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Abstract 
Two simplified models, linear and nonlinear, were used in a cementation 
process on a homogeneous thin carbon steel plate. The parameters for these 
models, as obtained by the least squares’ method the first one in a global way 
while the other parameters refer to the second model—were estimated by a set 
of local minimums. To compare the performance of these models we used 
theoretical data, for the same diffusion problem obtained by a one-dimensional 
transient model considering the concentrations in the mean plane of the 
plate. The results for carbon concentrations in weight percentage in the plate 
(%pC) as a time-only dependent function with these simplified models to 
represent the analyzed diffusion process were in good agreement with those 
from a stricter model. The diffusion flows of these models were determined 
and a reasonable agreement can be seen in relation to the flow obtained by 
the theoretical model on the surface of the plate. This study shows that it is 
possible to use this methodology with the given restrictions adopted here to 
describe the concentration and the diffusion flow of other solutes in thin 
membranes. 
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1. Introduction 

The one-dimensional diffusion in a medium is limited by two parallel planes, for 
example, in 0x =  and x L=  of such thin thickness, so that the entire diffu-
sive process occurs through these sheets or membranes, while only a negligible 
amount occurs through the lateral faces, which is well known [1] [2]. In particu-
lar, if on the face 0x =  the concentration of the diffusing substance is constant 
and equal to 1C  and on the other x L=  it is a constant 2C , and if the initial 
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concentration is uniform and equal to a constant 0C , the concentration ( ),C x t  
can be obtained from the transient diffusion equation in a one-dimensional medium  

with a constant diffusion coefficient D given by 
2

2

C CD
tx

∂ ∂
=
∂∂

 [2] using, for  

example, the method of separating variables or through the Laplace Transform 
[3]. The solution of this problem via the separation of variables involves an infi-
nite series of sine terms combined with an exponential function with a negative 
factor in each term of the series, which albeit complicated, quickly converges, 
except for small values of [4]. The solution obtained by the Laplace Transform 
lies in the calculation of the ( )erf x  function or Gauss error function, whose  

values are given in tables for different values of 
2

x
Dt

. In general, diffusion is  

three-dimensional process, but sometimes the problem is simplified using a 
smaller number of dimensions. According to Fox et al. [5], for many problems 
found in engineering, a one-dimensional analysis is adequate to provide ap-
proximate solutions with the precision required in engineering practice. Recent-
ly, Araújo e Márquez [6] used transient one-dimensional diffusion in a cement-
ing process of a homogeneous metal sample of carbon steel with a thickness of 
less than two millimeters to obtain information on carbon concentration in a 
semi-infinite plate where the Gauss error function was replaced by a fifth-degree 
polynomial. 

The cementation process consists of the hardening of the surface of steel to 
higher levels to that of its interior by the diffusion or transport of carbon atoms 
at high temperatures in an atmosphere rich in hydrocarbon gas such as CH4 
methane gas [7]. The question we pose in this article is whether there is a simp-
ler model that can be adopted to estimate the concentration of carbon in diffu-
sion in thin plates or membranes. Although recognizing that the process of dif-
fusion of materials through cell membranes is quite complicated, Bassanezi and 
Ferreira Jr. [8] and Bassanezi [9] presented two diffusion models through cell 
membranes based on a simplification of Fick’s Law [7]. These diffusion models 
are applied when the concentration difference between the cell medium and the 
homogeneous liquid medium where the cell is immersed is small and the cell has 
the area and volume constant throughout the process. For this, it is also assumed 
in a natural way that the flow of molecules goes in both directions until the con-
centration inside the cell is equal to the concentration of the medium it is sus-
pended in. The first model is represented by the linear ordinary differential equ-
ation given by 

( )d
d e
C kA C C t
t V
= −   ,                     (1) 

where Ce is the concentration of the medium surrounding the membrane, and k 
is a membrane permeability constant, A is the surface area, V is the constant vo-
lume of the cell, while C(t) it is the concentration of the diffusing solute in the 
cell in t time. The k constant depends on each solution, the thickness and the 
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structure of the membrane, so it needs to be estimated for each situation. The 
second model, also simplified, but with two parameters, is given by an ordinary 
non-linear differential equation as 

( )
( )( ) ( )( )2

1 2

d
d

e
e e

C t C A k C C t k C C t
t V
−    = − + −  

.         (2) 

