensors of different order are 
shown next to each other, this contraction rule is followed. To obtain expression 
for strains, the gradient of the first term of the asymptotic expansion of the dis-
placement vector, ( )ou x , is required. The expression for the components of the 
tensor of order 2 is the following 

( ) ( )( )( ) ( ) ( ) ( )( )
( ) ( )

1 k
i j o j ij k o kkij

i j

h u h u
h h

= ∂ − Γ∑ou∇            (3) 

and the expression for strain is given as 

( )1
2

T= +o oe u u

∇ ∇                         (4) 

The elastic constant, ijkl∗C


, is a fourth rank tensor. Due to tensor contraction 
rules the stress tensor, ijkl∗=T C e





 , is of second rank. Additionally, the diver-
gence of the stress tensor, i∇ T



, results in the force field. From Equation (1), the 
contravariant component of the physical stress tensor, T



, is 

( ) ( )

ij

i jh h
=

TT




                          (5) 

Thus, the physical component of the force field in the jth direction is given by 

( ) ( )( ) ( )( )

ij ij i kj i ik
j i j i ik ikj

h h⋅ = ∇ = ∂ + Γ + ΓT T T T T
    

∇          (6) 

The use of orthogonal coordinates results in 

( )

( )( )

( ) (1) (2) (3)
( )( )

(1) (2) (3) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1

j
i ijij

i j

ij ji i j ii j ii
i j

h h h h
T

h h h h h

T T h T h
h h

⋅ = ∂

+ + ∂ − ∂

∑

∑

T


∇

       (7) 
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ijI


 is a tensor operator that transforms the stress data into a hydrostatic 
form. 

2.2. Fluid-Structure Interaction: Dynamic Equations 

This paper applies the definitions and results obtained in [1]. In that publication, 
the fluid/structure interaction equations are derived via asymptotic and homo-
genization techniques. A slight modification is applied to the averaged relative 
displacement of the fluid with respect to the skeleton, ( )w x . In this paper this 
equation is represented as 

( ) ( ), φ= −o ow x y U u                       (8) 

In [1], Equations (54) and (55) are derived and represent the structural stress, 

oτ


, and internal fluid pressure, op . These are rewritten below as Equations (9) 
and (10) 

[ ] [ ]1 1
bi ii ib bb bi ii oC C C C C C p− − = − + +  o x oτ u I




∇           (9) 

[ ] 1 ( , )o ii ibp Mtr C C Mϕ− = − + − ⋅   x o xu w x y∇ ∇          (10) 

where ,bi iiC C  and ibC  are elastic constant tensor (fourth rank) per their ex-
planations given in [1].  

[ ]
1

a

a ii

M
tr C

κ

ϕ κ
−

=
 +  

I


                   (11) 

aκ  is the interstitial fluid bulk modulus, details on its derivation can be found 
in Teagle et al. [4]. Additionally, in [4] it is shown that 

[ ] [ ]1 1
bi ii ii ibC C tr C C− −=pI



                  (12a) 

They act as scalar multiples of the identity operator. 

Set [ ]( )1
ii ibtr C Cϕ β−+ = ⋅x o x ou u∇ ∇  and therefore  

[ ] 11
3 bi ii ptrC Cβ ϕ − = + 

 
I


                  (12b) 

Analyzing the derivations in [1], β  represents the proportion of fluid pres-
sure that produces the same strains as the total stress. Additionally, it is impor-
tant to note that Equations (12a, b) (see Equations (21, 22)) are conditions that 
make it possible for there to be a strain-energy term for the porous material. 
This justifies Biot’s assumption of the existence of a potential when he derived 
his landmark equation, pertaining to porous rocks, for oil exploration. 

