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Abstract 
In this paper, we study the multiplicity of subharmonic solutions of the non-
linear differential equation of the forced relativistic oscillators. By using the 
generalized Poincaré-Birkhoff fixed point theorem, we prove that the equa-
tion has infinite subharmonic solutions provided that g satisfies at most linear 
growth condition. 
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1. Introduction 

We are concerned with the multiplicity of subharmonic solutions of the nonli-
near differential equation of the forced relativistic oscillators 
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where :g →R R  is locally Lipschitz continuous, :p →R R  is continuous 
and periodic, whose least period is 2π . 

The dynamical properties of relativistic oscillators are being studied with an 
increasing interest because of its extensive applications in different branches of 
theoretical physics such as quantum mechanics, statistical mechanics, super-
conductivity theory, nuclear physics and so on (see [1]-[11] and the references 
therein). In [1], using variational methods, Brezis and Mawhin proved the exis-
tence of a T-periodic solution of the forced relativistic Pendulum 
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                 (1.2) 

where a is a positive constant and h is a continuous and T-periodic function with 
mean value ( )

0

1 d 0
T

h h t t
T

= =∫ . Under same conditions, using Szulkins critical 
point theory, Bereanu and Torres [2] proved the existence of a second T-periodic 
solution of Equation (1.2) which is not different from the previous by a multiple 
of 2π . When the mean value 0h ≠ , using degree arguments, Bereanu and 
Mawhin [3] proved that Equation (1.2) has at least two solutions not differing by 
a multiple of 2π  if 

ππ 3, cos .
2 3

T h a  
< <  

 
 

For the existence of periodic solutions of Equation (1.1) when g is not periodic, 
it was proved in [4] that Equation (1.1) has at least one 2π -periodic solution 
provided that g satisfies 

(g1)      ( ) ( )lim .
x

sgn x g x
→∞

= +∞  

A natural question is whether Equation (1.1) has multiple periodic solutions 
when (g1) holds. In the present paper, we shall study this problem. We assume 
that g still satisfies at most linear condition, i.e. there are two constants 

0, 0a b> >  such that 
(g2)      ( )g x a x b≤ + , for every x∈R . 

By using the generalized Poincaré-Birkhoff fixed point theorem [12], we prove 
the following theorem. 

Theorem 1.1. Assume that conditions (g1) and (g2) hold. Then there is an in-
teger 0 2n ≥  such that, for any integer 0n n≥ , Equation (1.1) has at least two 
subharmonic solutions ( ),n ix t  ( 1,2i = ) of order n and these subharmonic so-
lutions extend to the infinity; that is 

[ ]
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( )
( )2

, 20,2 π
,

1lim min , 1,2 .
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x t→∞ ∈

  
 + = +∞ =   ′−  

 

Throughout this paper, we always use R , N  to denote the real number set 
and the natural number set, respectively. For the continuous 2π -periodic func-
tion ( )p t , we set ( ) [ ]{ }max : 0,2πp p t t

∞
= ∈ . 

The rest of the paper is organized as follows. Section 2 presents several pre-
liminary lemmas for the equivalent system of Equation (1.1). Section 3 gives 
some estimates on the angle variable of the transformed system. Section 4 proves 
the main conclusion (Theorem 1.1). 

2. Basic Lemmas 

Firstly, we consider the equivalent planar system of Equation (1.1). Let us set 

2
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′
=
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Then we have 

( )
2

.
1

yx y
y

φ′ = =
+

 

Obviously, ( ): 1,1φ → −R  is continuously differentiable. Thus Equation (1.1) 
is equivalent to the system 

( )
( ) ( )

,

.

x y

y g x p t

φ′ =
 ′ = − +

                     (2.1) 

For any ( ) 2
0 0,x y ∈R , we denote by ( ) ( )( ) ( ) ( )( )0 0 0 0, , , , , ,x t y t x t x y y t x y=  

the solution of Equation (2.1) satisfying the initial value 

( ) ( )0 00 , 0 .x x y y= =  

Next, we shall perform some phase plane analysis for Equation (2.1). Set 

( ) ( ) ( ) ( ) 2
0 0

d , d 1 1.
x y

G x g s s y s s yφ= Φ = = + −∫ ∫  

Lemma 2.1. Assume that (g1) holds. Then every solution ( ) ( )( ),x t y t  of 
Equation (2.1) exists uniquely on the whole t-axis. 