The term in square brackets is the function for solute flowing into the cell [8]. 
According to Bassanezi and Ferreira Jr. [8], the experimental obtaining of the 

constant can be difficult and sometimes impossible to obtain, in which case the 
two-parameter model can be useful for the theoretical analysis of the problem 
understudy, but not for the specific study. Although agreeing that the experi-
mental achievement of these parameters is not trivial, their estimates are possible 
in our understanding, provided that experimental data ( )( ),i it C t  can be ob-
tained by some experimental or theoretical means. In this sense, the purpose of 
this paper is to solve in detail the differential equation of the model with two pa-
rameters and, from the theoretical data estimated by a transient one-dimensional 
diffusion model of carbon diffusion in a thin homogeneous sample of carbon 
steel of thickness to one millimeter, to estimate the 1k  parameter of the linear 
model using the linear least squares’ or linear regression method and the 1k  
and 2k  parameters of the non-linear model, using the non-linear least squares’ 
method. These parameters are related to the medium where the diffusion occurs. 

The results show that there was good agreement among the models adopted in this 
study with the results of the carbon concentrations estimated by the one-dimensional 
model of transient diffusion on the plane of the plate 0.0005 mx =  or mem-
brane. Thus, the simplified models, in particular the one-parameter model, gave 
a good description of the problem analyzed, providing a semi-qualitative mean 
value for the concentration within the plate at any point and instant in the x di-
rection. 

2. Materials and Methods 

Consider a homogeneous metal plate formed by an Iron-gamma Carbon alloy, in-
dicated by, Feγ-C which hast to be hardened through a process of cementation [7]. 
The steel part is exposed in an atmosphere rich in hydrocarbon gas (such as methane 
gas, CH4), under 1000 CT =  . The homogeneous plate with the properties shown 
in Table 1, has an uniform concentration of carbon ( )0 ,0 0.08% pCC C x= =  
(weight percent carbon) for 0 x L< < . The carbon concentration is kept con-
stant and equal ( )1 0, 0.10% pCC C t= =  to the flat face 0x = , and also con-
stant and equal ( )2 , 0.10% pCC C L t= =  to the flat face 0.001 mx L= =  with 

0t ≥ . Under these conditions, the goal is to obtain theoretical data on the 
process at different moments in time, in hours for the mean plane of the plate, 
that is, in 0.0005 mx = . Figure 1 shows in simplified form the metal plate sub-
jected to the conditions given in the cementation process described above. 

The thickness is so small that it will be assumed that the entire diffusion 
process happens through these sheets or membranes, while a negligible amount  
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Figure 1. Carbon transient diffusion moving through a thin carbon steel plate. 

 
Table 1. Parameters considered in the cementation process. 

PROCESS PARAMETERS NOTATION VALUES 

Surface area of the plate A 29.4 × 10−4 m2 

Volume of the plate V 29.5 × 10−7 m3 

Board thickness Lx  0.001 mL =  

Diffusion Rate oD  2.3 × 10−5 m2/s* 

C initial concentration ( ),0 ,0oC x C x L= < <  0.08% pC 

C concentration on faces ( ) ( )1 20, ; ,C t C C L t C= =  0.10% pC 

Diffusion temperature T 1000˚C* 

Activation energy Qd 148 kJ/mol* 

Constant of the gas R 8.31 J/mol∙K* 

Iron density range Feγ
ρ  7.86 g/cm3** 

Carbon density Cρ  2.267 g/cm3*** 

*Reference value obtained for this diffusion (Callister, 2002, p. 70, Table 5.2). **Reference value obtained 
for this diffusion (Callister, 2002, p. 537, Table B.1). ***https://iupac.org/. Union of Pure and Applied 
Chemistry (IUPAC) 

 
occurs through the lateral faces [1] [2]. 

Table 1 shows the parameters for the carburizing process, notation and as-
sumed values, and the initial conditions of the diffusion process. 

