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Abstract 
The purpose of the present work is to derive some solutions for several solid 
angle cases via a fundamental formula which gives the solid angle for an isos-
celes triangle. From this formula the solid angle of pyramids is derived but, 
unlike other presentations, it is shown in a format similar to that of the 
well-known cone case. Besides the regular polygon cases (straight pyramids), 
solid angles of some other plane closed curves are calculated. The fundamen-
tal formula also leads to some interesting properties showing the not simple 
behavior of solid angles with the observer point on the curve itself, as it de-
pends on how the observer arrived there. The question of the equi-Ω surfaces 
is also discussed and calculated in simple cases. 
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1. Introduction 

When trying to calculate the electric field flux through windows on solids, one 
comes across with solid angle problems, in special related to pyramids. The same 
problem occurs when one uses radiation detectors with some noncircular win-
dows to take into account the detection efficiency [1] [2]. 

As any N side inscribable polygon is composed by a set of N isosceles triangles, 
the solid angle for any pyramid with that base is simply the sum of the N solid 
angles of those triangles, with the observer on the vertex of the pyramid. So, a 
natural path is to determine the solid angle Ω of an isosceles triangle with the 
observer point P on a vertical from the triangle vertex at a height z. The point P’ 
is the normal projection of P on the triangle vertex, that is, the vertex itself. The 
importance of the point P’ is that all calculations can be done on it instead of P 
directly, the solid angle seen by P being computed after by taking into account 
its height through the value of z. 
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Normally solid angle for closed curves is shown when the observer point is in 
any position of the space but not on the curve itself. In the present article, the 
development of a Fundamental Formula, as performed in Section 2, leads to the 
possibility of calculating the solid angle for the observer on the curve. This is in-
deed the principal aim of the present work, with many consequences being 
pointed out and studied. 

One more importance of P’ is clear when the observer is in any point of the 
curve plane, the plane of the curve (P’ = P), including on the curve itself, when 
certain interesting properties of Ω arise. In special, on the curve, Ω presents a 
not simple behavior, that is, unlike on all other positions of P in the space, Ω 
cannot be defined on the curve only by its position. It is necessary to specify the 
path of P through which P reaches the curve. 

This not simple scalar behavior also occurs with the problem of the internal 
angle of a circle arc and one chord as shown in Figure 1. The internal angle is a 
function of the position of the observer vertex on the plane but the end points of 
the chord. On these points, the internal angle is also a function of the path the 
observer reached them, as there are infinite arcs that have the same chord. In 
Figure 1 we see two different arcs C1 and C2 and the directions, the observer 
point arrived to the end B of the chord AB (that are the internal angles them-
selves). This shows that, on one end of the segment, the internal angle is not only 
a function only of the position, but also a function of how it arrives on that end. 

2. The Fundamental Formula 

The solid angle through it an observer on point P sees an isosceles triangle is 
given by the fundamental formula, Equation (1) below. This was derived by sim-
ple double integration. Many consequences of the fundamental formula and 
several applications of it are shown along with this paper. 

Refer to Figure 2. Let BC = L be the base of the isosceles triangle P’BC and 
with a distance z from the plane X-Y. The point D is then on that plane. To cal-
culate the solid angle Ω the origin sees the triangle, we have: 

( )2ˆˆd z r dr SΩ = ⋅  

with ẑ  the unitary vector normal to dS and r̂  the unitary vector in the direc-
tion of r. The position of a point on the line P’-C is given by ( )tg 2y x ϕ= ⋅  
and on the line P’-B by ( )tg 2y x ϕ= − ⋅ . The limits of x are 0 and p, or 

( )22 tanL ϕ   . 
The solid angle is given by: 

( )
( )

( )2 tg 2 tg 2

tg 2
3

0
d d

x

x

L
z x y r

ϕ ϕ

ϕ

⋅  

− ⋅

⋅
Ω = ⋅ ⋅∫ ∫  

The result of this integral, replacing L by ( )2 sin 2 tanz ϕ θ⋅ ⋅  is: 

( )2arctan cos tan 2ϕ θ ϕΩ = −                   (1) 

Equation (1) is the Fundamental Formula and shows the solid angle the ob-
server in P sees the isosceles triangle P’ BC. 
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Figure 1. Internal angle problem. 