Proof. We define a function 2:W →R R , 

( ) ( ) ( ), .W x y G x y= +Φ  

Obviously, we have 

( )lim , .
x y

W x y
+ →+∞

= +∞  

Set 

( ) ( ) ( )( ) ( )( ) ( )( ), .W t W x t y t G x t y t= = +Φ  

Then we have 

( ) ( )( ) ( ).W t y t p tφ′ =  

Since ( ) 1yφ < , for any y∈R  and ( )p t  is continuous, we know that 

( ) ,W t p
∞

′ ≤  

which implies that, for any positive constant 0ν > , 

( ) ( ) [ )0 , for 0, .W t W p tν ν
∞

≤ + ∈  

Therefore, there is no blow-up for the solution ( ) ( )( ),x t y t  on any finite in-
terval [ )0,ν . Consequently, ( ) ( )( ),x t y t  exists on the whole interval [ )0,+∞ . 
Similarly, we can prove that ( ) ( )( ),x t y t  exists on the whole interval ( ],0−∞ . 
The uniqueness of ( ) ( )( ),x t y t  follows directly from the local Lipschitzian 
condition of g and the differentiability of φ . 

We now take the transformation 

( ) ( ) ( ) ( ) ( ) ( )cos , sinx t r t t y t r t tθ θ= =  

to Equation (2.1) and get the equations for ( )r t  and ( )tθ , 
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( ) ( ) ( )

( ) ( ) ( )

1 1 1sin sin cos cos cos ,

sin cos cos sin sin ,

r g r p t
r r r

r r g r p t

θ φ θ θ θ θ θ

φ θ θ θ θ θ

 ′ = − − +

 ′ = − +

     (2.2) 

whenever ( ) 0r t ≠ . Let ( ) ( )( ) ( ) ( )( )0 0 0 0, , , , , ,r t t r t r t rθ θ θ θ=  be the solution 
of Equation (2.2) through the initial point ( ) ( )( ) ( )0 00 , 0 ,r rθ θ= . 

Lemma 2.2. Assume that (g1) and (g2) hold. Then, for any fixed constant 
0T > , there exist positive constants α  and γ  such that, for 0r γ≥  and 
[ ]0,t T∈ , 

(1) ( )1
0 0r r t rα α− ≤ ≤ ;   (2) ( ) 0tθ ′ < . 

Proof. (1) Since φ  and p are bounded, it follows from (g2) that there is a 
constant 0c >  such that 

.r ar c′ ≤ +  

It follows that 

( ) ( ) ( ) [ ]0 0e 1 e e e 1 , 0, .at at at ata cr r t r t T
c a

− −− − ≤ ≤ + − ∈  

Hence, 

( ) ( ) ( ) [ ]0 0e 1 e e e 1 , 0, .aT aT aT aTa cr r t r t T
c a

− −− − ≤ ≤ + − ∈  

Obviously, we have that 

( ) ( )
0 00 0

e liminf limsup eaT aT

r r

r t r t
r r

−

→∞ →∞
≤ ≤ ≤  

uniformly with respect to [ ]0,t T∈ . Consequently, there are constants 0α >  
and 0 0γ >  such that, for 0 0r γ≥  and [ ]0,t T∈ , 

( )1
0 0 .r r t rα α− ≤ ≤  

(2) From (g1) we know that there exist 0d >  and 0δ >  such that 

( ) ( ) ,sgn x g x p x d
∞

> ≥                   (2.3) 

and 

( ) ( ) , , .g x p t x d tδ− ≤ ≤ ∈R                 (2.4) 

Therefore, if ( )x t d≥ , then we infer from (2.3) that 

( ) ( )( )1 cos cos 0.g r p t
r

θ θ− >  

Since ( ) 0y yφ ≥  for any y∈R , we have that 

( )1 sin sin 0.r
r
φ θ θ ≥  

Consequently, if ( )x t d≥ , then 

( ) ( ) ( ) ( )( )1 1sin sin cos cos 0.t r g r p t
r r

θ φ θ θ θ θ′ = − − − <  

On the other hand, if ( )x t d≤ , then we know from the conclusion in (1) 
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that, for 0r  large enough, ( ) ( ) 0

1cos
8

d dt
r t r

αθ
δ

≤ ≤ ≤ . It follows from (2.4) 

that 

( ) ( )( )1 1cos cos
8

g r p t
r r

θ θ− ≤
               

 (2.5) 

provided that 0r  is large enough. From the expression of φ  we know 

( )
2

lim lim 1.
1y y

y
y

y
φ

→+∞ →∞
= =

+
 

Furthermore, there exists 0ζ >  such that, for y ζ≥ , 

( ) 1 .
2

yφ ≥
                        

 (2.6) 

Therefore, if 0r  is large enough and ( )x t d≤ , then we have 

( ) ( ) ( )
2

2 2 20
2

r
y t r t x t d ζ

α
= − ≥ − ≥  

and 

( )
( )
( )

