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Abstract 
As a highly efficient absorbing boundary condition, Perfectly Matched Layer 
(PML) has been widely used in Finite Difference Time Domain (FDTD) si-
mulation of Ground Penetrating Radar (GPR) based on the first order elec-
tromagnetic wave equation. However, the PML boundary condition is diffi-
cult to apply in GPR Finite Element Time Domain (FETD) simulation based 
on the second order electromagnetic wave equation. This paper developed a 
non-split perfectly matched layer (NPML) boundary condition for GPR 
FETD simulation based on the second order electromagnetic wave equation. 
Taking two-dimensional TM wave equation as an example, the second order 
frequency domain equation of GPR was derived according to the definition of 
complex extending coordinate transformation. Then it transformed into time 
domain by means of auxiliary differential equation method, and its FETD 
equation is derived based on Galerkin method. On this basis, a GPR FETD 
forward program based on NPML boundary condition is developed. The me-
rits of NPML boundary condition are certified by compared with wave field 
snapshots, signal and reflection errors of homogeneous medium model with 
split and non-split PML boundary conditions. The comparison demonstrated 
that the NPML algorithm can reduce memory occupation and improve cal-
culation efficiency. Furthermore, numerical simulation of a complex model 
verifies the good absorption effects of the NPML boundary condition in 
complex structures.  
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1. Introduction 

Numerical modeling of ground penetrating radar (GPR) is an important means 
to study high-frequency electromagnetic wave detection, which plays a critical 
role in theoretical research of electromagnetic wave propagation in underground 
structures and guiding for processing and interpretation of actual data [1]. In the 
field of GPR forward modeling, finite-difference time-domain (FDTD) method 
is very popular owing to its advantages, including direct calculation in 
time-domain, easy programming, saving memory space and calculation time [2] 
[3] [4] [5]. However, it is difficult for FDTD to solve the problems such as un-
dulating surface, free boundary and serious numerical dispersion. Compared 
with FDTD, pseudo spectral time-domain (PSTD) method is a global calculation 
method characterized by its high calculation accuracy and weak numerical dis-
persion [6] [7] [8]. However, PSTD would result in numerical instabilities when 
dealing with the boundary problems of strongly inhomogeneous medium, and it 
is also difficult to solve the problems of undulating surface and free boundary 
condition [9]. In recent years, finite element time-domain (FETD) method has 
been introduced into the research of GPR numerical modeling as it can well 
represent the geometric models of complex medium and structures and meet 
free boundary condition naturally. Shen et al. [10] first derived the finite element 
equation of GPR wave in low-loss medium and carried out the forward model-
ing of step model. Di and Wang [11] derived the GPR finite element wave equa-
tion with an attenuation term and achieved the FDTD forward modeling of GPR 
for complex medium. Di and Wang [12] carried out the forward modeling and 
migration imaging of GPR in complex medium using FETD method. Xi et al. 
[13] constructed the FETD with 20-node isoparametric elements to simulate 
Pulse-type GPR; Lu et al. [14] applied FETD to the forward modeling of GPR in 
Debye dispersive medium. Dai et al. [15] applied the FETD based on biquadratic 
interpolation and triangulation to GPR forward modeling, achieving higher si-
mulation accuracy than FETD based on linear interpolation and rectangular 
partition. Feng et al. [5] proposed a hybrid boundary condition suitable for 
FETD by analyzing the respective advantages of transmitting and Sarma boun-
dary conditions, improving the accuracy of GPR forward modeling. Varela et al. 
[16] used the FETD algorithm to simulate and analyze the electromagnetic re-
sponse to the detection of GPR on concrete bridge. Feng et al. [17] applied the 
wavelet interpolation basis function to the FETD algorithm and carried out the 
GPR FETD forward modeling, demonstrating the advantages of the algorithm 
with numerical examples. Zarei et al. [18] applied the orthogonal interpolation 
basis function to the FETD algorithm, showing that FETD is easier to eliminate 
the influence of numerical dispersion than FDTD with numerical examples. 
Feng et al. [19] [20] derived the FETD forward algorithm and FETD/FDTD hy-
brid algorithm with irregular quadrilateral meshes, achieving high-precision 
forward modeling of GPR in complex geologic bodies. 