Equations (44) and (45) from [1] represent the inertial forces for the structural 
and fluid components and are rewritten below 

( ) ( )( )2 ,f opω ρ ρ ϕ− + = ⋅ −o x o xu x w x y τ


∇ ∇            (12c) 

where s fρ ρ ϕρ= + , and 
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( ) ( ) ( )( )2 ,f f x opω ϕρ α ω ρ ϕ− + = −ou x w x y ∇            (13) 

Subtracting Equation (13) from (12c) and substituting the definition of 
( ),w x y , Equation (8), the following expression for the structural portion is ob-

tained 

( )( )2
11 12ω ρ ρ− + = ⋅o o x ou x U τ



∇                  (14) 

where 

( )12 1fρ φρ α= − −                      (15a) 

11 12s f f sρ ρ φρ αφρ ρ ρ= − + = −               (15b) 

Setting  

22 12f fρ φρ α φρ ρ= = −                    (15c) 

and applying the definition for 12ρ , an efficient representation of Equation (13) 
is 

( )( )2
12 22 x opω ρ ρ ϕ− + = −o ou x U ∇                (16) 

Substituting for op , in Equation (9), the expression in (10), and in turn tak-
ing the divergence the dynamical equation for the structural portion of the foam 
can be expressed as 

( ) ( ) ( )2 2ˆ( ) xM Mλ β ϕ ϕ β ϕ µ⋅ = + − ⋅ + − ⋅ + ∇x o x x o x x o oτ u x U u


∇ ∇ ∇ ∇ ∇   (17) 

In order to derive (17), the definition for β , Equation (12b), was used. When 
0M = , it is easy to verify that λ  and µ̂  are new Lame’ constants of the elas-

tic portion when the porous material is drained. 
Additionally, taking the gradient of Equation (10) followed by a multiplication 

by –ϕ , the following expression dealing with pressure is obtained 

( ) 2
op M M Mφ φ β ϕ φ− = − ⋅ + ⋅x x x o x x ou U∇ ∇ ∇ ∇ ∇          (18) 

Combining Equations (14) and (17), the dynamic equations pertaining to the 
structural/skeleton portion of the porous medium is obtained 

( )( )
( ) ( ) ( )

2
11 12

2 2ˆ( ) xM M

ω ρ ρ

λ β ϕ ϕ β ϕ µ

− +

= + − ⋅ + − ⋅ + ∇

o o

x x o x x o o

u x U

u x U u∇ ∇ ∇ ∇
    (19) 

Similarly, combining Equations (16) and (18) results in the macro level equa-
tions describing the fluid motion 

( )( ) ( )2 2
12 22 M M Mω ρ ρ φ β ϕ φ− + = − ⋅ + ⋅o o x x o x x ou x U u U∇ ∇ ∇ ∇    (20) 

Equation (19) can be expressed in a compact form 

( )( ) ( )2 2
11 12 2 2 xP N Q Nω ρ ρ− + = − ⋅ + ⋅ + ∇o o x x o x x o ou x U u U u∇ ∇ ∇ ∇  (21) 

and by applying the coupling definition of Q, Equation (20) becomes 

( )2
12 22 x xR Qω ρ ρ− + = ⋅ + ⋅o o o x x ou U U u∇ ∇ ∇ ∇         (22) 
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2.3. Wave Participation Factor: Eigenvalue Problem 

In this section, the study adapts the concepts from Brouard, et al. [5]. The mo-
tion of the structural/skeleton and the fluid portion are described by introducing 
the potential scalar functions φ  and Ψ  and the potential vector functions, 
G  and H , such that  

φ= + ×su H∇ ∇                          (23) 

= Ψ + ×fU G∇ ∇                         (24) 

Here, the basic definition from mechanics is used where the gradient represent 
portion of the displacement vector that is purely dilatational or in compression. 
The curl of H  and G  represent any shear motion associated with the dis-
placement. Substitute these definitions into Equations (21) and (22)  

[ ] [ ]( )
[ ] ( ) [ ] [ ]

2
11 12

2N P N Q

ω ρ φ ρ

φ φ

− + × + Ψ + ×

 = + × + − ⋅ + × + ⋅ Ψ + × 

H G

H H G

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇
 (25) 

and 

[ ] [ ]( )
[ ] [ ]

2
12 22

Q R

ω ρ φ ρ

φ

− ∇ + × + Ψ + ×

= ⋅ + × + ⋅ Ψ + ×

H G

H G

∇ ∇ ∇

∇∇ ∇ ∇ ∇∇ ∇ ∇
           (26) 

Recognize that the ∇  operator commutes with 2∇  i.e. 2 2∇ = ∇∇ ∇  and 
( ) 0⋅ × =ζ∇ ∇  for any general vector ζ . 