2.1. Linear Least Squares: Discrete Case 

Given a set of points ( )( ),i i ix y f x= , 1, ,i n=   and ia x b≤ ≤ , the goal is to 
choose ( )ig x continuous real functions in the [ ],I a b=  interval to obtain 
constants or parameters 1, , nλ λ  so that 

( ) ( ) ( )
1

n

i i
i

x g x f xφ λ
=

= ≅∑ .                    (3) 

As the iλ  coefficients appear linearly in the definition of the ( )xϕ  ap-
proximation function, this model is called linear [10]. The choice of ( )xϕ  
model depends on the ( )( ),i i ix y f x=  dispersion diagram, or in other words 
of the tabulated points. Be ( ) ( )k k kR f x xφ= −  the k-th residue of this ap-
proach. The objective is to minimize linear functional 
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( ) ( ) 2
1

1
, ,

m

n i
i

F F Rλ λ λ
=

= = ∑                    (4) 

where m n . To get a ( )F λ  minimum point of it is necessary to solve the 
equation of the critical points given by 

( ) 0F λ∇ =


.                          (5) 

The equations obtained from Equation (5) give rise to a linear system of n n×  
order given by 

A bλ = ,                           (6) 

where, according to Ruggiero e Lopes [10] matrix entries can be obtained by 
,ij i ja g g= ; ,i ib y g= , ( ) ( )( )T

1 , ,i i i mg g x g x=   being  
( ) ( )( )T

1 , , my f x f x=  , with , 1, ,i j n=   and ,  denotes the scalar product 
in mIR  space. If the matrix is invertible, it is obtained ( )1, , nλ λ λ=   in an 
unique way of Equation (6). 

2.2. Nonlinear Least Squares: Discrete Case 

If ( )xφ  it is not a linear model of the parameters as in Equation (3), the equa-
tion of the critical points no longer produces a linear system as obtained in Equ-
ation (6). Consider 

( ) ( ) ( )( )T
1

:

, , .

n m

m

R U IR IR

R R Rλ λ λ

⊂ →

= 

                  
 (7) 

Therefore, as ( )R λ  is a vector function for residues in the mR  space and 
( ) ( ),i ixϕ λ ϕ λ=  is the nonlinear model for adjustment point ( )( ),i i ix y f x= , 
1, ,i m=   and ia x b≤ ≤ , where ( )T

1, , nλ λ λ=   is a vector of adjustable 
parameters of the nIR  space. With this notation, the k-th residue of this ap-
proximation is defined by ( ) ( ) ( ),k k kR f x xλ φ λ= − , 1, ,k m=  . The objec-
tive is to minimize ( )F λ  as in Equation (4), that is, the Equation (5) of the 
critical points is written thus 

( ) ( )
1

,
0, 1, ,

m
i

i
i k

x
R k n

φ λ
λ

λ=

∂
= =

∂∑                  (8) 

Using a Taylor series expansion [11] to the first order for each ( )iR λ  coor-
dinate function around λ , being ( )T

1, , np p p=   an increment vector we 
have 

( ) ( ) ( )i i iR p R R pλ λ λ+ = +∇ ,                  (9) 

where ( ) ( ) ( )
1

, ,i i
i

n

R R
R

λ λ
λ

λ λ
∂ ∂ 

∇ =  
∂ ∂ 

 , with 1, ,i m=  . 

From Equations ((8), (9)) it is 1, ,k n=   

( ) ( ) ( )
1

1

, ,
0

n
m i i

i ji
j j k

x x
R p

φ λ φ λ
λ

λ λ=
=

 ∂ ∂
+ = 

∂ ∂  
∑ ∑ .           (10) 

The Jacobian matrix of the ( )R λ  transformation is an m n×  order matrix 
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given by 

( )

( ) ( )

( ) ( )

1 1

1

1

, ,

, ,

n

m m

n

x x

J
x x

φ λ φ λ
λ λ

λ
φ λ φ λ

λ λ

∂ ∂ 
 ∂ ∂ 
 =
 
∂ ∂ 
 ∂ ∂ 



  



.              (11) 

From Equations ((10), (11)) we have a linear system of n n×  order given by 

( ) ( ) ( ) ( )T TJ J p J Rλ λ λ λ= − .                 (12) 

Equation (12) is the basis for an iterative process and is known as a modified 
Newton method [12]. Taking ( )T0 0 0

1 , , np p p=   as an initial approximation, 
we calculate ( )J λ , ( )TJ λ  and ( )R λ  using 0p . Then the system given by 
Equation (10) is solved to obtain the p value. The vector 1 0p p p= +  is eva-
luated, for example, by the sum of the quadratic residuals, that is, if  

( ) ( )2 21 1

1

m

i
i

R p R p tol
=

= <∑  then, 1p  it is a solution by least squares, where tol 
is the tolerance allowed in the approximation. If 1p  it is not the best solution 
for the least squares, new iterations are performed until convergence can be 
achieved. 