2 2 2

2 2
0

1sin 1 ,
2

r t d dt
r t r

θ
α

−
≥ ≥ − ≥  

which, together with (2.6), implies that 

( )1 1sin sin .
4

r
r r
φ θ θ ≥

                   
 (2.7) 

It follows from (2.4) and (2.7) that, for 0r  large enough and ( )x t d≤ , 

( ) ( ) ( ) ( )( )1 1sin sin cos cos

1 1 1 0.
4 8 8

t r g r p t
r r

r r r

θ φ θ θ θ θ′ = − − −

≤ − + = − <
 

The proof of Lemma 2.2 is complete. 
Remark 2.3. From the proof of Lemma 2.2 we know that there exists a con-

stant * 0γ >  such that, if ( ) *r t γ≥ , t I∈ , then ( ) 0tθ ′ < , t I∈ , where I is 
an interval. 

Lemma 2.4. Assume that (g1) and (g2) hold. Then, for any n∈N , there exists 
0nR >  such that, for 0 nr R≥ , 

( ) 0π 2 π 0.nθ θ− < − <  

Proof. Since 

( )
2

1lim lim 0,
1y y

y
y y

φ
→∞ →∞

= =
+

 

we have that, for any sufficiently small 0ε > , there exists 0cε >  such that 

( )
0 , .

y
y c

y ε

φ
ε< < ≥  
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Set 

( ){ } ( ){ }2 2
1 2, : 0, , , : 0, ,D x y x y c D x y x y cε ε= ∈ ≥ ≥ = ∈ ≤ ≥R R  

( ){ } ( ){ }2 2
3 4, : 0, , , : 0, .D x y x y c D x y x y cε ε= ∈ ≤ ≤ − = ∈ ≥ ≤ −R R  

Next, we shall estimate the time needed for the solution ( ) ( )( ),x t y t  to pass 
through each region of iD  ( )1,2,3,4i = , respectively. If ( ) ( )( ) 1,x t y t D∈ , 

[ ]1 2,t t t∈  and ( )1 0x t = , ( )2y t cε= , then we get from Lemma 2.2 and (g2) that, 
for [ ]1 2,t t t∈  and 0r  large enough, 

( ) ( )

( )

2 2

0
2 2

2 2

0 sin cos cos

sin cos

2 sin cos .

t a b p
r

a
a

αθ ε θ θ θ

ε θ θ ε

ε θ ε θ

∞
′> ≥ − − − +

≥ − − −

= − − +

         (2.8) 

Consequently, we have 

( )
( )

( )
1

2
2 1 2 2

d .
2 sin cos

t

t
t t

a
θ

θ

θ
ε θ ε θ

− ≥
+ +∫  

Owing to ( ) ( )2 1
π 0
2

t tθ θ− < − <  and ( ) ( )1
π mod π
2

tθ = ,  

( ) ( )( )2 1 mod πt oθ =  for 0r →∞ , we obtain 

( ) ( ) ( ) ( )
π
2

2 1 2 21

d 1 π 1 2 π
2 22 sin coso

t t o n
aa

θ
ε εε θ ε θ

 − ≥ = + > ++ +  ∫  

provided that ε  is small enough and 0r  is large enough. Similarly, we can 
prove that the time needed for the solution ( ) ( )( ),x t y t  to pass through each 
region of iD  ( )2,3, 4i =  is greater than 2 πn  provided that 0r  is large 
enough. Therefore, The conclusion of Lemma 2.4 holds. 

Lemma 2.5. Assume that (g1) and (g2) hold. Then for any n∈N  and 0t ∈R , 
there exists an * 0t t>  such that 

( ) ( )* 0 2 πt t nθ θ− < −  

provided that ( )0r t  is large enough. 
Proof. Assume by contradicition that there is an integer 0l >  such that 

( ) ( )0 2 πt t lθ θ− > −                      (2.9) 

for any sufficiently large ( )0 0r t >  and 0t t> . We will proceed in two cases. 
(1) For [ )0 ,t t∈ +∞ , ( ) *r t γ≥ , where *γ  is defined in Remark 2.3. In this 

case, ( ) 0tθ ′ <  and then ( )tθ  is decreasing on the interval [ )0 ,t +∞ . From 
(2.9) we know that 

( )lim .
t

tθ ϑ
→+∞

= > −∞  

Therefore, the orbit ( ) ( )( ),x t y t  has a asymptotical ray θ ϑ= . If  

( )π mod π
2

ϑ = , then ( ) 0x t →  as t → +∞ . It follows that, for t large enough, 

( ) 1y t ≥  and then 
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( ) ( )( ) ( )
( )2