When using a computer to carry out GPR numerical simulation, due to li-
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mited memory space, mesh space is always truncated somewhere to form a finite 
region. Then strong non-physical electromagnetic reflection interference waves 
will be generated at the truncations of the mesh space. Therefore, the truncation 
boundaries must be properly treated to eliminate or weaken such spurious 
boundary reflections. To this end, predecessors have done a lot of research work 
and developed many kind of boundary conditions, such as Sarma boundary 
condition [5] [21], Mur boundary condition [22] [23] [24], paraxial approxima-
tion boundary condition [25] [26], super absorbing boundary condition [27] 
[28], perfectly matched layer (PML) boundary condition [29], etc. Among them, 
the PML boundary condition has the optimal absorption effect and been widely 
used in GPR forward modeling with FDTD method [30]-[36]. However, the 
theory of PML proposed by Berenger does not follow from Maxwell's equations 
and its physical mechanism is fuzzy. In addition, the calculation of electromag-
netic field splitting based on PML boundary condition increases the computa-
tional memory and difficulties of numerical implementation [34] [37]. Moreo-
ver, the PML boundary condition only has a good effect on absorbing traveling 
wave but has a poor effect on absorbing low-frequency wave, grazing angle wave 
and evanescent wave with small incident angles. In order to improve the absorp-
tion effects of PML boundary condition and reduce the difficulties in numerical 
implementation, scholars have done a lot of researches on PML absorbing 
boundary condition and developed uniaxial anisotropic PML (UPML) [14] [38] 
[39] [40] [41] [42], convolution PML (CPML) [2] [43] [44] [45] and complex 
frequency shift PML (CFS-PML) (Complex Frequency Shifted PML, CFS-PML) 
[34] [43] [46] [47] [48].  

It should be noted that the aforementioned PMLs and improved boundary 
conditions mostly are proposed for electromagnetic field modeling based on 
FDTD method. FDTD is a numerical calculation method based on first-order 
electromagnetic wave equations while FETD is a method based on second-order 
equations. Therefore, the PML boundary conditions widely used in FDTD can-
not be directly applied to FETD. To solve this problem, Komatitsch and Tromp 
[49] firstly derived the split PML absorbing boundary condition for the 
second-order elastic wave equations by referring the idea of constructing PML 
boundary condition for the first-order elastic wave equations in the elastic wave 
forward modeling based on FETD. Numerical examples showed that good ab-
sorption effects can be achieved at truncated artificial boundaries by incorpo-
rating the PML boundary condition into the FETD equations by using a varia-
tional formulation. Liu et al. [50] [51] and Liu et al. [52] applied the PML boun-
dary condition to the elastic wave FETD forward modeling based on triangular 
mesh. However, a third-order time derivative term is included in the PML 
boundary condition equations and the elastic wave field needs to be split, greatly 
increasing the computational time and memory space. Basu et al. [53] [54] pro-
posed a non-split PML boundary condition suitable for second-order elastic 
wave FETD forward modeling with high calculation accuracy and great im-
provement in calculation efficiency. Currently, the PML boundary condition 
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based on second-order wave equations has been widely used in FETD numerical 
modeling of acoustic wave [55] [56] [57], elastic wave [50] [52] [58] [59] and 
surface wave [60], and has been continuously developed [61] [62]. 

Based on the researches of Komatitsch, Tromp, Basu, Matzen, Liu, etc., and 
considering the FETD’s advantages of easiness to deal with irregular meshes and 
free surface boundary conditions as well as flexible representation of irregular 
boundaries and complex geometries, we propose an efficient non-split PML 
boundary condition by using complex stretching coordinate transformation and 
auxiliary variables. Furthermore, we give the computation format of FETD in 
time domain by using Galerkin approximation technique and develop the FETD 
forward modeling algorithm of second-order GPR wave equation based on the 
non-split PML boundary condition. The numerical examples show that, com-
pared with the split PML boundary condition, the non-split PML boundary con-
dition has made up the deficiency of splitting in electromagnetic wave field, en-
suring the calculation accuracy and improving the calculation efficiency of 
full-wave-fields numerical modeling. 

2. Second-Order Electromagnetic Wave Equations in  
Complex Stretching Coordinate System 

According to the electromagnetic wave theory, the propagation of GPR electro-
magnetic wave in underground medium satisfies the Maxwell’s equations [5]. 
Considering the strike direction of the two-dimensional geo-electric model is 
along the z-axis, the second-order time-domain electromagnetic wave equation 
can be expressed as follows: 

2 2 2

2 2 2 .z z z zE E E E
tt x y

µε µσ
∂ ∂ ∂ ∂

+ = +
∂∂ ∂ ∂

                 (1) 

where, zE  is the electric field strength (V/m) in the z direction; ,x yH H  re-
spectively are the magnetic field strength (A/m) in the x, y direction; t is the time 
(s), , ,µ σ ε  respectively are the permeability (H/m), electrical conductivity 
(S/m) and dielectric constant (F/m) of the medium. 