Using these relationships, Equations (25) and (26) are rewritten in the follow-
ing form 

[ ] [ ]( )
( )

2
11 12

2 2 2 2N P N Q N

ω ρ φ ρ

φ φ

− + × + Ψ + ×

   = ∇ + − ∇ + ∇ Ψ + × ∇   

H G

H

∇ ∇ ∇ ∇

∇ ∇
       (27) 

[ ] [ ]( )2 2 2
12 22 Q Rω ρ φ ρ φ − + × + Ψ + × = ∇ + ∇ Ψ H G∇ ∇ ∇ ∇ ∇     (28) 

Gathering terms corresponding to the gradient operator results in 

( ) ( )2 2 2 2
11 12  N P N Qω ρ φ ρ φ φ− + Ψ = ∇ + − ∇ + ∇ Ψ        (29) 

( )2 2 2
12 22 Q Rω ρ φ ρ φ− + Ψ = ∇ + ∇ Ψ             (30) 

These equations will give the formulation to solve for the compression waves. 
Equations (29) and (30) are represented in matrix form 

11 122 2

12 22

p Q
Q R

ρ ρ φ φ
ω

ρ ρ
       

− = ∇      Ψ Ψ      
          (31) 

[ ] [ ]2 2M
φ φ

ω ρ
   

− = ∇   Ψ Ψ   
                (32) 

[ ] [ ] [ ]12 2M I
φ φ

ω ρ−    
− = ∇   Ψ Ψ   

              (33) 

Set 

1 12 2
1

1 1

φ φ
δ

   
− = ∇   Ψ Ψ   

 and 2 22 2
2

2 2

φ φ
δ

   
− = ∇   Ψ Ψ   

        (34) 
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Applying (34), Equation (33) is turned into an eigenvalue problem 

[ ] [ ] [ ]12 2 0i i
i

i i

M I
φ φ

ω ρ δ−    
− + =   Ψ Ψ   

               (35) 

The eigenvalues produce the complex wave number for the compression 
waves and they will have the following expression 

2
2

1 22 11 122 2
2( )

P R Q
PR Q
ωδ ρ ρ ρ = + − − ∆ −

         (36a) 

and 
2

2
2 22 11 122 2

2( )
P R Q

PR Q
ωδ ρ ρ ρ = + − + ∆ −

          (36b) 

Such that 

( ) ( )( )2 2 2
22 11 12 11 22 122 4P R Q PR Qρ ρ ρ ρ ρ ρ∆ = + − − − −        (37) 

Two sets of eigenvectors are generated 
1,2

i

i i

φ

=

 
 Ψ 

 the relationship /i iφΨ  is 

known as the participation factor. Substituting the eigenvectors into Equation 
(31) ones gets 

2 2
2

11 12
i i i

i i

P Qφ
ω ρ ρ

φ φ
 Ψ ∇ + ∇ Ψ

− + = = 
 

 

2 2 2
11 12

i i
i i

i i

P Qω ρ ρ δ δ
φ φ

 Ψ Ψ
− + = − − 

 
 









2 2 2 2
11 12

2 2 2 2
12 22

ori i i i
i i

i ii i

P Q
Q R

δ ω ρ δ ω ρ
µ µ

φ φω ρ δ ω ρ δ
Ψ − Ψ −

∴ = = = =
− −

 for 1,2i =  (38) 

These results indicate that there exist two compression waves traveling the 
porous medium, one is fast and the other one is slower. iµ  is important since 
the number will indicate which wave, whether acoustic or solid, has the most 
contribution at that particular frequency. For the shear wave we accumulate all 
terms in Equation (27) and (28) that contain the curl operator 

( )2 2
11 12 Nω ρ ρ− + = ∇H G H                    (39) 

( )2
12 22ω ρ ρ− + =H G 0                      (40) 

∴  Equation (40) results in 12

22

ρ
ρ

= −G H , insert this in (39) 

2
2 212

11
22

Nρ
ω ρ

ρ
 

− − = ∇ 
 

H H H  

2
2 2 12

11
22

N ρ
ω ρ

ρ
 

∇ + − = 
 

H H H  0                 (41) 

Setting 2 2
3δ∇ = −H H , the complex wave number for the shear wave can be 

given as 
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22
2 11 22 12
3

22N
ρ ρ ρωδ

ρ
 −

=  
 

                   (42) 

and the participation factor is 
2 2
3 1112

3 2
22 12

N
µ

δ ω ρρ
ρ ω ρ

−
= − =                   (43) 

2.4. Wave Propagation: Porous Medium 

This portion will analyze wave propagation in a semi infinite porous medium. 
Consider Figure 1. 

