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Abstract 
In this paper, the exponential decreasing kernel is used in Laplace integral 
transform to transform a function from a certain domain to another domain. 
It is shown, in a rigorous way, that the Laplace transform of the delta function 
is exactly one half rather than one, as it is believed. In addition, when this 
kernel is used in integral transform of attractive and repulsive Coulomb po-
tential, it yields a finite definite value at the point of singularity. 
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1. Introduction 

Usually, kernels determine an implicit map that transforms a function or data 
from the input space to a feature space, and therefore determine its distribution 
in the latter space. This is usually accomplished through integral transforms. 
Some of the well-known kernels include the polynomial, exponential and Gaus-
sian kernels. In particular, the exponential kernel through Laplace transform has 
been widely used over the years [1]-[6]. The Laplace transform is defined to 
transform a function from a space, say [ )0,x∈ ∞  to a space, say ( )0,s∈ ∞ . 
Finding the Laplace transform of a function and its properties is normally dis-
cussed in standard mathematical physics books [7] [8]. An interesting function 
(more precisely a limit of some distribution) is the Dirac delta function, which 
has been in use in different settings [9]-[15]. The value of the Laplace transform 
of Delta-function can be found in mathematical physics books [8], where it is 
claimed that this value is one. We believe that the approach used to obtain this 
result is oversimplified and not rigorous. Therefore, one main object of this pa-
per is to present a rigorous proof, through the use of a decreasing exponential 
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kernel, and show that the correct value of Laplace transform of the delta func-
tion is exactly one half. The second part of this paper is to apply the decreasing 
exponential kernel to a discontinuous function. In particular, we consider a 
function with repulsive Coulomb-like form on the positive real axis, and with 
attractive Coulomb-like form on the negative real axis. This function is singular 
at the origin, and its right-hand and left-hand limits towards the origin are +∞  
and −∞  respectively. It is shown, with this decreasing exponential kernel, that 
the value of this function is exactly zero which is the average between its limiting 
values at the origin. The last section of this paper is devoted for conclusion and 
discussion. 

2. The Laplace Transform of Delta-Function 

Consider the decreasing exponential kernel e s x−  and the delta function ( )xδ . 
Our aim is to derive the Laplace transform of ( )xδ  by applying this kernel to 
the integral; 

( )e ds x x xδ
∞ −

−∞∫ , 0s >                        (1) 

Due to the well-known property of the delta-function, namely 

( ) ( ) ( )df x x a x f aδ
∞

−∞
− =∫ ,                   (2) 

Equation (1) becomes, 

( ) 0e d e 1s x x xδ
∞ −

−∞
= =∫ .                     (3) 

Splitting the integral into two parts, we get 

( ) ( ) ( )0

0
e d e d e ds x s x s xx x x x x xδ δ δ

∞ ∞− − −

−∞ −∞
= +∫ ∫ ∫ .            (4) 

In the first integral on the left-hand side, x x= − , and by letting x x→ − , 
we get 

( ) ( )( ) ( )0 0

0
e e d e ds x sx sxx x x x xδ δ δ

∞− − −

−∞ ∞
= − − =∫ ∫ ∫ .             (5) 

Note that, in the last step, we used the fact that ( ) ( )x xδ δ− = , since it is 
even. So upon the substitution of Equation (5) into Equation (4), one gets 

( ) ( )
0

e d 2 e ds x sxx x x xδ δ
∞ ∞− −

−∞
=∫ ∫ .                   (6) 

The Laplace transform of a function ( )f x  is defined as 

( ){ } ( ) ( )
0

e dsxf x f s f x x
∞ −= = ∫ .                  (7) 

Therefore, Equation (6) yields 

( ) ( ){ }e d 2s x x x xδ δ
∞ −

−∞
=∫  .                  (8) 

Hence, the use of Equation (3) gives the Laplace transform of ( )xδ , namely 

( ){ } 1
2

xδ = .                         (9) 
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The problem with the derivation of the unity value of the Laplace transform of 
the delta function, which is found in the literature [8], is overlooked at the lower 
limit ( 0x = ) in the definition of the Laplace transform. The point 0x =  sepa-
rates the positive and the negative parts of the x-axis. So, when applying Equa-
tion (2), one must ensure that the point x a=  must be totally included in the 
range of integration. This is not satisfied for the present case, and therefore one 
has to examine the whole domain of the delta function. This is the main essence 
of our derivation. 

3. Application of the Exponential Kernel to Coulomb-Like 
Function 

Discontinuous functions arise in some physical situations and usually one has to 
determine the value of this function at its point of discontinuity. Examples of 
these problems are the electric field at charged conducting sphere [16], the 
energy loss in the two capacitor problem [17] and Fermi-Dirac distribution [18]. 
Here, we consider a Coulomb-like potential (attractive and repulsive on negative 
and positive real axis respectively). This kind of function is discontinuous at the 
origin. We will show that this function converges to its average value at its sin-
gular point ( 0r = ). 

In this section, we apply the decreasing exponential kernel to the Cou-
lomb-like function which is given by 

( )
1 0

1 0

r
rf r

r
r

 >= 
− <


.                  (10) 

Consider the integral, 

( ) 0

0

1 1e d e d e ds r sr srf r r r r
r r

∞ ∞− −

−∞ −∞

   = − +   
   ∫ ∫ ∫ .          (11) 

Letting r r→ −  in the first integral of the left-hand side of the above equa-
tion, we get 

( ) 0

0

0

1 1e d e d e d

1 12 e d 2

s r sr sr

sr

f r r r r
r r

r
r r

∞ ∞− − −

−∞ ∞

∞ −

= − +

 = =  
 

∫ ∫ ∫

∫ 
.            (12) 

Note that the function ( )f r  is odd and the kernel is even so that the integral 
on the left-hand side of Equation (12) is zero. Two conclusions from the above 
equation are drawn: The first one is that the Laplace transform ( )1 0r = . For 
the second conclusion, we first observe that the limit of the integral on the 
left-hand side of Equation (12) as s →∞ , the kernel e 0s r− →  except at the 
point 0r = , at which it is just a constant. In this case, to ensure the vanishing of 
the integral on the left-hand side of Equation (12), the function ( )f r  must va-
nish at the origin, i.e. ( )0 0f = . It is noticed that ( )lim

r r
f r+→

= ∞  and 
( )lim

r r
f r−→

= −∞ , so that the average between these two limiting values is zero. 
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Therefore, our second conclusion is that the value of the function at its point of 
discontinuity converges to its average value between its two limiting values at 
that point. 

4. Conclusion and Discussion 

In this paper, a decreasing exponential kernel was used to derive the correct val-
ue of the Laplace transform of the delta function which is found to be one half. 
We also applied this type of kernel to a function which has a Coulomb-like form. 
Two conclusions of this application to such function were drawn: The first is  

that the Laplace transform of 1
r

 
 
 

 is zero and the second is that the value of  

this function at its point of discontinuity is the average value between its two li-
miting values about that point. 
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