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Abstract 
In this paper, Adomian decomposition method (ADM) is implemented to 
approximate the solution of the Korteweg-de Vries (KdV) equations of se-
venth order, which are Kaup-Kuperschmidt equation and seventh order Ka-
wahara equation. The results obtained by the ADM are compared with the 
exact solutions. It is found that the ADM is very efficient and convenient and 
can be applied to a large class of problems. The conservation properties of 
solution are examined by calculating the first three invariants. 
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1. Introduction 

The general seventh-order KdV equation (gsKdV) reads 
3 3 2

0,
t x x x xx xxx xx xxx

x xxxx xxxxx xxxxxxx

u au u bu cuu u du u eu u
fu u guu u
+ + + + +

+ + + =
           (1) 

where a, b, c, d, e, f and g are nonzero parameters. One of the well-known par-
ticular cases of Equation (1) is called seventh order Kaup Kuperschmidt equa-
tion (KK) [1] which can be shown in the form 

3 3 22016 630 2268 504 252
147 42 0,
t x x x xx xxx xx xxx

x xxxx xxxxx xxxxxxx

u u u u uu u u u u u
u u uu u

+ + + + +

+ + + =
       (2) 

Another form of the seventh-order KdV equation is called seventh order Ka-
wahara equation [2] which can be shown in the form 
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6 0,t x xxx xxxxx xxxxxxxu uu u u uα+ + − + =                 (3) 

where α  is a nonzero constant. These equations were introduced initially by 
Pomeau et al. [3] for discussing the structural stability of KdV equation under a 
singular perturbation. These equations play an important role in mathematical 
physics, engineering and applied sciences for investigating travelling solitary 
wave solutions. 

The Adomian decomposition method (ADM) was first proposed by George 
Adomian in the 1980’s [4] [5] [6] [7]. This technique has been shown to solve 
effectively, easily, and accurately a large class of linear and nonlinear, ordinary 
or partial, deterministic or stochastic differential equations with approximates 
which converge rapidly to accurate solutions. This method is well-suited to physi-
cal problems since it makes the unnecessary linearization, perturbation problem 
being solved, sometimes seriously. Conservation laws (CLaws) are of basic im-
portance in the study of evolution equations because they provide physical, con-
served quantities for all solutions ( ),u x t , and they can be used to check the ac-
curacy of numerical solution methods [8] [9] [10] [11] [12]. The paper is ar-
ranged in the following manner: in Section 2, we present the ADM; Section 3 
presents the CLaws for (KK) and Kawahara seventh-order KdV equations [13] 
[14]; in Section 4, the ADM is implemented to some problems in addition to 
studying the properties of CLaws; finally, a brief conclusion is given in Section 5. 

2. The Method of Solution 

Consider the (gsKdV) equation in an operator form 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )7 0,

t

x

L u a Ku b Mu c Nu d Pu e Qu

f Ru g Vu L u

+ + + + +

+ + + =
          (4) 

where the notations 3
xKu u u= , 3

xMu u= , x xxNu uu u= , 2
xxxPu u u= ,  

xx xxxQu u u= , x xxxxRu u u=  and xxxxxVu uu=  symbolize the nonlinear terms,  

respectively. Also, the notation tL
t
∂

=
∂

 and 
7

7 7xL
x
∂

=
∂

 symbolize the linear 

differential operators. Assuming 1
tL−  the inverse of operator of tL  exists and 

conveniently by 

( )1

0

. d
t

tL t− = ∫                           (5) 

Thus, applying the inverse operator 1
tL−  to (4) yields 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1
7

,

.
t t t t

t t t t x

u x t h x aL Ku bL Mu cL Nu dL Pu

eL Qu fL Ru gL Vu L L u

− − − −

− − − −

= − − − −

− − − −
      (6) 

The standard ADM [15] defines the solution ( ),u x t  by the decomposition 
series 

( ) ( )
0

, , ,n
n

u x t u x t
∞

=

= ∑                       (7) 

with 0u  identified as ( ),0u x . The nonlinear terms Ku, Mu, Nu, Pu, Qu, Ru 
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and Vu can be decomposed into infinite series of polynomial given by 

2

0
,x n

n
Ku u u A

∞

=

= = ∑                        (8) 

0
,x xx n

n
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∞

=

= = ∑                       (9) 

0
,xxx n

n
Nu uu C

∞

=

= = ∑                      (10) 

0
,xxx n

n
Pu uu D

∞

=

= = ∑                       (11) 