1 ,
21

y t
x t y t

y t
φ′ = = ≥

+
 

which implies that ( )x t → ±∞  as t → +∞ . This is a contradicition. Hence, 
( )x t →∞ , t → +∞ . Without loss of generality, we assume the asymptotical ray is 

y kx= , 0x ≥ , where tank ϑ= . If 0k ≥ , then we have ( ) ( ),x t y t→ +∞ → +∞  
as t → +∞ . But, it follows from ( ) ( )( ) ( )y t g x t p t′ = − +  that there is a suffi-
ciently large constant 0β >  such that ( )y t β′ ≤ −  for 0t >  large enough, 
which implies ( )y t → −∞  as t → +∞ . This is a contradicition. If 0k < , then  

( ) ( ),x t y t→ +∞ → −∞  as t → +∞ . But, since ( ) ( )( ) ( )
( )21

y t
x t y t

y t
φ′ = =

+
, 

we have that ( ) 0x t′ <  for t large enough. Consequently, ( )x t  is bounded 
from above. Thus we get a contradicition. 

(2) There is an * 0t t>  such that ( )* *r t γ=  and ( ) *r t γ> , [ )0 *,t t t∈ . We 
next show that there is a large 0 *R γ>  such that, for ( )0 0r t R≥ , 

( ) ( )* 0 2 π.t t lθ θ− < −  

To this end, we shall construct a continuous counter-clockwise rotating spiral 
curve [ ) 2: 0,σ +∞ → R , which is injective and makes infinite rotations around 
the origin ( )0,0 . Moreover, the curve σ  satisfies 

( )lim
s

sσ
→+∞

= +∞                       (2.10) 

and every time when the solution ( ) ( )( ),x t y t  of Equation (2.1) intersects with 
the curve σ  only from the inner part to the outer part. Let us take a positive 
constant 0M >  with p M

∞
< . We define 

( ) ( ) ( ), , 0W x y y G x Mx y+ = Φ + + ≥  

and 

( ) ( ) ( ), , 0.W x y y G x Mx y− = Φ + − ≤  

Set 

( ) ( )( ) ( )( ) ( ) ( ), 0,W t y t G x t Mx t y t+ = Φ + + ≥  

and 

( ) ( )( ) ( )( ) ( ) ( ), 0.W t y t G x t Mx t y t− = Φ + − ≤  

Then we have 

( ) ( )( ) ( )( ) ( )0, for 0W t p t M y t y tφ+′ = + > >           (2.11) 

and 

( ) ( )( ) ( )( ) ( )0, for 0.W t p t M y t y tφ−′ = − > <         
 (2.12) 

We now take a large constant *c γ>  such that the curve ( ) ( )y G x Mx cΦ + + =  
is a simply closed curve and the circle 2 2 2

*x y γ+ =  lies inside this closed curve. 
Consider the curve 
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( ) ( )1 : , 0,y G x Mx c y+Γ Φ + + = ≥  

which intersects with the x-axis at exactly two points ( )( ),0x c+  and ( )( ),0x c−  
with ( ) ( )0x c x c− +< < . Then we have 

( )( ) ( ) ( )( ) ( ), .G x c Mx c c G x c Mx c c+ + − −+ = + =  

Set 

( )( ) ( )1 .c G x c Mx c− −= −  

Let us consider the curve 

( ) ( )1 1: , 0.y G x Mx c y−Γ Φ + − = ≤  

Assume that 1
−Γ  intersects with the positive x-axis at the point ( )( )1 ,0x c+ . 

Then we have 

( )( ) ( )1 1 1.G x c Mx c c+ +− =  

We shall prove that ( ) ( )1x c x c+ +> . In fact, since 

( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1

2 ,

G x c Mx c c G x c Mx c

c Mx c G x c Mx c
+ + − −

− + +

− = = −

= − > +
 

we get 

( )( ) ( )( )1 ,G x c G x c+ +>  

which implies that ( ) ( )1x c x c+ +>  for c large enough because ( )G x  is in-
creasing for 0x >  large enough. Set 

( )( ) ( )2 1 1 .c G x c Mx c+ += +  

Next we consider the curve 

( ) ( )2 2: , 0.y G x Mx c y+Γ Φ + + = ≥  

Applying the same method as above we can define the curve 2
−Γ . Successively, 

we can construct the curves i
+Γ  and i

−Γ  ( 3,4,i =  ). Let us set 

( )1 i ii

∞ + −
=

Γ = Γ Γ


. 