 

 
Figure 2. Derivation of the Fundamental Formula. 

3. The Observer in the Plane of the Triangle 

When the observer P is in the plane of the isosceles triangle, that is, P coinciding 
with P’, the solid angle is obviously 2π with P within the triangle and 0 with the 
P is outside it. If P is exactly on the vertex, the solid angle depends on how P 
reaches the vertex. If P comes from outside the triangle the solid angle is 0 and 
from inside, the solid angle is 2π. If P comes from the space not on the triangle 
plane, the solid angle depends on the angle of arrival to the vertex. If P comes to 
P’ through the z-axis (see Figure 2), the solid angle is got by making z equal to 0 
in Equation (1). The result is: 

ϕΩ =                             (2) 

Equation (2) has some consequences. Suppose we have a general plane closed 
curve as that of Figure 3 with P on the vertex of an angular region of the curve. 
We divide the curve into two parts such that we get an isosceles triangle ‘a’ with 
‘b’ being the rest of the figure. The solid angle seen by P is the sum of the solid 
angle of ‘a’ with that of ‘b’. As P is on the plane of the curve and outside ‘b’, the 
‘b’ corresponding solid angle is 0. For ‘a’ the solid angle is ϕ and so the total solid 
angle. Then the total solid angle is independent of the general shape of the curve 
but only dependent of the angle ϕ. 
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Figure 3. The observer on the vertex of an angular part of a curve. 

 
When P is on a straight or smooth (not angular) part of a curve, ϕ = π and, so, 

the solid angle is also π, independently of the rest of the curve, as shown in Fig-
ure 4. This is the case of the circle which that is useful in the study of the solid 
angle of cones. 

We must remember that all these cases have the observer P on the plane of the 
curve (z = 0). The following analysis confirms the validity of Equation (2). 

As in Figure 5, let’s have a closed curve of arbitrary shape and with P in any 
position of the plane of the curve and within it. If we divide the figure into N ar-
bitrary angles αi, the total solid angle Ω will be the sum ∑i of the partial solid an-
gles Ωi. As we saw before with Equation (2), i iαΩ = , so, as we have 2i iα∑ = π , 
we get 2Ω = π  as expected. 

4. Application of the Fundamental Formula 
4.1. The Solid Angle of Right Pyramids with P’ at Its Center 

If the closed plane curve is an inscribable N side polygon, it can be divided into 
N isosceles triangles, the solid angle of the straight pyramid having this polygon 
as its base is a sum of the N results of Equation (1), one for each triangle. The 
particular case of this situation is the regular N side polygon, creating a regular 
pyramid. As ϕ is 2π divided by N, we get the pyramid solid angle by multiplying 
Equation (1) by N. The resulting formula, Equation (3), is conveniently written 
with a similar shape of the well-known cone case, unlike other publications [3]. 

( ) ( ){ }2 1 arctan cos tanN NθΩ = −π π π                (3) 

Equation (3) is useful to solve many geometric problems, as we see in item 5. 
Some of these problems are classical ones that can be solved in a much simp-

ler and quicker manner using Equation (3) and some are newly proposed ones. 

4.2. The Solid Angle of a General Triangle with P’ on Its Vertex 

Let’s consider the case with the observer P on the vertical over the vertex of a 
general triangle as in Figure 6. Its vertices are located in points P’, S and Q and P  
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Figure 4. The observer on a smooth part of a curve. 

 

 
Figure 5. One of Equation (2) validity confirmation. 

 

 
Figure 6. The case of P’ on the vertex of a 
general triangle. 

 
is at a height z from the triangle plane. The lengths a, b, c and z are given and a is 
the side not containing the point P’. With b being the biggest between the two 
other sides, we build two isosceles triangles P’QR and P’ST. The segment e com-
pletes both central right triangles. This processes for determining solid angles of 
geometric figures are not exclusive of triangles, 

The solid angle relative to the original triangle P’SQ is obviously given by: 

( )1 2 2Ω = Ω − Ω  
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where 1Ω  and 2Ω  are the solid angles relative to the triangles P’ST and P’QR 
respectively. 