0
,xxx n

n
Qu uu E

∞

=

= = ∑                       (12) 

0
,xxx n

n
Ru uu F

∞

=

= = ∑                       (13) 

0
,xxx n

n
Vu uu G

∞

=

= = ∑                       (14) 

where nA , nB , nB , nD , nE , nF  and nG  are the so-called Adomian poly-
nomials of 0 1, , , nu u u  defined by equation 

( )
0 0

1 d , , 0.
! d

n
i

n in
i

P N u x t n
n λ

λ
λ

∞

= =

  = ≥  
  
∑              (15) 

The components ( ),nu x t  can be determined sequentially by the standard 
recursion scheme as: 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 1 1 1 1
1

1 1 1
7

, ,

, 0.
n t n t n t n t n t n

t n t n t x n

u x t h x

u aL A bL B cL C dL D eL E

fL F gL G L L u n

− − − − −
+

− − −

 =
 = − − − − −


− − − ≥

    (16) 

3. Conservation Laws 

The conservation properties of the solution are examined by calculating the Claws. 
1) For KK equation Equation (2), the conservative quantities ( )1,2,3iI i =  

can be written as 

1

3 2
2

4 2 2
3

d ,

1 d ,
8
3 1 d ,
4 48

x

x xx

I u x

I u u x

I u uu u x

∞

−∞

∞

−∞

∞

−∞

=

 = − 
 
 = − + 
 

∫

∫

∫

                (17) 

2) For seventh-order Kawahara equation Equation (3), the conservative quan-
tities ( )1,2,3iI i =  can be written as 

( ) ( ) ( )

1

2
2

2 2 23
3

d ,

d ,
1 1 1 d ,
2 2 2x xx xxx

I u x

I u x

I u u u u xα

∞

−∞
∞

−∞

∞

−∞

=

=

 = − + − + 
 

∫
∫

∫

          (18) 
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Since the conservation constants are expected to remain constant during the 
run of the algorithm to have accurate numerical scheme, conservation constants 
will be monitored. As various problems of science were modeled by non linear 
partial differential equations and since therefore the seventh order KdV equation 
is of high importance, the following examples have been considered. 

4. Numerical Examples 

Example 1. Consider the seventh-order (KK) equation Equation (2) with initial 
condition 

( ) ( )2 2 21 1,0 tanh ,
3 2

u x k k kx= −
 

By ADM the recursive relations are 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2
0

1 1 1 1
1

1 1 1 1
7

1 1 tanh ,
3 2

2016 630 2268 504

252 147 42 , 0.
n t n t n t n t n

t n t n t n t x n

u k k kx

u L A L B L C L D

L E L F L G L L u n

− − − −
+

− − − −

 = −

 = − − − −

 − − − − ≥  

The first few components are thus determined as follows: 

( )

( )
( )

( )( )
( )

2 2 2
0

9

1 3

16 2 2

2 4

1 1 tanh ,
3 2
4 sinh

,
3cosh

8 2cosh 3
,

9cosh

u k k kx

k t kx
u

kx

k t kx
u

kx


 = −


− =

 − =
  

and so on. Consequently, the solution in a series form is given by 

( ) 0 1 2,u x t u u u= + + +  

and in a closed form ( ) 2 2 2 61 1 4, tanh
3 2 3

u x t k k k x k t  = − +  
  

. 

The results produced by the proposed method with only few components (n = 
5) are compared with the exact solution and listed in Table 1, also the Claws for 
the seventh-order (KK) equation are given in Table 2. The profile of the solitary 
wave at 0.3t =  is displayed in Figure 1. 

 
Table 1. Comparison between exact solution ( ),u x t  and approximate solution using 

ADM where 0.1k = . 

x Exact ADM Absolute Error 

0.10 0.00333283 0.00333283 9.98865803e−19 

0.20 0.00333133 0.00333133 1.99693372e−18 

0.30 0.00332884 0.00332884 2.99340524e−18 

0.40 0.00332534 0.00332534 3.98748557e−18 

0.50 0.00332085 0.00332085 4.97838399e−18 
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Table 2. Computed quantities 1 2 3, ,I I I  for the seventh-order KK equation by ADM. 