We now take a starting point ( )( ),0x c+  and define the parametrization of 
Γ  in polar coordinates 

( ) ( ) ( )( ) [ )cos , sin , 0, ,s s s s s sσ ς ς= ∈ +∞  

where ( )sς  denotes the Euclidian norm of a point on Γ , whose argument is s. 
From the construction of Γ  we know that its parametrization ( )sσ  is con-
tinuous and satisfies (2.10) and ( )sσ  makes infinite rotations around the ori-
gin ( )0,0  as s → +∞ . Moreover, it follows from (2.11) and (2.12) that all so-
lutions cross the curve only from the inner part to the outer part. 

For the fixed integer 0l >  above. Let us take a sufficiently large constant 

0 0R >  such that the spiral curve ( )sσ  ( ( )0,2 1 πs l∈ +   ) lies inside the cir-
cle 2 2 2

0x y R+ = . If ( )0 0r t R≥  and there is a sufficiently large * 0t >  such 

https://doi.org/10.4236/jamp.2019.77101


Z. H. Wang, T. T. Ma 
 

 

DOI: 10.4236/jamp.2019.77101 1506 Journal of Applied Mathematics and Physics 
 

that 

( ) ( ) [ )0, , , ,r t r t t t tγ γ∗ ∗ ∗ ∗= > ∈  

then the orbit ( ) ( )( ),r t tθ  will move clock-wise during the period [ ]0 ,t t∗ . 
Since ( ) ( )( ),r t tθ  can cross spiral ( )sσ  only from the inner part to the outer 
part, it will make at least l rotations when it finally reaches the circle 

2 2 2
*x y γ+ = . Consequently, we get 

( ) ( )0 2 π,t t lθ θ∗ − < −  

which contradicts with (2.9). 

3. Estimates on the Angle Variable 

When the condition (g1) holds, it was proved in [4] that Equation (2.1) has at 
least one 2π -periodic solution. 

Let ( ) ( )( )0 0,x t y t  be an 2π -periodic solution of Equation (2.1). We now 
take a transformation 

( ) ( )0 0,x u x t y v y t= + = +  

to Equation (2.1) and get the equations for ( )u t  and ( )v t , 

( )( ) ( )( )

( )( ) ( )( )

0 0

0 0

d ,
d
d .
d

u v y t y t
t
v g u x t g x t
t

φ φ = + −

 = − + +


                (3.1) 

Let ( ) ( )( ) ( ) ( )( )0 0 0 0, , , , , ,u t v t u t u v v t u v=  be the solution of Equation (3.1) 
satisfying the initial value ( ) ( )( ) ( )0 00 , 0 ,u v u v= . From Lemma 2.1 we know that 

( ) ( )( ),u t v t  exists on the whole t-axis uniquely. Thus we can define the Poin-
caré map P of Equation (3.1), 

( ) ( ) ( )( )0 0: , 2π , 2π .P u v u v→  

It is well-known that P is an area-preserving homeomorphism. 
Obviously, Equation (3.1) has a trivial solution ( ) ( )( ) ( ), 0,0u t v t =  ( t∈R ), 

which corresponds to the 2π -periodic solution ( ) ( )( )0 0,x t y t . Let ( ) ( )( ),u t v t  
be the solution of Equation (3.1) satisfying the initial condition ( ) ( )0 0, 0,0u v ≠ . 
It follows that ( ) ( )( ) ( ), 0,0u t v t ≠  for all t R∈ . Hence, it can be represented 
by polar coordinates 

( ) ( ) ( ) ( ) ( ) ( )cos , sin .u t t t v t t tρ ψ ρ ψ= =  

where ( ) 0tρ >  and ( )tψ  are continuous for all t∈R . 
Using a similar method as in proving Lemma 2.2, we can prove the following 

lemma. 
Lemma 3.1. Assume that (g1) and (g2) hold. Then there is an 0 0ρ >  such 

that, if ( ) 0tρ ρ≥ , t I∈ , then 

( ) 0, ,t t Iψ ′ < ∈  

where I is an interval. 
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Lemma 3.2. If 1t  and m are two positive constants such that 

( ) ( )1 0 2 π,t mψ ψ− < −  

then, for any 2 1t t> , 

( ) ( )2 1 2 π π.t t mψ ψ− < − +  

Proof. The proof follows an argument in [13]. Since ( )
( )32

1

1
y

y
φ′ =

+
 and  

g is locally Lipschitz continuous, the solutions of Cauchy problems of Equation 
(3.1) are unique. Therefore, the solution ( ) ( )( ),u t v t  can not go through the 
origin. Obviously, ( )yφ  is increasing. Since ( ) ( ) ( )( ) ( )( )0 0u t v t y t y tφ φ′ = + − , 
the orbit ( ) ( )( ),u t v t  moves in the clockwise direction when it intersects with 
the v-axis. Therefore, if the orbit ( ) ( )( ),x t y t  intersects the positive (or the 
negative) v-axis at the time 0t α= >  and intersects subsequently the negative 
(or the positive) v-axis at the time t β α= > , then we have 