With: 

( ) ( )22 2 2 2 2 2 2 2 24K a b a c b c a b c= + + − + +  

We have: 

( ) ( )22 2 2 2
1tan 2 b c a Kϕ = − +  

( ) ( )22 2 2 2
2tan 2 b c a Kϕ = − −  

With some manipulation and using Equation (1), we get for the solid angle: 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( )

( ) ( )

22 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

arctan 4

arctan 4

arctan 4

arctan 4

b c a a b a c b c a b c

z b c a a b a c b c a b c b z

b c a a b a c b c a b c

z b c a a b a c b c a

  Ω = − + + + − + +    
   − − + + + − + + +     
  − − − + + − + +    

+ − − + + − ( ) ( ){ }22 2 2 2 2b c c z
   + + +     

(4) 

The expression above is rather complicated but is a real and exact solution of 
the proposed problem. 

As a test of Equation (4), we make c b= , that means, the triangle is isosceles. 
We get ( )2arctan cos tan 2ϕ θ ϕΩ = −    , that is the Equation (1), as expected. 

If P’ is not on the vertex of the triangle, we can create three new triangles αβP’, 
βχP’ and αχP’ as in Figure 7 and solve the problem for these three general trian-
gles as shown before in the present section. The sought solid angle Ω(αβχ) is 
given by: 

( ) ( ) ( ) ( )αβχ αβ βχ αχ′ ′ ′Ω = Ω Ρ + Ω Ρ − Ω Ρ  

This solution, although shown for the triangle case, it is perfectly valid for any 
polygon, as one can create a number of suitable triangles to calculate the solid 
angle. 

Normally it is possible to create N triangles for the case of a general polygon 
with N sides. This leads to the solid angle for a general pyramid with a general 
polygonal base [4]. The process may be laborious due the number of involved 
triangles but leads to precise results. The next section just deals with the special 
case of rectangles, that are simpler to calculate as it involves only isosceles trian-
gles that are well treated in Section 2. 

Reference [5] shows another approach to the solid angle for a general triangle. 

4.3. The Solid Angle of a General Rectangle 

It is possible to solve this problem using Section 4.2 choosing the rectangle as the 
general polygon, but the following solution is simpler and immediate. 
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Figure 7. The case of a general triangle. 

 
A rectangle is dividable into 4 isosceles triangles equal two by two with sides 

2A and 2B. Then, if P’ is on the center of a rectangle, the problem of the solid 
angle for such a pyramid is solved by using Equation (1) two times, one for each 
type of triangle, summing their results and multiple by two. The result is shown 
by Equation (5) below: 

( ){ }
( ){ }

1 22 2 2

1 22 2 2

2 4arctan

4arctan

zA B A B z

zB A A B z

 Ω = − + +  

 − + +  

π
            (5) 

When P’ is not on the center, for example, the situation is that of Figure 8, 
where the rectangle is αβχε of sides 2.a and 2.b. To solve this case, we trace two 
central lines containing P’ and parallel to the rectangle sides and create three 
more rectangles, γδλη, ρσζψ and μνξκ, the central lines three mirror images of 
the first one. As we see in Figure 8, the problem now is reduced to calculate 
the solid angles of four rectangle with P’ common to all. These rectangles are: 
αδζκ, βγψξ, μεησ and χλρν, with the respective solid angles Ω(αδζκ), Ω(βγψξ), 
Ω(μεησ) and Ω(χλρν). The solid angle Ω of the original rectangle is given by 

( ) ( ) ( ) ( ) 4αδζκ βγψξ µεησ χλρνΩ = Ω − Ω − Ω + Ω    (The last term is the 
compensation for the central rectangle χλρν that was accounted two times with 
the rectangles βγψξ and μεησ). 