The disturbance wave is traveling down at an angle of incidence of θ in the 
general xz plane and will impinge the porous medium at the z = 0 level. A por-
tion of this wave will be reflected and some of it will be transmitted to travel 
through the porous medium until it impinges the next layer, at z = L, of different 
impedance. A portion of the wave will again be reflected back into the porous 
medium and the rest will be transmitted to the next layer. 

Since there exist 3 wave types, 2 compression (dilatation) waves and 1 shear 
wave, and since each wave type has 2 waves (forward moving and the reflected 
wave) there will be 6 variables. These variables are: 

,s s
x zv v  structural velocity in the x and z direction 

,f f
x zv v  acoustic velocity in the x direction and z direction 
s
zzτ  = structural stress component perpendicular to z face in the z direction 
s
xzτ  structural shear component 
f

zzτ  acoustic stress component 
An array of these components will be represented by  
( )

Ts s f f s s f
x z x z zz xz zzV z v v v v τ τ τ =   . The continuity of these variables at the inter-

face between 2 layers will become the boundary conditions that the traveling 
wave has to satisfy. Using the definition of the participation factor above, the 
potential functions can be expressed as 

1,2 1,2

i i
i

i i ii i

φ φ
µ φ

= =

   
= =   Ψ  

Φ


                 (44a) 

and 
 

 
Figure 1. Porous medium element: Thickness L, angle of incidence θ. 
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3
3µ

  
= =   
 

Φ
 

GG
GH

                      (44b) 

and 
[ ]1 3( )i i ii t x z

i iA e ω δ α αφ − +=  forward wave 

[ ]1 3( )i i ii t x z
i iA e ω δ α αφ − −′ =  reflected wave 

where 1 sin( )i i kδ α θ= , indicates the matching of acoustic and porous waves 
along the x direction (k is the acoustic wave number and k sin(θ) is the projected 
acoustic wave number in the x direction). ( )1/22

3 11i iα α= −  projects the porous 
wave in the z direction. Note: 1) if 3iα  is real, there is a propagating wave, 2) if 

3iα  is complex there is a decaying wave in the z direction. The following nota-
tions will be used 3 1,i i i i iα δ α α δ υ= = , and i i i=Φ Φ + ′Φ  1,2,3i = . An expres-
sion for iΦ  can now be derived 

 ( ) ( ) ( ) ( )cos sin 1,2,3i t ix
k k k k kk ke e A A z i A A z kω α α− ′ ′ = + − − = Φ       (45) 

The six variables can be written as a function of the potential functions and 
using the above notation: 

 ( ) 1 2 3s
xv i

x z
ω
 ∂ + ∂ = − ∂ ∂

Φ



Φ



Φ




                  (46) 

 ( ) 1 2 3s
zv i

z x
ω
 ∂ + ∂ = + ∂ ∂

Φ



Φ



Φ




                  (47) 

 ( ) 1 1 2 2 3 3f
zv i

z x

µ µ µ
ω
 ∂ + ∂ = + ∂ ∂


Φ



Φ Φ


               (48) 

The following three equations are essential to define the stress components 
 ( )  ( )2 2

1 2 1 2

2 2e
x z

Φ Φ ∂ + ∂ +
 = +

Φ Φ

∂ ∂ 
 

                (49) 

 ( )  ( )2 2
1 1 2 2 1 1 2 2

2 2x z

µ µ µ µ
ε

Φ Φ Φ ∂ + ∂ +
 = + ∂ ∂ 
 

Φ
            (50) 

 ( ) 

2 21 2 3
2

zu
z x zz

Φ Φ Φ∂ + ∂∂
= +

∂ ∂ ∂∂
                   (51) 

Utilizing the stress definitions established in section 2.2, the stress compo-
nents can be written as 

( )


( )


( )

( )


( )


( )


( )

2 2
1 1

1 2 2

2 2 2 2
2 2 1 2 3

2 2 2 2

2

2 2

s
zz P N Q

x z

P N Q N
x zx z z

µ

µ

τ
 ∂ ∂
 = − + +
 ∂ ∂ 

   ∂ ∂ ∂ + ∂
   + − + + − +
   ∂ ∂∂ ∂ ∂  

Φ Φ Φ Φ Φ



Φ Φ

  (52) 
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( )
( ) ( )

