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Abstract 
We study the ground-state information of one-dimensional Heisenberg chain 
with alternating D-term. Given the ground-state phase diagram, the ground-state 
energy and the entanglement entropy are obtained by tensor-net work algo-
rithm. The phase transition points are shown in the entanglement entropy 
figure. The results are agreed with the phase diagram. 
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1. Introduction 

Recent improvements in experimental techniques [1] [2] [3] [4] have given 
access to the quantum mechanical simulation of the dynamics of isolated, inte-
racting quantum many-body systems with a variety of platforms, such as cold 
atoms in optical lattices and ion traps [5] [6]. Among them, the Haldane ground 
state of the S = 1 anti-ferromagnetic Heisenberg chain with a gap to the first ex-
cited state and the ground-state [7] [8] [9] [10] has been extensively studied by 
many authors, which is known to have a gapless ground-state for half-integer 
spin. The gaped state is destroyed by various types of perturbations such as ex-
change anisotropy, bond alternation and single-ion-type anisotropy. On the 
other hand, understanding the collective behavior of quantum many-body sys-
tems has long presented a formidable challenge due to the exponential growth of 
Hilbert space dimension with system size N, however, the numerical algorithms 
are made great progress, such as the matrix product states [11] [12] [13] [14] 
[15] in one spatial dimension and the projected entanglement-pair states [16] 
[17] [18] in two and higher spatial dimensions, which is a variational algorithm 
to compute the ground-state wave-function for transitionally invariant quantum 
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systems on an infinite-size lattice. In this paper, we obtained the approximation 
ground-state wave-function by the matrix product states, meanwhile, the 
ground-state energy and the entanglement entropy are also given. 

This paper is organized as follows: in the second section, the model Hamilto-
nian and the ground-state phase diagram are presented. The matrix product 
state algorithm is simply introduced. The figure for ground-state energy and en-
tanglement entropy for left and right section are shown. The final section is de-
voted to a summary and discussion. 

2. The Hamiltonian and Ground-State Phase Diagram 

The anti-ferromagnetic Heisenberg chain with alternating D-term for spin-1 
[19] is given as the follow 
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where J is the exchange coupling, 0D D Dδ+ = + , 0D D Dδ− = + , and S is the 
spin-1 operator. 
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The parameters D0 and δD represent uniform and alternating components of 
uniaxial single-ion anisotropy, respectively. In what follows we set J = 1 to fix the 
energy scale. The ground-state phase diagram is given in Ref. [19], which con-
sists of the Haldane phase, the Large-D phase, udud and u0d0 phases. The Gaus-
sian transition occurred between the Haldane phase and the Large-D phase, 
which is gapful phase to gapful phase transition. From symmetry consideration, 
these transitions between the Haldane phase, u0d0 phase and udud phase are 
Ising type transitions. The ground-state phase diagram is shown in Figure 1. In 
this paper, we set the D0 = 2, and δD as the control parameter. 
 

 
Figure 1. Ground state phase diagram of the Hamiltonian 
(1) [19]. The phases are separated with the symbols. The 
solid lines are the guide for eye. The broken and dotted 
lines represent the approximate phase boundary, respec-
tively. The dash-dotted line is the line δD = −D0 + 2J. 

https://doi.org/10.4236/jamp.2019.75082


C. H. Xiang, H. L. Wang 
 

 

DOI: 10.4236/jamp.2019.75082 1222 Journal of Applied Mathematics and Physics 
 

The conformal central charge is an important content in field theory, which 
gives the type of the phase transition in theory. With conformal central charge c 
= 1, the transition line between the Larged-D and Haldane is expected to be de-
scribed by the conformal field theory. The phases u0d0 and udud are expected as 
gapless system. 

3. The Matrix Product State Algorithm 

The matrix product state algorithm is given in Ref [15], which exploits two facts, 
namely invariance under translations of the system and parallelizability of local 
updates in time-evolving block decimation algorithm. With time evolution for a 
quantum spin chain in the thermodynamic limit, the approximation ground-states 
are obtained. For a given wave-function 

( ) 0expt iHtΨ = − Ψ                        (2) 

the Schmidt decomposition of tΨ  is written as 
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The Equation (3) can be rewritten as 
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where χ is the truncation dimension, d is the Hilbert space, λ is diagonal ma-
trix, the Γ is three index tensor. By using the two-site Hamiltonian, which is 
expanded through a Suzuki-Trotter decomposition, the imaginary time evolu-
tion for the given wave-function is shown. The approximation ground-state 
wave-function is obtained until the approximation ground-state energy is lower 
enough. 

4. Ground-State Energy and Entanglement Entropy 

The simulation results of the approximation ground-state energy for Equation 
(1) are shown in Figure 2 with truncation dimension χ = 8, 12, 16, 20 in differ-
ent label, respectively. 

The approximation ground-state energies with different control parameter δD 
agree with each other. 

During the numerical simulation, two phase transitions are obtained, which 
are shown in entanglement entropy. The figure for entanglement entropy of the 
left one and the right one are given in Figure 3 and Figure 4. The parameters for 
the platform of the computer system are given as CPU: Intel(R) Core(TM) 
i5-64002.7 GHz; memory (RAM): 8.00 GB. 

5. Summary 

The anti-ferromagnetic Heisenberg chain with alternating D-term for spin-1 is 
investigated by using matrix product states. The approximation ground-state  
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Figure 2. The approximation ground-state energy for the Ha-
miltonian (1). δD as the control parameter, the truncation di-
mensions are shown with χ = 8, 12, 16, 20. The solid lines are the 
guide for eye. 

 

 
Figure 3. The entanglement entropy of the Hamiltonian (1) 
with truncation dimension χ = 8, 12, 16, 20, the transition 
points are δD = 0.287, 0.320, 0.361, 0.400. The solid lines are 
the guide for eye. The peak is bigger and bigger with larger and 
larger truncation dimension. 

 

 
Figure 4. The entanglement entropy of the Hamiltonian (1) with 
truncation dimension χ = 8, 12, 16, 20, the transition points are δD = 
0.695, 0601, 0.592, 0.561. The solid lines are the guide for eye. The 
peak is also bigger and bigger with larger and larger truncation di-
mension. 
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energy and the entanglement entropy are shown in this paper. We simply ana-
lyzed the results, however, as we have been unable to determine the local order 
parameter. This is the next direction of research. Besides, we will use alternative 
techniques beyond the MPS paradigm to yield the scaling behavior of physical 
observable, which may be more suitable. 
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