Using Equation (2) and Equation (4), after some manipulation we get for the 
solid angle of the original rectangle: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

12 2 2

12 2 2

12 2 2

12 2 2

2

2

2

2

arctan

arctan

arctan

arctan

x a y b z z x a y b

x a y b z z x a y b

x a y b z z x a y b

x a y b z z x a y b

 Ω = + + − + + −   

 + − + + + − +   

 − + + + + + +   

 − − + − + − −   

      (6) 

As before, the expression is complicated but exact. It is possible to condensate 
yet more Equation (6), but the result does not seem to be more convenient to 
use. 
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Figure 8. The case of a general rectangle. 

 

One test may be performed on Equation (6) by making x a= , y b= , that is, 
putting P’ on the vertex χ. Choosing a b=  and 2z a= , the point P will be 
seeing one quarter of the face of a cube and situated at its center, that is, 

6Ω = π . Multiplying this by four, we get 3Ω = 2π , the solid angle of the face 
of a cube (as multiplying this by six we get 4π). 

4.4. The Solid Angle of an Infinite Long Band 

Suppose we have an infinite long band with width p as in Figure 9(a). To get the 
solid angle the point P sees the infinite band, we draw an isosceles triangle as in 
Figure 9(b), keeping the distance p and getting the limit when L tends to infinity. 
Using Equation (1) and getting the limit for L, we have: 

( )2arctan z pΩ = π −                         (7) 

 
Making 0z =  in Equation (5), we get Ω = π , in agreement with Equation 

(2), as expected. 
If P is on the middle of a band of width p, we simply double the result of Equ-

ation (7), replacing p by p/2: 

( )12 4tg 2 z p−Ω = π −                       (8) 

So, using Figure 10 and the Equation (7), we can obtain the solid angle for 
any point P outside an infinite band with width p. Now, we have two bands, one 
with width 2y p−  and another with width 2y p+ . The subtraction of the 
solid angles Ω1 and Ω2 given by Equation (7) corresponding to both bands gives 
us the solid angle that P sees the original band with width p: 

( ) ( )1 22arctan  and2 22arctanz y p z y pΩ = π − +   Ω = π − −        

1 2Ω = Ω − Ω , therefore: 
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Figure 9. (a): The infinite band with the observer on its 
edge; (b): The solution of this case. 

 

 
Figure 10. P' outside an infinite band. 

 
( ) ( ){ }22 arctan arctan 2z y z yp pΩ = − − +                (9) 

Equation (9) shows the solid angles seen by P in any point of the space but 
those on the band plane, where it is valid only for points with P’ is outside the 
band. If we make 0z =  on Equation (9), we get 0Ω = . 

The problem on the band plane is that Ω is discontinuous on it. To by-pass 
this problem, we use Figure 11 where we have two bands with width 2p y−  
and 2p y+ . The solid angle Ω seen by P with P’ inside the band is the sum of 
the solid angle corresponding to the two bands. Using Equation (7) we get: 

( ) ( )1 22arctan  and 2arctan2 2z p z py yΩ = π −   Ω = π − −+        

1 2Ω = Ω + Ω , therefore: 

( ) ( ){ }22 2 arctan 2arctanpy y pz zΩ = π − − + +            (10) 

Equation (10) is valid for all points in the space but those on the band plane, 
where it is valid only for points with P’ is inside the band. If we make 0z =  on 
Equation (10) we get 2Ω = π . 

The solid angle seen by P when it is on the edge of the band depends on 
how P approaches the edge. Refer to Figure 12. For the general case, we consider 
P reaches the edge along the dotted line, that means, with constant φ. From the 
figure we may write 2y p x− = , 2y p x p+ = + , tanz x ϕ=  and we can re-
write Equation (9) as: 

( )2 2arctan tanx p xϕ ϕΩ = − +                    (11) 

To obtain the solid angle Ωφ with P reaching the edge under an angle φ, we 
calculate the limit of the Equation (11) when x tends to zero (keeping constant 
φ): 

2ϕ ϕΩ =                          (12) 

 

(a)                                            (b)
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Figure 11. P’ on the infinite band. 

 

 
Figure 12. P approaching the edge with an angle φ. 