( ) ( ) π.ψ β ψ α− = −
                     (3.2) 

On the other hand, if the orbit ( ) ( )( ),x t y t  stays in the right half-plane (or 
in the left half-plane) during the time interval tα β≤ ≤ , the increase of the an-
gle satisfies 

( ) ( ) π.ψ β ψ α− <
                      (3.3) 

It follows from (3.2) and (3.3) that 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 10 0 2 π π.t t t t mψ ψ ψ ψ ψ ψ− = − + − < − +        

Lemma 3.3. Assume that (g1) and (g2) hold. Then, for any n∈N , there exists 
0nρ >  such that, for ( )0 nρ ρ≥ , 

( ) ( )2π 2 π 0 0.nψ ψ− < − <  

Proof. We denote by 1L  the orbit of the 2π -periodic solution ( ) ( )( )0 0,x t y t  
of Equation (2.1) in the ( ),x y -plane. Let 2L  be the orbit of the solution 

( ) ( )( ),x t y t  of Equation (2.1) satisfying the initial value ( ) ( )( ) 20 , 0x y ∈R  in 
the ( ),x y -plane. Consider the moving points 

( ) ( )( ) ( ) ( )( )0 0 1 2, , , .A x t y t L B x t y t L= ∈ = ∈  

Let OAB∆  be the triangle with the vertices , ,O A B . Obviously, the vector 
OB  has the argument ( )tθ  and the vector AB  has the argument ( )tψ . It fol-
lows from Lemma 2.2 that, if ( ) ( )2 20 0x y+  is large enough, then ( ) ( )2 2x t y t+   

is also large enough for [ ]0,2 πt n∈  and then we have 
π
6

OBA∠ < . Further-

more, 

( ) ( ) [ ], 0, 2 π .t t OBA t nθ ψ= +∠ ∈  

Therefore, we have 

( ) ( ) ( ) ( )π π2 π 2 π , 0 0 .
6 6

n nθ ψ θ ψ− ≤ − ≤
           

 (3.4) 
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From Lemma 2.4, Lemma 3.1 and (3.4) we get 

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

0 2 π 0

2 π 0 2 π 2 π 0 0

ππ 2π.
3

n

n n n

ψ ψ

θ θ ψ θ ψ θ

> −

≥ − − − − −

≥ − − > −

 

Lemma 3.4. Assume that (g1), (g2) hold. Then for any n∈N  and 0t ∈R , 
there is an 0nρ′ >  such that for ( )0 ntρ ρ′≥  and any sufficiently large 0t t> , 

( ) ( )0
4π2 π .
3

t t nψ ψ− < − +  

Proof. We still use some notations in the proof of Lemma 3.3. From the proof 

of Lemma 2.5 we know that we can enlarge * 0γ >  such that 
π
6

OBA∠ <  and 

( ) ( ) [ ]0, , ,t t OBA t t tθ ψ ∗= +∠ ∈  

where *t  is a constant given in Lemma 2.5. Then we have 

( ) ( ) ( ) ( )* * 0 0
π π, .
6 6

t t t tθ ψ θ ψ− ≤ − ≤             (3.5) 

From Lemma 2.5 and (3.5) we get that, for ( )0tρ  (or ( )0r t ) large enough, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
* 0

* 0 * * 0 0

π2 π .
3

t t

t t t t t t

n

ψ ψ

θ θ ψ θ ψ θ

−

≤ − + − + −

< − +

 

According to Lemma 3.2, we get that, for any *t t> , 

( ) ( )0
4π2 π .
3

t t nψ ψ− < − +  

4. Proof of Main Theorem 

We first recall a generalized version of the Poincaré-Birkhoff fixed point theo-
rem by Rebelo [12]. 