According to the PML boundary condition theory [63], by introducing the 
complex stretching coordinate system into the frequency domain, the PML 
boundary condition can be expressed as follows: 

( ) ( )
0

d , , .
p

p
ip p d s s p x p y
ω

= − = =∫                (2) 

where, p  is the complex coordinate, 1i = −  is the imaginary unit, ( )pd p  
is the boundary attenuation coefficient, which is a real function attenuating with 
the coordinate p, and ω  is the angular frequency. 

From Equation (2), we can respectively obtain the first and second order par-
tial derivatives relation for p and p  as follows: 

( )2 22 2

2 2, .p

p p p

i di i
p i d p i d i d pp p

ωω ω
ω ω ω

′ ∂ ∂ ∂ ∂ ∂
= = −  ∂ + ∂ + + ∂∂ ∂  

        (3) 
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Transforming Equation (1) to the frequency domain, we can obtain the fol-
lowing equation: 

( )
2 2

2
2 2 .z z

z
E E i E
x y

ω µε ωµσ
∂ ∂

+ = − +
∂ ∂

 

                  (4) 

where zE  is a Fourier transform of zE  with respect to time. Substituting Equ-
ation (3) into Equation (4), we can derive the second-order electromagnetic 
wave equation in the complex stretching coordinate system as follows:  

( )2z z
z

x x y y

E Ei i i i i E
i d x i d x i d y i d y

ω ω ω ω ω µε ωµσ
ω ω ω ω

  ∂ ∂∂ ∂
+ = − +    + ∂ + ∂ + ∂ + ∂   

 

  (5) 

Deriving Equation (5) we can obtain: 

( ) ( )
( )

22 222 2

2 3 2 3

2

z z z z

x yx y

z

yx ddE E E Ei i
i d x i d yx yi d i d

i E

ωωω ω
ω ωω ω

ω µε ωµσ

′ ′  ∂ ∂ ∂ ∂
+ + +    + ∂ + ∂∂ ∂+  + 

= − +

   



  (6) 

3. PML Boundary Condition 
3.1. Traditional Split PML Boundary Condition 

In the second-order electromagnetic wave Equation (6), the electromagnetic 
field is split into four terms under the traditional split PML boundary condition: 

,1 ,2 ,3 ,4 ,z z z z zE E E E E= + + +                           (7) 

The split results corresponding to Equation (6) can be expressed as: 

( )

( ) ( )
( )

( )

( )
( )

2 2
2
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2
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,2 3

2
2

2
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2
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y z
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Eii E
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d x Ei E
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Eii E
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d Ei E
yi d

ωω µε ωµσ
ω

ω
ω µε ωµσ

ω

ωω µε ωµσ
ω

ω
ω µε ωµσ

ω

   ∂ − + =  + ∂  


′ ∂ − + = ∂+


  ∂ − + =    + ∂ 
 ′ ∂ − + +
 ∂+

















               (8) 

Performing an inverse Fourier transform on both side of Equation (8) with 
respect to ω . Then the time domain wave equation satisfied in the PML region 
is as follows: 

( )( )

( )( )

( )( )

( )( )

2
2

,1 20

3
,20

2
2

,3 20

3
,40

t z
t x z

t z
t x z x

t z
t x z

t z
t x z y

Ed E
x

Ed E d
x

Ed E
y

Ed E d
y

µε µσ

µε µσ

µε µσ

µε µσ

 ∂
+ ∂ + = ∂

∂ ′+ ∂ + = ∂
 ∂ + ∂ + =
 ∂


∂ ′+ ∂ + = ∂

∫

∫

∫

∫

                (9) 
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Equation (9) is the second-order GPR wave equation based on the split PML 
boundary condition. Where, the second and fourth equations need to calculate 
the third derivative of the electric field zE  with respect to time and first 
integral, which will take more computation time. To avoid the calculation of the 
third derivative of zE  with respect to time, the intermediate variables ,x yP P   
are introduced. Letting ( ) ( ),2 ,4,t x z x t y z yd E P d E P∂ + = ∂ + =    , the second and 
fourth equations in Equation (9) can be rewritten as: 

( )( )