 

This is independent of p (for 0p ≠ ; if 0p = , 0Ω = ). So, suppose P goes to 
the edge of the band. When 0ϕ = , that is, P’ originally off the band, then 

0ϕΩ = , as expected; if ϕ = π  and y p< , that is, P’ originally within the band, 
2ϕΩ = π , also as expected; if 2ϕ = π , that is, P’ originally on the edge of the 

band, ϕΩ = π , as expected for any smooth curve case. This dependence of Ωφ 
on the arriving angle of P, in the case of P’ on the edge, is a very common fact to 
all curve shapes to be observed by P. This shows the not simple behavior of Ωφ 
for this case, where the position of P is not enough to determine the solid angle 
(we need another parameter: the arriving angle). 

Note that, in Figure 12, the movement of P to reach the edge is on the plane 
perpendicular to the band. This is not a lack of generality because the compo-
nent of the movement parallel to the band does not alter the solid angle as the 
band length is infinite. We have indeed a cylindrical symmetry. 

4.5. Surface Equi-Ω of an Infinite Band 

An Equi-Ω surface is one formed by observation points where the solid angle is 
the same. Those surfaces are got by fixing the value of Ω ( 0Ω = Ω ). Normally it 
is hard to determine for the most of the curves because of mathematical difficul-
ties that arise during the calculus. 

One of the simple ones is that related to the infinite band case discussed in 
Section 4.4. We get the surface for this case making 0Ω = Ω  in Equation (9) 
and writing an expression relating the variables z and y. Equation (9) may be 
written as: 

( )2 2 2
0tan 2 4 0z y pz p+ − Ω − =               (13) 

Equation (13) represents an arc of a circle with coordinates of the center 

0 0y = , ( )00 2 tan 2z p Ω=     and radius ( ) 1
0

2
21 cot 2R p   = + Ω . The 

overall curve, composed by those arcs of circle, is symmetrical regarding the 
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plane of the band center straight line as in Figure 13. The curve is, indeed, the 
cross section of an infinite cylinder. 

Let us choose two examples of such curves. The first one is the case when the 
solid angle 0Ω = π  and ( )0tan 2Ω → ∞ . Equation (13) is written as: 

2 2 2 4 0z y p+ − =                        (14) 

The circle has 0 0 0y z= =  and radius 2R p= , as in Figure 14. The di-
ameter line is the cross section of the band with width p. The band is normal to 
the paper. Note that the angle the center sees the band edges is just the solid an-
gle value Ω0. This is because the circle is the geometric locus of half of Ω0 or ϕ. 
The angle to the right of the figure is ϕ of Equation (12). It is the angle through 
which P arrives at the edge of the band, that is, the angle of the tangent of the 
curve at the edge of the band. This is confirmed by the derivative d dz y  of the 
Equation (14) when 0z = : 

( )d d tanz y y zϕ= =  

When 0z → , ( )tan ϕ → ∞  or 2ϕ = π . 
The second example is when the solid angle is 0 2Ω = π  and ( )0tan 2 1Ω = . 

Equation (13) is now: 
2 2 2 4 0z y pz p+ − − =                    (15) 

The first circle has its center at 0 0y = , 0 2z p=  and 2R p= . The 
overall curve is composed by two symmetrical arcs of circle as shown in Figure 
15. The equi-Ω surface then is an infinite cylinder with the cross section of that 
figure. Note that the center angle, as in the first example, has the value Ω0. The 
circle is the geometric locus of half of Ω0 or φ. As the first case, the angle to the 
right of the figure is φ of Equation (12). It is the angle through which the point P 
arrives on the edge of the band, that is, the angle of the tangent of the curve at 
the edge. This can be confirmed by the derivative d dz y  of the Equation (15) at 
the edge or when 0z =  and 2y p= . This leads to 4ϕ = π . 

For the case where 0 0Ω = , the locus of P is the band plane with P’ outside it 
and up to the of infinity, as shown in Figure 16. 
 

 
Figure 13. The Equi-Ω Surface for the 
infinite band case. 
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Figure 14. The infinite band case for ϕ = π/2. 

 

 
Figure 15. Cross section of equi-Ω sur-
face of infinite band case for ϕ = π/4. 

 

 
Figure 16. Cross section of the equi-Ω surface for the infinite band 
case with ϕ = 0. 