2.3. The One-Dimensional Diffusion Equation 

The solution of the transient one-dimensional diffusion equation for the diffu-
sion problem in thin membranes with constant surface concentrations and ini-
tial distribution with uniform concentration, that is, 

( )1 0,C C t= , ( )2 , ; 0C C L t t= ≥  and ( )0 ,0 ; 0C C x x L= < < ,   (13) 

can be obtained by the method of separation of variables, whose solution is given 
according to Crank [2] by 

( ) ( )

( ) ( )

2 2

2

2 2

2

π
2 12 1

1
1

2 1 π
0

0

cos π2 π, sin e
π

2 1 π4 1 sin e
π 2 1

Dn t
L

n

D m t

L

m

C n CC C n xC C x t C x
L n L

m xC
m L

−∞

=

− +∞

=

− −   = = + +          

+  +   +   

∑

∑
 

 (14) 

3. Results and Discussions 

Model 1 as given and reported by Equation (1) is given by 

( )d
d e
C kA C C t
t V
= −   ,                     (15) 

as proposed by Bassanezi [9] and based on Fick’s Law for the diffusion of mate-
rials through permeable membranes [4]. In Equation (15), the permeability con-
stant of the membrane can be given, for example, in m/s and where ( )C t  
represents the diffusion solute concentration inside the cell. Equation (15) can 
be solved by separating variables, that is, 
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( )
0 0

d d
C t

eC

C Ak t
C C t V

=
−∫ ∫ .                    (16) 

From Equation (16) results the ( )C t  expression for given by 

( ) ( )0 e
Ak t
V

e eC C t C C C
−

= = − + ,                (17) 

where ( )0 0C C= . Note that ( ) eC t C→  when t →∞ . 
In Equation (15), an analogy with Fick’s first law for one-dimensional diffusion 

in a steady state [7], making it possible to interpret the term ( )eJ k C C t= ⋅ −    
as the amount of mass that crosses the membrane per unit area, in a given direc-
tion per unit of time. Model 2, as proposed by Bassanezi and Ferreira [8] and al-
ready mentioned in the introduction (Equation (2)) is given formally by 

( )
( )( ) ( )( )2

1 2

d
d

e
e e

C t C A k C C t k C C t
t V
−    = − + −  

.        (18) 

Making ( ) ( )ef C F C C= −  where ( )eF C C−  it is denominated by the au-
thors as a function for flow based on the difference of concentrations, where ( )f C  
is a real function of a real variable, and where ( ) ( ) ( )0 0e e ef C F C C F= − = = . 

To justify this fact we assume the plausibility where if there is no difference of 
concentration there should be no flow between the means. Assuming ( )f C  is 
at least ( )3 ,C I R  class function; where [ ]00,I t=  [11] using a Taylor series 
expansion of up to the second order around has [11], 

( ) ( ) ( ) ( )( ) ( ) ( )( )2

2
e

e e e e e

f C
f C h f C f C C C t C C t

′′
′− = + − + − ,    (19) 

or, 

( ) ( ) ( )( ) ( ) ( )( )20
0

2e e

F
f C F C C t C C t

′′
′= − + − .          (20) 

From Equation (15) we have seen that ( )eJ k C C t= ⋅ −    represents a flow 
of molecules into the cell, then replacing that term with the given ( )f C  flow 
function as in Equation (18), we obtain the two-parameter formulation for cell 
diffusion only reported by Bassanezi and Ferreira Jr. [8] to obtain Equations (2) 
or (18), 

( ) ( )( ) ( )( )2
1 2

d
d e e e

AC C k C C t k C C t
t V

 − = − + −  
,         (21) 

where, ( )1 0k kF ′=  and 
( )

2

0
2

F
k k

′′
= . For the physical sense of the problem, 

the unity of 1k  is the same as of k, that is, m/s, while the unity k2 of can be giv-
en as, m4/kg∙s. Making ey C C= −  the Equation (21) rewrite in the form 

