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Abstract 
Perturbation problem of operator algebras was first introduced by Kadison 
and Kastler. In this short note, we consider the uniform perturbation of two 
classes of operator algebras, i.e., MF algebras and quasidiagonal C*-algebras. 
We show that the sets of MF algebras and quasidiagonal C*-algebras of a giv-
en C*-algebra are closed under the perturbation of uniform norm. 
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1. Introduction and Preliminaries 

Kadison and Kastler in [1] initiated the study of uniform perturbations of oper-
ator algebras. They considered a fixed C*-algebra U  and equipped the set of all 
C*-subalgebras of U  with a metric arising from Hausdorff distance between 
the unit balls of these subalgebras. We first recall the following definition of the 
metric d defined on the set of all C*-subalgebras of a C*-algebra U  (see [1]). 

Definition 1.1. Let A  and B  be C*-subalgebras of a C*-algebra U . The 
Kadison-Kastler metric ( ),d A B  between A  and B  is defined by 

( )
( ) ( ) ( ) ( )1 11 1

, max sup inf , sup inf
b aa b

d a b a b
∈ ∈∈ ∈

  = − − 
  B AA B

A B

 

where ( )1A  and ( )1B  denote the unit ball of A  and B  respectively. 
Kadison and Kastler conjectured in [1] that sufficiently close von Neumann 

algebras (or C*-algebras) are necessarily unitarily conjugate. The first positive 
answer to Kadison-Kastler’s conjecture was given by Christensen [2] when either 
A  or B  is a von Neumann algebra of type I. Many results related to this con-
jecture have been obtained during the past 40 years ([3] [4] [5] [6]). One-sided 
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version of Kadison-Kastler’s conjecture was introduced and studied by Chris-
tensen in [4] as well. Christensen showed in [4] that a nuclear C*-algebra that is 
nearly contained in an injective von Neumann algebra is unitarily conjugate to 
this von Neumann algebra. Christensen, Sinclair, Smith and White showed in 
[5] that the property of having a positive answer to Kadison’s similarity problem 
transfers to close C*-algebras. Very recently, Kadison-Kastler’s conjecture has 
been proved for the class of separable nuclear C*-algebras in the remarkable pa-
per [6]. 

The problem we are going to consider is as follows: Suppose ,A B  are 
C*-subalgebras of a C*-algebra U . If ( ),d γ<A B , is A  and B  share 
similar properties? 

In this short note, we show that the sets of matricial field algebras (MF alge-
bras) and quasidiagonal C*-algebras of a given C*-algebra are closed under the 
perturbation of uniform norm. 

2. Main Results 

In this section, we consider some topological properties of the set of all MF al-
gebras and quasidiagonal C*-subalgebras under the perturbation of uniform 
norm. For basics of C*-algebras, we refer to [7] and [8]. We first recall the defini-
tion of MF algebras ([9]). 

Suppose ( ){ }
1nk n

∞

=
   is a sequence of complex matrix algebras. We can in-

troduce the full C*-direct product ( )1 mkm
∞

=∏    of ( ){ }
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=
   as follows: 
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Furthermore, we can introduce a norm closed two sided ideal in ( )1 nkn
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as follows, 
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Let π  be the quotient map from ( )1 nkn
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unital C*-algebra. If we denote ( )( )1n n
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=
 by ( )n n

Y   , then 
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Now we are ready to recall an equivalent definition of MF algebras which is 
given by Blackadar and Kirchberg ([9]). 

Definition 2.1. (Theorem 3.2.2, [9]) Let U  be a separable C*-algebra. If U  

can be embedded as a C*-subalgebra of ( ) ( )1
1

n nk kn
n

∞
∞

=
=
∑∏     for a se-

quence { } 1n n
k

=
 of integers, then U  is called an MF algebra. 