( )( )

2

0

2

0

t z
t x x x

t z
t y y y

Ed P d
x
Ed P d
y

µε µσ

µε µσ

∂ ′+ ∂ + = ∂
 ∂ ′+ ∂ + =
 ∂

∫

∫
               (10) 

3.2. Improved Split PML Boundary Condition 

To reduce the terms of split in electromagnetic field, the first two terms and the 
last two terms of Equation (6) respectively are combined into one term [50]. 
Meanwhile the intermediate variables ,x yP P   are introduced. Then the split re-
sult in Equation (6) can be expressed as： 

( )( )

( )( )

( )( )

( )( )

2
2

1, 2

22
2, 2

z
x z x x

z
y z y y

z
x

z
y

Ei i d E d P
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Ei i d E d P
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Ei d x P
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Ei d y P
y

µε µσ ω ω

µε µσ ω ω

ω

ω

 ∂ ′+ + = − ∂
 ∂ ′+ + = −

∂


∂ + = ∂


∂ + = ∂



 



 









          (11) 

According to the Fourier transform theory, the time domain signal ( )U t  
and its frequency signal ( )U ω  satisfied that ( ) ( )U t i Uω ω= ⋅  , applied it into 
Equation (11), we can obtain Equation (12) as follows:  

( )( )

( )( )

( )

( )

2
2

1, 20

22
2, 20

t z
t x z x x

t z
t y z y y

z
t x x

z
t y y

Ed E d P
x
Ed E d P
y

Ed P
x
Ed P
y

µε µσ

µε µσ

 ∂ ′+ ∂ + = − ∂
 ∂ ′+ ∂ + = − ∂


∂ ∂ + = ∂


∂ ∂ + = ∂

∫

∫
           (12) 

The comparison between Equation (9) and Equation (12) shows that the im-
proved split PML boundary condition has the advantages over the traditional 
split PML boundary condition: 1) avoiding the calculation of third derivative 
with respect to time by splitting the displacement into two terms in the absorb-
ing layer; 2) reducing calculation amount and improving calculation speed since 
the electromagnetic field is only split into two terms. 
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3.3. Non-Split PML Boundary Condition 

To avoid electromagnetic field splitting in Equation (5), the variables ,x yβ β  are 
introduced [59] [62] and defined as: 

1 , 1 .x x y yd i d iβ ω β ω= + = +                  (13) 

The following identities can be obtained by deriving Equation (13): 

( ) ( ) ( )
( ) ( )
( ) ( )

2 2

1

1

x y x y x y

y x y x x

x y x y y

i i i d d d d

d d i d

d d i d

ω β β ω ω

β β ω

β β ω

 = + + +

 = + − +


= + − +

              (14) 

Multiplying both sides of Equation (5) by x yβ β  and substituting Equation 
(14) into it, we can obtain:  

( ) ( )( ) ( )2

2 2

2 2

x y
x y x y z x y z

y x x yz z z z

x y

d d
i i d d d d E i d d E

i

d d d dE E E E
x i d x y i d yx y

ω ω µε ω µσ
ω

ω ω

 
+ + + + + + + 

 
 − − ∂ ∂ ∂ ∂∂ ∂

= + + +     ∂ + ∂ ∂ + ∂∂ ∂   

 

   

   (15) 

Introducing the intermediate variables , ,x yP P Q , defined as: 

, , .y x x y x yz z
x y z

x y

d d d d d dE EP P Q E
i d x i d y iω ω ω

− −∂ ∂
= = =

+ ∂ + ∂

 

           (16) 

Substituting Equation (16) into Equation (15) and deriving it, we can obtain: 

( ) ( ) ( )2

2 2

2 2

x y x y z x y z

yxz z

i i d d d d E i d d E Q

PPE E
x yx y

ω ω µε ω µσ µσ   + + + + + + +  
∂∂∂ ∂

= + + +
∂ ∂∂ ∂

 



 

   (17) 

Performing an inverse Fourier transform on Equation (16) and Equation (17) 
to time domain, we can obtain: 

( ) ( )

( )

( )

2

2

2 2

2 2 ,

,

,

.

z z
x y x y x y z

yxz z

x z
x x y x

y z
y y x y

x y z

E Ed d d d d d E
tt
PPE EQ

x yx y
P Ed P d d
t x

P Ed P d d
t y

Q d d E
t

µε µε µσ µε µσ

µσ

 ∂ ∂   + + + + + +    ∂∂
∂ ∂∂ ∂

+ = + + + ∂ ∂∂ ∂
∂ ∂ + = −
∂ ∂
∂ ∂

+ = −
∂ ∂

∂
=

∂

 (18) 