21 2d
d

k A k Ay y y
t V V
+ = .                     (22) 

Equation (22) is a Bernoulli equation [13] and can be solved by changing the 
variable as 1u y−= , to have Equation (22) then in the linear form given by 
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1 2d
d

k A k Au u
t V V
− = − .                     (23) 

Equation (23) can be solved using the ( )
1

e
k A

t
Vtµ

−
=  integral factor to obtain 

1

1 2

1

e
k A

t
VKk ku
k

+
= .                      (24) 

Using the fact that 1u y−=  and ( ) 00 ey C C= −  follows from Equation (23) 
the solution to Equation (21) given by 

( )

( ) ( )
1

1 0

2 0 1 2 0e

e
e k A

t
V

e e

k C C
C C

k C C k k C C

−
= +

 − + − − 

.          (25) 

Note what ( ) 00C C=  and ( ) eC t C→  when t →∞ . In particular, if 
( )0 1F ′ =  and ( )0 0F ′′ =  and only then, the differential equation describing 

model 1, as given by Equation (13) is retrieved. However, if ( )0 1F ′ ≠  and 
( )0 0F ′′ = , the constant ( )1 0k kF k′= ≠ , and in this sense, Model 2 is not ex-

actly an extension of Model 1, but the analytical form of Model 2 is an extension 
of Model 1. To estimate the parameters of Equations (17) and (24) we will use the 
theoretical data obtained from the cementation process, whose parameters are 
shown in Table 1 obtained by means of Equation (12), that is, the one-dimensional 
transient diffusion model (MD) or as we will call theoretical model. 

Table 2 shows the estimates in %pC at the 0.0005 mx =  plane position in 
several time using ten terms of the series defined by the Equation (14), so that 
the values with number of major terms would not provide significant concentra-
tions variations. The choice of the mean plane of the plate or membrane was to 
assume that the solute concentration at this depth of the plate would represent a 
mean concentration (inside the plate), and thus, the estimates obtained for the 
parameters of the simplified models would “mirroring” in a semi-qualitatively 
way this mean concentration. 

The permeability parameter (Model 1) can be obtained through the global 
minimum with the linearization of Equation (15) according to the procedure  

 
Table 2. Estimates for %pC in the membrane with MD. 

Time (hours) %pC  (MD) 

0.0 0.0008000 

0.5 0.0008231 

1.5 0.0009089 

2.0 0.0009353 

3.0 0.0009674 

5.0 0.0009917 

7.0 0.0009979 

9.0 0.0009990 
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described in Section 2.1. doing ey C C= − , and therefore Equation (15) is re-
written thus 

( )0 e
Ak t
V

ey C C− = − .                     (26) 

In applying the Neperian Logarithm to Equation (26) we obtain 

( ) ( )0ln ln e
kAz y C C t
V

= − = − − .                (27) 

Thus, using the discrete points in Table 2 we can write 

i iz B tλ= + ,                        (28) 

where ( )( )lni e iz C C t= − , ( )0ln eB C C= −  and kA
V

λ = − . As B is constant, 

Equation (28) can be reduced to a linear form given by 

i iw tλ= ,                          (29) 

which i iw z B= − . Therefore Equation (28) can be solved by rewriting Equation 

(1) as, ( ),t tϕ λ λ=  being ( )1g t t= . Thus, the matrix of the system given by 

Equation (4) is of an order of 1 1× , that is, 
7

2
11 1 1

1
, i

i
a g g t

=

= = ∑ ,  

7

1 1
1

, i i
i

b y g t w
=

= = ∑ . Hence, Equation (6) gives the first-order linear equation 

given by 

11 1
104.4298 0.612491
170.50

a bλ λ= ⇒ = − = − .             (30) 

As a result, kA
V

λ = −  and A, V are given as shown in Table 1,  

46.12491 10k −= × , with ( ) ( )2 20 0 9

1
1.0441 10

m

i
i

R p k R p k −

=

= = = = ×∑ . Now 

Equation (15) is fully determined. 
To estimate the Model 2 parameters, we used the non-linear least squares’ 

method described in Section 2.2. From Equation (24) two models were proposed: 
the model named MD21, where only the 2k  parameter was allowed to vary 
while 1k k=  and Model MD22, where both parameters varied. The initial pa-
rameter vector for MD21 was 0