Lemma 2.2. ([10] Lemma 2.12) Suppose that U  is a separable C*-algebra. 
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Assume for every finite family of elements 1 2, , , nx x x  in U  and every 0ε > , 
there is an MF algebra 1U  such that { }1 2 1, , , nx x x ε⊂ U , (in the sense of De-
finition 2.3 in [10]). Then U  is also an MF algebra. 

Proposition 2.3. Let U  be a C*-algebra and F  be the subset of all separa-
ble MF algebras contained in U . Then F  is closed under the metric d. 

Proof. Let ∈A F . Then there exist n F∈A  such that ( ), 0nd →A A . 
For any 1 2, , , mx x x ∈ A , 0ε∀ > , there is an 0n  such that  

( )0

1

,
2 1

n m
ii

d
x

ε

=

<
+∑

A A . Then there exist 
01 2, , , m ny y y ∈ A  such that 
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i i im

ii

x y x
x

ε ε
=

− < <
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                  (4) 

for all i. It follows from Lemma 2.2 that A  is also a MF algebra.  
We will recall some results about quasidiagonal C*-algebras for the reader’s 

convenience. We refer the reader to [11] for a comprehensive treatment of this 
important class of C*-algebras. 

Definition 2.4. A subset ( )Ω ⊂ H  is called a quasidiagonal set of opera-
tors if for each finite set ω ⊂ Ω , finite set χ ⊂ H  and 0ε > , there exists a fi-
nite rank projection ( )P∈ H  such that TP PT ε− ≤  and ( )P x x ε− ≤  
for all T ω∈  and x χ∈ . 

Definition 2.5. A C*-algebra U  is called quasidiagonal (QD) if there exists a 
faithful representation ( ): Bπ →U H  such that ( )π U  is a quasidiagonal set 
of operators. 

The following result is Lemma 7.1.3 in [11] which is useful to determine 
whether a C*-algebra is quasidiagonal or not. 

Lemma 2.6. A C*-algebra U  is quasidiagonal if and only if for each finite set 
F ⊂U  and 0ε > , there exists a completely positive map ( ): nMφ →U   
such that 

( ) ( ) ( )ab a bφ φ φ− <                       (5) 

and 

( )a aφ > −                          (6) 

for all ,a b F∈ . 
Proposition 2.7. Let U  be a separable C*-algebra. Let ( )QD= UF  be the 

set of all quasidiagonal C*-subalgebras of U . Then F  is closed under the me-
tric d. 

Proof. Let ∈A F  and choose n ∈A F  such that ( ), 0nd →A A . Given 
finite subset { }1 2, , , kx x x  of the unit ball of A  and 0> . There is a  

N ∈  such that ( ),
6Nd <A A
 . Choose 1 2, , ky y y  in the unit ball of 

NA  such that 
6i ix y− <
  for 1,2, ,i k=  . Since NA  is QD, it follows 

from Lemma 2.6 that there is a c.c.p. map ( ): N tMφ →A   such that 
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( ) ( ) ( )
6i j i jy y y y εφ φ φ− ≤                    (7) 

and 

( )
6j jy yφ ≥ −
                        (8) 

for all , 1, 2, ,i j k=  . Now use Arveson’s extension theorem ([11]) to extend 
φ  to a c.c.p. map φ  from U  to ( )tM  . Let ( ): tψ →A M   be the re-
striction of φ  to A . Then for each , 1, 2, ,i j k=  , we have 

( ) ( ) ( )
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ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

ε

−

≤ − + −

+ − + −

+ −

<

      (9) 

and 

( ) ( ) ( ) ( ) .
6 3i i i i i i ix x y y y y xε εψ ψ ψ ψ ε= − + ≥ − > − ≥ −     (10) 

Use Lemma 2.6 again we have that A  is quasidiagonal. 

3. Conclusion 

In this paper, we use some characterizations of MF algebras and quasidiagonal 
C*-algebras to show that these two sets of C*-subalgebras of a given C*-algebras 
are closed with respect to the topology induced by the Kadison-Kastler metric. 
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