( )
( ) ( )2 2 2 2

1 1 2 2

1 22 2 2 2
f

zz Q R Q R
x z x z

τ µ µ
   ∂ ∂ ∂ ∂
   = + + + + +   ∂ ∂ ∂ ∂   
  

Φ



Φ Φ Φ
  (53) 

 ( ) ( ) ( )2 2 2
1 2 3 3

2 22s
xz N N

x z x z
τ

   ∂ + ∂ ∂
   = + −   ∂ ∂ ∂ ∂   

Φ Φ

 

Φ Φ
          (54) 

Applying the corresponding expressions in (44) into Equations (45)-(54) a set 
of equations involving kkA A′+ , kkA A′−  and complex trigonometry equations 
will be obtained. For example if (44) is applied to (45) the following expression 
in sues 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2 2

3 3 3 3 3 3 3

1

2

3

1cos sin

cos sin

sin cos

s i x
xv e A A z i A A z

A A z i A A z

i A A z A A z

υ ω α α

ω α ω α

ωα α α ω

υ υ

υ υ

α

− ′ ′= + − −
′ ′+ + − −

′ ′ + + − − 

       (55) 

Similar operations are done to derive expressions for , , , ,s f f s s
z x z zz xzv v v τ τ  and 

f
zzτ . The final results are represented in matrix form 

( ) ( )V z z A= Γ  

where 

[ ]1 1 21 1 2 2 2 3 33 3
TA A A A A A A A A A AA A′ ′ ′ ′ ′ ′= + − + − + −  

and 

( )
1 1 2

1 1 1 2 2

1 1 1 1 1 1 2 2 2

1 1 1 1 2 2

1 1 1 1 2 2

1 1

cos( ) sin( ) cos( )
sin( ) cos( ) sin( )

sin( ) cos( ) sin( )
cos( ) sin( ) cos( )

 2 sin( ) 2 cos( ) 2 sin( )
cos(

z
z i z z

i z z i z
i z z i z

C z iC z C z
i N z i N z i N z

D

ω α υω α υω α
ω α α ω α α ω α

α ω α α ω α α ω α
α α α

α α α α α

υ
υ
µ µ µ

υ υ υ α
α

Γ =

−
− −

− −
− −

−
−

2 3 3 3 3

2 2 3 3

2 2 2 3 3 3 3

2 2 3 3 3 3
2 2

2 2 3

1 1 2 2

sin( ) sin( ) cos( )
cos( ) cos( ) sin( )

cos( ) cos( ) sin( )
sin( ) 2 sin( ) 2 cos( )

2 cos( ) cos(
) sin( ) co

( )
s( )

i z i z z
z z z

i z z i z
iC z i N z i N z

i N z N
z iD z D z

υω α ωα α α ω α
α ω α υω α υω α
α ω α υω α υωµ α

α α α α
µ

υ υ α
α α α υ αυ

α α

− −
−

−
−

− −
−

2 2
3 3 3

2 2

) ( )sin( )
sin( ) 0 0

z iN z
iD z

α υ α
α

− −

 

( )( )2 2 22 1,2i i iC P Q N iµ αυ= + + − =               (56a) 

( )( )2 2 1, 2i i iD R Q iυµ α= + + =                 (56b) 

The idea behind a transfer matrix is to relate the 6 variable, V(z), at z = L to 
the conditions at z = 0, i.e. relate the A  matrix with respect V(L)  
( ) ( ) ( ) ( )1

V L L L V LA A
−

= Γ →→ = Γ   . The conditions at z = 0 can be written 
as 

( ) ( ) ( ) ( ) ( ) [ ] ( )1
0 0 0V LA V L T V L

−
= Γ = Γ Γ =             (57) 

Here, [ ] ( ) ( ) 1
0T L

−
= Γ Γ    is known as the transfer matrix      (58) 

2.5. Interface Conditions: Uniqueness 

A general form for the required boundary conditions between the layers of mul-
ti-layered materials is developed. These boundary conditions are developed to 
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ensure uniqueness and numerical stability. Special focus is on deriving interface 
conditions for the porous material. This section puts concepts introduced by 
Deresiewicz, et al. [6], under the context and language set forth in this paper. 