 
For the case where 0 2Ω = π , the locus of P is the band plane for P’ inside it 

as shown in Figure 17. 

4.6. Observer on the Vertex of an Isosceles Triangle Arriving from 
any Direction 

We want to get the solid angle relative to the triangle ABC of Figure 18 when P 
is on the point C arriving to it through the direction of the arrow at right part of 
that figure. 

From the triangle ACP’, at left part of Figure 18. We have: 

( )2 2 2 2 cos 2b a c ac ϕ= + +                      (16) 

The solid angle Ωγ for the triangle ABC is the difference between the solid an-
gles for the isosceles triangle ABP’ and for the two identical triangles ACP’ and 
BCP’: 

ABP ACP2γ ′ ′Ω = Ω − Ω                        (17) 

ΩABP’ is given by Equation (1) with ϕ replaced by β and, as γ is constant during 
the movement of P, z is replaced by tanc γ  and we make c tending to zero. 
ΩACP’ is given by Equation (4) where b2 is replaced by its value of Equation (16). 
The result is: 
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Figure 17. Cross section of the equi-Ω surface for the 
infinite band case with ϕ = π. 

 

 
Figure 18. Solid Angle for an Isosceles Triangle with 
the Observer P at any position arriving through the ar-
row. 
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(18) 

The observer P approaches the point C if we get the limit of Equation (18) 
when c tends to zero with the angle γ kept constant. If Ωγ is the resulting solid 
angle, we get: 

( )2arctan tan sin 2γ γ ϕΩ =                       (19) 

We can perform some confirmations of the above results. Suppose a smooth 
curve, that means, ϕ = π . For 0γ = , using Equation (19), we get 0 0Ω = , as 
expected, because P initially is on the triangle plane, outside the triangle, and 
comes to the vertex. For 2γ = π , we get 2 ϕπΩ = , matching the result of Equ-
ation (2). For γ = π , we get 2πΩ = π , as expected, because P is on the triangle 
plane, within the triangle, and comes to the vertex. In Equation (19), if we put 
ϕ = π  (the case of smooth curves on P’), we get: 

2γ γΩ =                              (20) 

Equation (20) shows that, for any smooth curve. the solid angle for the curve 
seen by a point P on the curve and arriving at it through a constant angle γ, is 
just 2γ. This confirms the result of Equation (12), for the infinite band case. This 
result is also valid for the common cone case, as we see next. 
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5. Notes on Equi-Ω Surface for the Simple Cone Case 

The surface equi-Ω for the simple cone case has clearly rotational symmetry but 
it is not a spherical surface. A circumference of radius R is the base of a cone 
with height h as Figure 19(a) shows. The surface is vertically flattened, with the 
vertical radius RV smaller than the horizontal one RH (it is not a sphere) and it is 
symmetrical related to the circumference plane. The observer P is reaching the 
point A of the base circumference through a constant angle γ. As a circumfe-
rence is a smooth curve, the solid angle Ω seen by P when it arrives point A is 2γ, 
according Equation (21). If the surface is the equi-Ω one, the solid angle of the 
cone with angle θ must be also Ω. So, we must have: 

( )1 cos 2θ γ2π − =  

or 

cos 1θ γ= − π                        (21) 

If we suppose that the equi-Ω surface is spherical, we have the situation of 
Figure 19(b). By Equation (21), we must have Ω = π , but, by the solid angle 
formula for the cone, 

( )cos 4Ω = 2π 1− π    or ( )2Ω = π 1− , two different values showing that 
the surface cannot be a sphere. For Ω = π , θ must be π/3 and not π/4, showing 
the flatness of the surface. The equi-Ω surface equation with a general position 
of the observer P for the case of a circular base, that is, a general cone (not nec-
essarily right), leads to a differential equation ( )d d d dϕ ϕΩ = Ω  with the func-
tion d dϕΩ  to much complex to be integrated. Numerical integrations are 
possible, but they do not lead to general formulas to solve the problem. 