A generalized form of the Poincaré-Birkhoff fixed point theorem Let   
be an annular region bounded by two strictly star-shaped curves around the ori-
gin, 1Γ  and 2Γ , ( )1 2intΓ ⊂ Γ , where ( )2int Γ  denotes the interior domain 
bounded by 2Γ . Suppose that ( ) 2

2: intF RΓ →  is an area-preserving ho-
meomorphism and |F   admits a lifting, with the standard covering projec-
tion ( ) ( ): , cos , sinr z r rθ θ θΠ → = , of the form 

( ) ( ) ( )( )| : , , , , ,F r w r h rθ θ θ θ→ +   

where w and h are continuous functions of period 2π  in the second variable. 
Correspondingly, for ( )1

1 1
−Γ = Π Γ  and ( )1

2 2
−Γ = Π Γ , assume the twist condi-

tion 

( ) ( )1 2, 0 on ; , 0 on ,h r h rθ θ> Γ < Γ   
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or 

( ) ( )1 2, 0 on ; , 0 on .h r h rθ θ< Γ > Γ   

Then, F has two fixed points 1z , 2z  in the interior of  , such that 

( )( ) ( )( )1 1
1 2 0.h z h z− −Π = Π =  

Proof of Theorem 1.1. According to Lemma 3.4, we can take a prime 2q ≥  
and a sufficiently large constant 0∗ >   ( 0  is defined in Lemma 3.1) such that, 
every solution ( ) ( )( ),u t v t  of Equation (3.1) with ( ) ( )2 2 2

0 0u t v t ∗+ =   and 
[ ]0 0, 2πt ∈ , satisfies the following property: 

(P) There is a constant * 0t >  such that 

( ) ( ) ( )* 0 0
4π2 3 π .
3

t t t qψ ψ+ − < − + +  

Set 

( ){ }* 0 : the property P holds .S t= >  

Since ( ){ }2 2 2, :u v u v ∗+ =   is compact and the solution ( ) ( )( ),u t v t  is con-
tinuous dependence on the initial value ( )0 0 0, ,t u v , we can take a suitable *t  
for every solution ( ) ( )( ),u t v t  such that S is bounded from above. Write 

* sup .T S=  

Choosing [ ]{ }0 *max 2, 2π 1n T= + , we infer from Lemma 3.2 that, for any 

0n n≥ , 

( ) ( ) ( )2 π 0 2 π, 0 .n qψ ψ ρ ∗− < − = 
               (4.2) 

It follows from Lemma 3.3 that there is a sufficiently large constant na ∗>   
such that 

( ) ( ) ( )2 π 0 2π, 0 .nn aψ ψ ρ− > − =                (4.3) 

From (4.2) and (4.3) we know that the n-iteration nP  of the Poincaré map P 
is twisting on the annulus: 

2 2 2 2: .n nD u v a∗ ≤ + ≤  

Obviously, nP  is an area-preserving homeomorphism. According to the ge-
neralized Poincaré-Birkhoff fixed point theorem, nP  has at least two fixed 
points ( ),i i

n n nu v D∈  ( 1, 2i = ), whose polar coordinates are ( ),i i
n nρ ψ , satisfy-

ing 

( ) ( )2 π 0 2 πn qψ ψ− = −
                    (4.4) 

with ( ) ( )( ) ( )0 , 0 ,i i
n nρ ψ ρ ψ= , ( )1,2i = . It follows that 

( ) ( )( ) ( ) ( )( ), ,, , , , , ,i i i i
n i n i n n n nu t v t u t u v v t u v=  

are the 2 πn -periodic solutions of (3.1). Using standard methods as in [14] and 
(4.4), we can further prove that 2 πn  is the minimal period. Therefore,  

( ) ( )( ) ( ) ( ) ( ) ( )( ), , , 0 , 0, ,n i n i n i n ix t y t u t x t v t y t= + +  are subharmonic solutions of 
order n of Equation (2.1). 
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In what follows, we shall prove 

[ ]
( ) ( )( ) ( )2 2

, ,0,2 π
lim min , 1,2 .n i n in t n

u t v t i
→∞ ∈

 + = +∞ = 
 

           (4.5) 

Firstly, we prove 

( ) ( ) [ ]2 2 2
, , , 0, 2 π .n i n iu t v t t nρ∗+ > ∈                (4.6) 

Otherwise, there are [ ]* 0, 2 πit n∈  ( 1, 2i = ) such that 

( ) ( )2 2 2
, , .i i

n i n iu t v t ρ∗ ∗ ∗+ =  

Write 2 πi i
it k τ∗ ∗= + , 0 ik n≤ ≤ , 0 2πiτ∗≤ < . Set 

( ) ( ) ( ) ( ), , , ,2 π , 2 π .n i n i i n i n i iu t u t k v t v t k= + = +  

Obviously, ( ) ( )( ), ,,n i n iu t v t  are the 2 πn -periodic solutions of Equation (3.1) 
satisfying 

( ) ( )2 2 2
, , .i i

n i n iu vτ τ ρ∗ ∗ ∗+ =                     (4.7) 

Let ( ) ( )( ), ,,n i n it tρ ψ  be the polar coordinates expression of ( ) ( )( ), ,,n i n iu t v t . 
From the definition of 0n  and (4.1), (4.7) we know that, for 0n n≥ , 

( ) ( ), ,2 π 2 π,i i
n i n in qψ τ ψ τ∗ ∗+ − < −  

which contradicits with (4.4) because the orbits of the solutions ( ) ( )( ), ,,n i n iu t v t  
and ( ) ( )( ), ,,n i n iu t v t  are the same. 