The kinetic energy, per unit volume for the two phase system is expressed as 

2 2
11 12 22

1 1
2 2ke i i i iT u u U Uρ ρ ρ= + + 

                    (59) 

11ρ , 12ρ , and 22ρ  are 11ρ , 12ρ , 22ρ  void the portion with tortuosity 
(without viscous effect). The dynamic equations in Equation (17) assume that 
the porous material is statistically isotropic. Recall that oτ



 is the stress in the 
skeleton and psoI



 is the stress in the acoustic medium, ps pφ= − , oI


 is the 
macro-level identity (hydrostatic) tensor. The strain energy, per unit volume is 
given by  

( )0
1 : :
2 pW s= + oτ e I



  , ( )e  = Strain tensor for liquid (solid)    (60) 

Taking the time derivative of the kinetic and strain energies results in 

( )

( ) ( ) ( )
0 0

11 12 12 22 : :

ke keV

o p oV

dT W T W dV
dt

u s dVρ ρ ρ ρ

+ = +

 = + ⋅ + + ⋅ + ∇ + ∇  

∫

∫ i i i i i i ou U u u U U τ I U

 





   

   

 (61) 

The following tensorial relationship holds 

( ) ( ) :o ou u∇⋅ = ∇ ⋅ ⋅ + ∇oτ τ u τ  

                    (62) 

Combining Equations (61, 62) and the divergence theorem the expression for 
power is obtained 

( ) ( )
( )

11 12 12 22 ,i i i i p i iV

o p iS

s dV

u s dS

ρ ρ ρ ρ + −∇ ⋅ ⋅ + + −∇ ⋅ ⋅  

+ + ⋅

∫

∫

i o

o

u U τ u u U I U

τ I U n





  

  







   (63) 

The portion inside the volume integral represents the traction and inertial 
work applied to the skeleton and acoustic medium respectively. Equations (21) 
and (22) are written in shorthand form  

11 12 ( )Bρ ρ∇ ⋅ = + + −o o o oτ u U u U

 

                (64) 

12 22 ( )ps Bρ ρ∇ ⋅ = + − −o o o oI u U u U


 

               (65) 

The ( )B −o ou U  term is the viscous force term due to the interstitial fluid, Β 
is a viscous transfer function replicating the viscous effects. When (64) and (65) 
are plugged into Equation (63), the volume portion of the equation becomes 

( )2
02 2 i iV V

D D dV B u U dV= = −∫ ∫ 

              (66) 

0D  is the dissipation function per unit volume. Taking (66) into considera-
tion the power expression is expressed as  

( )0 2ke p oS
T W D s dS+ + = + ⋅∫ o oτu I U n









             (67a) 

The right hand side of (67a) expresses the rate at which work is done on the 
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material by surface forces, n  is the normal vector to the surface. Now consider 
2 different porous medium with volumes 1V  and 2V , boundaries 1S  and 2S  
and where cS  represents the common boundary between porous medium 1 
and 2. To establish uniqueness, for each of the two mediums the field quantities 
will be replaced by a difference representing the possibility of two different solu-
tions but with the same boundary conditions, making the right hand side of Eq-
uation (67a) equal to zero. 0 2keT W D+ +   is positive definite, therefore the only 
way that the difference version will satisfy the zero condition is that

0 2 0keT W D+ + =   everywhere, indicating that the solution is unique. The sur-
face integral in Equation (67a) is partitioned in the following way,  

( ) ( )( )( )( ) ( )

k c

kk k
p oS S

s dS
+

+ ⋅∫ o oτu I U n





  1,2k =  is the element number (67b) 

In the common portion cS , (2) (1)
j j= −n n . Combining the two surface inte-

grals results in 

( ) ( )
( ) ( )

1 2

(1) (1) (1) (1) (2) (2) (2) (2) (2)

(1) (1) (1) (1) (1) (2) (2) (2) (2) (2) 0
c c

o o pS S

o p o pS S

dS s dS

s s

+ ⋅ + + ⋅

+ + ⋅ − + ⋅ =

∫ ∫

∫ ∫

o o o o o o

o o o o o o

τ u I U n τ u I U n

τ u I U n τ u I U n

 

 

 

 

 

 

 

 

   (68) 

For the non-intersecting boundaries (S1 and S2) the boundary conditions will 
have to be given. At the Sc boundary, continuity is required across the interface 
to be able to maintain uniqueness. If the skeleton phase is to remain in contact 
with each other and to maintain the principle of conservation of mass of the 
acoustic medium it is continuity of the normal relative velocity of the acoustic 
medium with respect to the skeleton, i.e. 