6. Some Applications of Solid Angles of Right Regular  
Pyramids 

6.1. Flux of Electric Field of a Point Charge through Faces of  
Polyhedrons 

Figure 20 shows a non-regular polyhedron with 12 faces of two types, four 
squares and eight equilateral triangles. As we have two types of faces, there are 
two different defined solid angles seen by the center, Ωs and Ωt (the indexes s 
and t stand for square and triangle respectively). The total flux Φ of a point 
charge Q at the center of the polyhedron is: 

( )04  Q εΦ Ω π=                       (22) 

where Ω is the solid angle by which the charge sees the face. With little geome-
tric observation, the square base pyramid with the vertex at the solid center has 
cos 1 2θ = . So, by using Equation (3), the solid angle Ωs for a square face is 
given by: 

( ) ( ) ( ){ }2 1 4 arctan 1 2 tan 4 1.3593s
 Ω = π − π π =   

As there are six square faces and eight triangular ones, the solid angle Ωt for 
one triangular face is given by: 
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Figure 19. The simple case of a right cone: (a): The case of a general γ. (b): 
The case of γ = π/2. 

 

 
Figure 20. Flux of the electric field of a point 
charge at the center of a non-regular polyhe-
dron through its polygonal faces. 

 

( )4 6 8 0.5513t sΩ − Ω =π=  

By using [XV], we have finally: 

00.10817s Q εΦ =  

and 

00.04387Qτ εΦ =  

It would be possible to calculate Ωt directly by the geometry as we did in the 
case of the square face. We easily find, for this case, cos 2 3θ = . 

Using Equation (3): 

( ) ( ) ( ){ }2 1 3 arctan 2 3 tan 0.53 513t
π π π Ω = − =   

That is the same previous result. 

6.2. Linear, Surface and Volume Ratios between Inscribed and 
Circumscribes Polyhedrons 

By simple inspection, we see that the linear ratio between a regular polyhedron 
inscribed and another similar one circumscribed to the same sphere is 

cosLR θ= , θ  being the angle of a straight regular pyramid with its vertex be-
ing the center of the polyhedron and whose base is the face of it. The ratios be-
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tween the areas and the volumes of the two polyhedrons are respectively 
2cosAR θ=  and 3cosVR θ= . 

From Equation (9) we can take cosθ: 

( ) ( ) ( )cos tan 2 2 tanF N Nθ = π − Ω π                   (23) 

Using Equation (23), where ΩF is the solid angle for one face, it is possible to 
calculate the area ratio RA and volume ratio RV between the inscribed and cir-
cumscribed polyhedrons for all five regular polyhedrons: 

Tetrahedron: 3N = ; FΩ = π  ∴ cos 1 3LR θ= = , 1 9AR =  and  
1 27VR =  

Cube: 4N = ; 3FΩ = 2⋅ π  ∴ cos 1 3LR θ= = , 1 3AR =  and  
3 9VR =  

Octahedron: 3N = ; 2FΩ = π  ∴ cos 1 3LR θ= = , 1 3AR =  and  
3 9VR =  

Dodecahedron: 5N = ; 3FΩ = π  ∴ ( )cos 3 3tan 5LR θ π= =    ,  
( )23 tan1 5AR π =    and ( )33 9 tan 5VR π =    

Icosahedron: 3N = ; 5FΩ = π  ∴ ( )tcos 3an 10LR θ 3π= = ,  
( )2 1tan 30AR 3π=  and ( )33 tan 1 90VR = 3π . 

We remember that: 

( )tan 5 5 2 5π = −  

( ) ( )tan 3 10 5 2 5 5π = +  

It is interesting to note that the cube and octahedron have both the same value 
of those ratios. 

These results for the five regular polyhedrons are very hard to get if we do not 
use pyramid solid angles. 

7. Conclusion 

The starting point of the solid angle for an isosceles triangle, the Fundamental 
Formula of the present work, is clearly very useful to study many solid angle re-
lated problems. In special, Equation (2) and Equation (20) are important results 
in the study of equi-Ω surfaces. The Fundamental Formula is also a very conve-
nient way for the determination of a solid angle of a closed curve when the ob-
server is on the curve itself. Its results, as the analysis of equi-Ω surfaces, are not 
presented in the literature. 
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