Secondly, we prove 

[ ]
( ) ( )( ) ( )2 2

, ,0,2 π
lim max , 1,2 .n i n in t n

u t v t i
→∞ ∈

 + = +∞ = 
 

           (4.8) 

Otherwise, there are a subsequence ( ) ( )( ), ,,
k kn i n iu t v t  and a constant 0b >  

such that, for 0kn n≥ , 

( ) ( ) [ ]2 2 2 2
, , , 0, 2 π .

k kn i n i ku t v t b t nρ∗ ≤ + ≤ ∈  

Set 

( ){ }2 2 2 2 2, : .D u v u v bρ∗= ∈ ≤ + ≤R  

Since D is compact, it follows from Lemma 3.1 that there is a constant 0 0c >  
such that, if a solution ( ) ( )( ),u t v t  ( t I∈ , I is an interval) of Equation (3.1) lies 
in D, then 

( ) 0 , .t c t Iψ ′ ≤ − ∈                       (4.9) 

Let us denote by ( ) ( )( ), ,,n i n it tρ ψ  the polar coordinates of ( ) ( )( ), ,,n i n iu t v t . 
Then we get from (4.4) and (4.9) that 

( ) ( ), , 02 π 2 π 0 2 π,
k kn i k n i kq n c nψ ψ− = − ≤ −  

which implies 

0 .kq c n≥  

This is impossible since kn → +∞  as k →∞ . 
Finally, we prove (4.5). Assume by contradicition that (4.5) does not hold. 

Then we know from (4.8) that there exist a subsequence ( ) ( )( ), ,,
l ln i n iu t v t  and 
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a constant 0 0d >  such that 

[ ]
( ) ( )( )

[ ]
( ) ( )( ) ( )2 2 2 2 2 2

, , 0 , ,0,2 π 0,2 π
min max , .

l l l l
l l

n i n i n i n it n t n
u t v t d u t v t lρ∗ ∈ ∈

≤ + ≤ ≤ + → +∞ →∞  

Since ( ) ( )( ), ,,
l ln i n iu t v t  are 2 πln -periodic, there are [ ]0,2 π

l

i
n lt n∈  and 

, 2 π
l l l

i i i
n n n lt t t n ∈ +   ( )1,2i =  such that 

[ ]
( ) ( )( ) ( ) ( ) ( )2 2 2 2

, , , ,0,2 π
max ,

l l l l l l
l

i i
n i n i n i n n i nt n

u t v t u t v t l
∈

+ = + → +∞ →∞  

and 

[ ]
( ) ( )( ) ( ) ( )2 2 2 2 2

, , , , 00,2
min .

l l l l l l
l

i i
n i n i n i n n i nt n

u t v t u t v t d
π∈

+ = + ≤  

Using the similar method as in proving Lemma 3.4, we can prove that, for l 
large enough, 

( ) ( ), , 2 π.
l l l l

i i
n i n n i nt t qψ ψ− < −  

From Lemma 3.1 we know that, for l large enough, 

( ) ( ), ,2 π 2 π,
l l l l

i i
n i n l n i nt n t qψ ψ+ − < −  

which contradicts with (4.4). 
According to (4.5), we know that, for any integer 0n n≥ , Equation (2.1) has at 

least two subharmonic solutions ( ) ( )( ), ,,n i n ix t y t  ( 1, 2i = ) of order n satisfying 

[ ]
( ) ( )( ) ( )2 2

, ,0,2 π
lim min , 1,2 .n i n in t n

x t y t i
→∞ ∈

 + = +∞ = 
 

         (4.10) 

Since 

( ) ( )( ), , ,n i n ix t y tφ′ =  

where φ  is defined in section 2, we have 

( ) ( )
( )

,
, 2

,

.
1

n i
n i

n i

x t
y t

x t

′
=

′−
 

Consequently, we get from (4.10) that 

[ ]
( ) ( )

( )

2
,2

, 20,2 π
,

lim min .
1l

n i
n in t n

n i

x t
x t

x t→∞ ∈

  ′
  + = +∞

 ′ −  
 

Furthermore, 

[ ]
( )

( )
( )2

, 20,2 π
,

1lim min , 1,2 .
1l

n in t n
n i

x t i
x t→∞ ∈

  
 + = +∞ =   ′−  

 

The proof is complete. 
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