( )n n nw U uφ= −                        (69) 

Applying (69) into (68), the Sc integrand becomes 

( )( ) ( ) ( ) ( )k k k k
p ns pw+ −⋅o o oτ I u n



                   (70) 

To assure continuity of condition (70), continuity in the following quantities 
has to be maintained 

, ; , ; ,nn p n ns s ns u u p wσ σ+                      (71) 

The non-alignment of the pores can produce a pressure drop across the inter-
face so the continuity condition for pressure p is modeled as (1) (2)

p np p k w− =  , 

pk  is a coefficient of resistance. The materials used in this study are highly 
porous so pk  was set equal to zero. This also seemed to be the coefficient that 
gave the best results after a quick parameter study. If the intersection or interface 
is between a porous medium and a plate then, pk = ∞  or 0nw = . The conti-
nuity conditions for this case (porous-plate) will be the following 

,nn p nn ns nssσ σ σ σ+ = =                   (72) 

, , 0n n s s n nu u u u U u= = − =  

                   (73) 

The over-bar in conditions (72) and (73) represent quantities in the plate. In 
case the interface is between porous medium and air, φ  for the layer pertaining 
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of air will be set equal to one, the stresses nnσ  and nsσ  will be set equal to zero 
and 0pk = . The interface conditions for porous and air becomes 

, 0,nn p nsps ppσ σ+ = − = =                  (74) 

( )1 n n nu U Uφ φ− + = 

                     (75) 

The continuity of n nu w+   was applied to obtain Equation (75). 

3. Results and Conclusion 

A Simple application of TMM is applied to the simple layer configuration shown 
in Figure 2. The figure shows a multi layer system where there is a plate that is 
glued to foam 1 which in turn is connected to foam 2. The parameters pertaining 
to plate 1, foam 1, and foam 2 are listed in Table 1. This simulation also applied 
the following parameters that are not listed in the table: Viscous length = 40 μm, 
Thermal length = 80 μm. The goal of this simulation is to calculate Random In-
cidence Transmission Loss (TL). This is achieved by applying Finite Size correc-
tion Transfer Matrix Method (FTMM) [7] [8]. The Finite Size Correction is 
achieved by incorporating a Green’s Function integration to the radiation effi-
ciency. The dynamic equations pertaining to the skeleton and fluid along with 
the boundary conditions depicted in Equations (71)-(75) are applied in order to 
simulate how the structural and fluid stresses will change as the acoustic wave 
travels through the multi-layered material. 

Equations (9) and (10) represent the structural equations in its most general 
form. A detailed Finite Element (FE) can be developed in order to analyze the 
interplay between macro and micro levels and in turn obtain expressions for P, 
Q, R, and N; parameters required in Equations (21) and (22). In this study there 
is not enough information to construct an FE model, the only structural infor-
mation available are the experimentally obtained bulk modulus, bk , and the  
 

 
Figure 2. Multi layer configuration. 

 
Table 1. Parameters pertaining to plate and foam. 

Panel Thickness [m] Density [kg/m3] Youngs Modulus [Pa] Shear Modulus [Pa] Poisson Ratio Loss Factor Description 

Plate 1 7.00E−04 7800 2.10E+11 8.00E+10 0.3125 0.001 Steel 

Plate 2 1.00E−03 1100 2.30E+09 7.72E+08 0.4896 0.005 Hard Rubber 

Plate 3 2.10E−03 2500 4.85E+10 1.96E+10 0.2398 0.001 Tempered Glass 

 

Foam 
Thickness 

[m] 
Density 
[kg/m3] 

Young’s 
Modulus [Pa] 

Poisson 
Ratio 

Loss 
Factor 

Porosity Tortuosity 
Flow Resistivity 

[Ns/m4] 
Description 

Foam 1 1.00E−02 22 4.65E+04 0.4 0.14 0.96 1.74 5000 Polyurethane Foam 

Foam 2 3.00E−02 40 9.50E+04 0.34 0.1 0.95 1.9 1.15E+04 Typical Car Seat Foam 
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shear modulus, N, both pertaining to the porous material. Materials used in the 
acoustic field usually consist of a highly porous material whose structural por-
tions are considerably stiffer. Due to one of Biot’s [9] experiment, a jacketed 
porous medium experiences a hydrostatic pressure pj, but the air inside the por-
ous medium experiences no change in pressure. The definition for porosity  

before and after deformation respectively are ( )1 sV
V

ϕ− =  and ( )1 sV
V

ϕ
′

′− =
′

.  