 I1 I2 I3 

t/x 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

0.1 3.333e−4 9.996e−4 1.665e−3 3.703e−9 1.108e−8 1.840e−8 3.316e−11 9.910e−11 1.639e−10 

0.2 3.333e−4 9.996e−4 1.665e−3 3.703e−9 1.108e−8 1.840e−8 3.316e−11 9.910e−11 1.639e−10 

0.3 3.333e−4 9.996e−4 1.665e−3 3.703e−9 1.108e−8 1.840e−8 3.316e−11 9.910e−11 1.639e−10 

0.4 3.333e−4 9.996e−4 1.665e−3 3.703e−9 1.108e−8 1.840e−8 3.316e−11 9.910e−11 1.639e−10 

0.5 3.333e−4 9.996e−4 1.665e−3 3.703e−9 1.108e−8 1.840e−8 3.316e−11 9.910e−11 1.639e−10 

 

 
Figure 1. Comparison between exact solution ( ),u x t  and approximate solution using ADM. 

 
Example 2. Consider the seventh-order Kawahara equation Equation (3) with 

initial condition 

( ) ( )6,0 sech ,u x kxω=  
By ADM the recursive relations are 

( )
( ) ( ) ( ) ( )

6
0

1 1 1 1
1 3 5 7

sech ,

6 , 0.n t n t x n t x n t x n

u kx

u L A L L u L L u L L u n

ω

α− − − −
+

 =


= − − + − ≥  
The first few components are thus determined as follows: 

( )

( )
( ) ( )((

( ) ( ) ))

( )
( )((

( )
( ) ))

6
0

6 6
1 13

6 4 4 6

2 2 2 12 6
2 20

2 12 4

2 12 2

sech ,
1 12 sinh 23328 cosh

cosh
215488 cosh 648 cosh ,

1 12 108783285811200 cosh
cosh
175649727052800 cosh
138322888704000 cosh ,

u kx

u tk kx k kx
kx

k kx k kx

u t k k kx
kx

k kx
k kx

ω

ω α

α

ω α

α

α

 =

 =



− − +

 =

 −

+ +
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and so on. Consequently, the solution in a series form is given by 

( ) 0 1 2,u x t u u u= + + +  
and in a closed form ( ) ( )( )6

0, sechu x t k x x tω= − . 
The results produced by the proposed method with only few components (n = 

5) are compared with the exact solution and listed in Table 3, also the Claws for 
the seventh-order Kawahara equation are given in Table 4. The profile of the so-
litary wave at 0.3t =  is displayed in Figure 2. 

 
Table 3. Comparison between exact solution ( ),u x t  and approximate solution using 

ADM where 769
2500

α = , 86625
591361

ω = , 5
1538

k =  and 0
180000
591361

x = . 

x Exact ADM Absolute Error 

0.10 0.14648359 0.14648359 1.24475423e−11 

0.20 0.14639977 0.14639977 2.70176889e−11 

0.30 0.14617341 0.14617341 4.13404041e−11 

0.40 0.14580523 0.14580523 5.52856164e−11 

0.50 0.14529642 0.14529642 6.87280812e−11 

 
Table 4. Computed quantities 1 2 3, ,I I I  for the seventh-order Kawahara equation by ADM. 

 I1 I2 I3 

t/x 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

0.1 1.465e−2 4.390e−2 7.300e−2 2.146e−3 6.424e−3 1.066e−2 −3.245e−4 −9.697e−4 −1.602e−3 

0.2 1.465e−2 4.391e−2 7.304e−2 2.146e−3 6.428e−3 1.067e−2 −3.245e−4 −9.708e−4 −1.606e−3 

0.3 1.465e−2 4.392e−2 7.308e−2 2.145e−3 6.430e−3 1.068e−2 −3.244e−4 −9.716e−4 −1.609e−3 

0.4 1.464e−2 4.393e−2 7.311e−2 2.145e−3 6.432e−3 1.069e−2 −3.242e−4 −9.721e−4 −1.612e−3 

0.5 1.464e−2 4.393e−2 7.313e−2 2.143e−3 6.433e−3 1.070e−2 −3.239e−4 −9.722e−4 −1.614e−3 

 

 
Figure 2. Comparison between exact solution ( ),u x t  and approximate solution using ADM. 
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5. Conclusion 

In this paper, the ADM was used to solving seventh order KdV equations with 
initial conditions. We have found out that this method is applicable and efficient 
technique. All the numerical results obtained by using ADM show very good 
agreement with the exact solutions for a few terms. The conservation laws are 
used to assess the accuracy and the efficiency of the method. We have noticed 
that the method accomplished the aim of preserving conserved quantities, as we 
saw all invariants were almost constant. 
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