21 0.01p =  with a tolerance 410tol −=  and con-
vergence occurring in only two cycles for the value of 2

2 1.9224k = , where  

( ) ( )2 22 2 9
21 21

1
1.0567 10

m

i
i

R p R p −

=

= = ×∑ . For MD22, the initial parameter vector 

was taken as ( )T0
22 0.0007,1.0p =  with a tolerance 510tol −=  and convergence 

also occurring in two cycles for the ( )T2 2 2
22 1 20.0004, 3.4907p k k= = = , the vector 

being ( ) ( )2 22 2 9
22 22

1
1.0544 10

m

i
i

R p R p −

=

= = ×∑ . Please note that in terms of qua-

dratic residues, there is no significant difference between these iterative models. 
The relative percentage error for MD1, MD1ε  in relation to the estimates of 

concentration in %pC estimated by the theoretical model MD, is below 3.7%. 
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Similarly, for MD21, MD21 6.2%ε <  while for the MD22 model, MD22 6.5%ε < . 
The highest divergence between concentrations took place in the 2.0 ht ≤  
time interval. Based on the criteria analyzed, and because the MD1 model has its 
parameter estimated in a global way, and due to its greater simplicity, it is at first 
the model to be adopted to estimate the mean carbon concentration in the thin 
plate. Figure 2 shows the adjustment in the half-plane estimated in %pC ob-
tained with the different adjustment models analyzed. 

Figure 2 confirms that the best fit was with MD1 followed by MD22 and fi-
nally by MD21 in relation to the theoretical data estimated by the MD model as 
given by the solid line. The MD22 model when varying the initialization vector 

( )T0
22 0.0007,1.0p =  showed instability, probably due to the sensitivity of these 

parameters and, therefore, the ( )T2 2 2
22 1 20.0004, 3.4907p k k= = =  was chosen 

from a set of global minimums. This instability also occurred during the refine-
ment of the parameter in the MD21 model. 

One of the advantages of these simplified models is that their expressions for 
( )C t  are analytical, as opposed to the solution obtained by Equation (14) which 

is given in terms of an infinite series. Figure 2 shows a little more, that is, on the 
more superficial layers it is expected that models MD21 and MD22 are closer to 
the estimates of theoretical concentrations, as a greater spread is seen above the 
continuous graph obtained by the MD model for the mean plate plane. 

If we consider the 0.00025 mx =  plane of the plate, the maximum percentage  
 

 
Figure 2. Comparison of the MD1, MD21 and MD22 models with the MD model at the 

0.0005 mx =  position. 
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difference between the concentrations estimated by the MD1 model for the 
0.0005 mx =  plate plane are lower than 2% when compared with the theoretical 

data (not shown here), for the estimates of the concentrations in 0.00025 mx =  
obtained by the MD model. This allows us to assume that the simplified model 
to a parameter can estimate, in a semi qualitative way, the %pC concentrations 
inside the plate or thin membrane, and without the need to use iterative me-
thods where the global minimum cannot be obtained. Unlike the MD model, the 
diffusion of the simplified models lies in the analytical functions. That is, from 
Equation (15) the diffusion flow function is given by ( )1 eJ k C C t= ⋅ −   , while 
in Equation (20), the diffusion flow is given by ( )( ) ( )( )2

2 1 2e eJ k C C t k C C t= − + − . 
From Equation (12) the diffusion flow across the face is given using [2]. 

( )

( )
( )2 22 2

2 2
2 1 ππ

0
2 1

1 0

0,

42 cos π e e
D nDm t t

L L

m n

C t
J D

t

C
D C m C

L L

+∞ ∞− −

= =

∂
= −

∂
 
 = − − +   
  
∑ ∑

   

 (31) 

The flow functions from simple models are dependent on the difference in 
concentration between the media, so it is to be expected that the 2J  flow will 
be less pronounced than the 1J  flow. Figure 3 clearly shows that the largest 
difference in concentration occurs in models MD21 and MD22 in relation to the 
theoretical concentrations, and thus the ( )eC C t−  terms are smaller in relation  

 

 
Figure 3. Carbon diffusion estimated for models MD1, MD21, MD22 and MD on the flat faces 
of the plate. 
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to the same terms of the MD1 model, indicating that the diffusion for models 
MD21 and MD22 is “less apparent” in relation to the 1J  model. Figure 3 
shows the carbon diffusion profile diffusion on the flat faces of the plate, con-
firming this observation. 