Assuming highly stiff solid frame will lead to small changes in solid volume, 
therefore ssV V ′=  and (1 )jV V tre′ = + , jtre  is jacketed frame dilation. This 
information leads to the following equation for ϕ′  

( ) ( )( )1 1 1 ( )tr eϕ ϕ′− = − +                     (76) 

Similarly, a relationship for the fluid dilatation is obtained, ( )1 ( )trϕ ϕ′ + = . 
Combining this last expression with that of Equation (76) the following impor-
tant relationship which relates the fluid and frame dilatation is obtained 

( )1
( ) ( )tr tr e

ϕ
ϕ
−

=                       (77) 

Analyzing Equations (17) and (18), the following expressions for structural 
stress is obtained 

( ) ( ) ( ) ( ) ( )2 2P N tr M tr Nϕ β ϕ= − + − +o m mτ I e I e


 

 
          (78) 

( ) ( ) ( )2
cP M tr M trϕ ϕ β ϕ ϕ− = − +                 (79) 

For the porous material with relatively very stiff frame, Equation (11) shows 

that M can be approximated by 
[ ]

aM
κ
ϕ

= . In turn, taking the trace of Equation  

(78), dividing that result by 3, and setting 0cP =  in Equation (79), the jacketed 
experiment is simulated 

( ) ( )14
3bk P N M

ϕ
ϕ β ϕ

ϕ
− = − + − 

 
 bk  = porous bulk modulus  (80) 

( ) ( )2 1
0 M M

ϕ
ϕ β ϕ ϕ

ϕ
−

= − +                 (81) 

Equation (77) is applied to obtain (80) and (81). Firstly, from Equation (81), it 
is deduced that 

2
aR Mϕ κ ϕ= =                       (82a) 

and 

( ) ( )1aQ Mϕ β ϕ κ ϕ= − = − −                 (82b) 

Plugging Equation (82a, b) into (80) and solving for P results in 

( )214
3b aP k N

ϕ
κ

ϕ
−

= + +                   (82c) 

The results incorporating Equations (82abc) (indicated as “case 9”) into the 
simulation are shown in Figure 3. The results are compared to measured  
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Figure 3. Top: TL comparison (dB); Bottom: TL difference (dB) measured data is the 
reference. 
 
(“meas”) results and also to the empirical formulas of Delaney and Bazley 
(“DB”) [10] [11]. The graph shows that the calculated results come within 0.7 
dB. 
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Nomenclature 

tr = trace of a tensor, a  = averaged at the microscopic level 
v = Fluid Velocity, p = Fluid Pressure 
u = Structural displacement, U = Fluid displacement 
ϕ  = Porosity, n = unit normal pointing into the solid 
η  = Viscosity, ξ  = Second Viscosity 

fD  = Domain Occupied by Fluid, sD  = Domain Occupied by Structure 

κ  = Coefficient of thermal Conductivity, Pr = Prandtl Number = pCη
κ

 

σ  = Stress Tensor in the Fluid, τ  = Stress Tensor in the structure 

fρ  = density of the Fluid, sρ  = density of the Structure 
ˆ,λ µ  = Lame Parameters, n = unit normal pointing into the solid 

T = Temperature deviation, κ  = Coefficient of thermal Conductivity 
( )k ω  = Dynamic Viscous Permeability, ( )k ω′  = Dynamic Thermal Per-

meability 

p vC Cγ =  Cp = specific heat at constant pressure, Cv = Specific heat at con-
stant volume 

ijklC


 = Elastic fourth ranked Contra variant tensor, operates on u∇  

aκ  = Acoustic bulk Modulus 
a∗  = asterisk superscript means scaled variable (dimensionless) 
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