After two hours of the cementation process, the carbon transfer rates through 
the flat section on the surface of the plate were in good agreement when com-
pared with the data provided by the theoretical model. A possible explanation 
for the discrepancy of flows estimated by the simplified models for times under 
two hours can be credited to the fact that the parameters estimated for the mod-
els were based on the data of the theoretical concentrations obtained for the 
mean plane, and not the surface plane where the concentration was kept fixed 
during the cementation process. 

4. Conclusion 

The analyzes showed that the simplified diffusion models in cell membranes 
analyzed in this study may be an alternative to the transient one-dimensional 
models used for the description of membrane diffusion processes. The simplest 
models depend on parameters that can be obtained globally using known func-
tion adjustment methods, such as that of the least squares. In particular, they 
were used to obtain percentages by weight of carbon in a cementation process 
with restricted thickness conditions. The results obtained were in good agree-
ment when compared with the estimates of the theoretical model used for this 
purpose. The simplified model with one parameter was shown to be the best op-
tion to represent the average estimate of the concentration of carbon solute in 
the diffusion process due to the concentration difference on the plate or mem-
brane, and this is due to the fact that this model uses only one parameter and 
that it can be obtained non-iteratively; that is, in a global way. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Carslaw, H.S. and Jaeger, J.C. (2011) Conduction of Heat in Solids. 2nd Edition, 

Clarendon Press, Oxford. 

[2] Crank, J. (2011) The Mathematics of Diffusion. 2nd Edition, Clarendon Press, Ox-
ford. 

[3] Churchill (1972) Operational Mathematics. 3rd Edition, McGraw-Hill, New York. 

[4] Boyce, W.E. and Diprima, R.C. (1999) Equações Diferenciais Elementares e 
Problemas de Valores de Contorno. 6th Edition, LTC, Rio de Janeiro. 

[5] Fox, R., Pritchard, P.J. and McDonald, A.T. (2011) Introdução à mecânica dos 
fluidos. 7th Edition, Tradução e revisão técnica de Ricardo Koury e Luiz Machado. 
Editora LTC, Rio de Janeiro. 

[6] Araújo, J.C. and Márquez, R.G. (2018) Proposta alternativa para a estimativa de 

https://doi.org/10.4236/jamp.2019.77105


J. C. de Araújo, R. G. Márquez 
 

 

DOI: 10.4236/jamp.2019.77105 1559 Journal of Applied Mathematics and Physics 
 

concentração de carbono em amostras metálicas de aço-carbono. Revista Eletrônica 
da Matemática, 4, 215-228. 

[7] Callister, W.D. (2002) Ciência e Engenharia de Materiais: Uma Introdução. 5th 
Edition, LTC, Rio de Janeiro, Brazil. 

[8] Bassanezi, R.C. and Ferreira, W.C. (1988) Equações Diferenciais com Aplicações. 
ed. Harbra, São Paulo, Brazil. 

[9] Bassanezi, R.C. (2002) Ensino Aprendizagem com Modelagem Matemática. 3rd 
Edition, ed. Contexto, São Paulo, Brazil. 

[10] Ruggiero, M.A.G. and Lopes, V.L.R. (2006) Cálculo Numérico Aspectos Teóricos e 
Computacionais. 2nd Edition, Pearson Makron Books, São Paulo, Brazil. 

[11] Lima, E.L. (2016) Curso de Analise. Vol. 1, ed. IMPA, Rio de Janeiro, Brazil, 14. 

[12] Neto, A.J.S. and Neto, F.D.M. (2005) Problemas Inversos. Conceitos Fundamentais 
e Aplicações. Ed. UERJ, Rio de Janeiro, Brazil. 

[13] Bronson, R. and Costa, G. (2008) Equações Diferenciais. Bookman. 
 
 

https://doi.org/10.4236/jamp.2019.77105

	Simple Models for Diffusion in Thin Plates or Membranes
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Linear Least Squares: Discrete Case
	2.2. Nonlinear Least Squares: Discrete Case
	2.3. The One-Dimensional Diffusion Equation

	3. Results and Discussions
	4. Conclusion
	Conflicts of Interest
	References