Equation (18) is the second-order GPR wave equation based on the non-split 
PML boundary condition. Comparison among Equations (9), (12) and (18) 
shows that the non-split PML boundary condition neither needs split the elec-
tromagnetic field, nor needs the calculation of third derivative with respect to 
time, which means less calculation amount and higher calculation speed. 
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4. Finite Element Time Domain GPR Equation Based on  
Non-Split PML Boundary Condition 

According to the principle of the Galerkin method [51], the weak form of Equa-
tion (18) is: 

( ) ( )

( )

2

2 d d d

1 1d d d

1 1d d

d d d

z z
x y x y x y z

z z z z
x y

yx

x z
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y

E Ed d d d d d E
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E E E EQ n n
x y x x y y
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P Ed P d d
t x

P

σ σϕ ϕ ϕ
ε ε

σ ϕ ϕϕ ϕ
ε µε µε

µε µε

ϕ

Ω Ω Ω

Ω Γ Ω

Ω Ω

Ω Ω Ω
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   ∂ ∂ ∂ ∂∂ ∂
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∂ ∂

∂ ∂
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∂ ∂
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∫ ∫ ∫

∫ ∫ ∫

∫ ∫
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( )d d d

d d

z
y y y x y

x y z

Ed P d d
t y

Q d d E
t

ϕ

ϕ

Ω Ω Ω

Ω Ω














 ∂

Ω+ Ω = − Ω ∂ ∂
 ∂

Ω = Ω ∂

∫ ∫ ∫

∫ ∫

(19) 

where, ,Γ Ω  respectively are the calculation region and its boundary. ( )T
,x yn n=n  

is the outer normal vector of the boundary. ( )T
,x yϕ ϕ=ϕ  is the virtual dis-

placement vector. Dirichlet boundary condition with a displacement of 0 is used 
for the PML boundary and free boundary condition is used for the upper boun-
dary. The finite element equation corresponding to Equation (19) can be derived 
with the Galerkin finite element method: 

1 2 3z z z z x x y y

x x x xx z

y y y yy z

xy z

 + + + = + +


+ =


+ =
 =

ME M E M E M Q KE K P K P

MP C P C E

MP C P C E

MQ C E

 







         (20) 

Equation (20) is the FETD GPR wave equation based on the non-split PML 
boundary condition. Where, the coefficient matrixes are expressed as follows: 
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where, N  is the shape function of the calculation region, M  is the mass ma-
trix, C  is the damping matrix, S  is the load vector; U  and U  indicates 
the first and second derivative of the electric field zE  with respect to time, re-
spectively. 

The general form of the equations in Equation (21) is: 

+ + =MU CU KU S                       (22) 

To solve Equation (22), we use the Newmark difference algorithm which is a 
time integration algorithm with energy conservation. Using the algorithm, we 
can update the point ( )1 1,n n+ +U U  based on the point ( ),n nU U . And the itera-
tive formula of the Newmark time-stepping algorithm for Equation (22) is as 
follows: 
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          (23) 

The above matrix formed by finite elements is a large sparse matrix which re-
quires a large memory space for storing all elements. In this paper, the stiffness 
matrix adopts compressed storage row (CSR) format and only needs to store its 
non-zero elements, which can greatly reduce the storage space needed [51]. In 
addition, a lumped mass matrix technique is adopted to avoid the inverse opera-
tion of the matrix M  and improve the calculation efficiency [52]. 

5. Calculation Examples 
5.1. Analysis of Absorption Effect and Calculation Efficiency of  

PML 

To verify the advantages of the non-split PML boundary condition proposed in 
this paper, a homogeneous medium model of 2.2 m × 2.2 m is established with a 
relative dielectric constant of 5.0 and electrical resistivity of 0.001 Ω·m. For sim-
plicity, the model space is discretized using structured 4-node quadrilateral 
meshes with a total of 220 × 220 meshes with a size of 0.01 m × 0.01 m. The PML 
absorbing boundary layer around the model is 0.2 m thick, occupying 20 meshes 
as a unit as shown in Figure 1. The forward modeling calculation takes 30 ns. To 
ensure stable update of display time, the time step is set to be 0.01 ns. A ze-
ro-phase Ricker wavelet with a center frequency of 500 MHz is used as the exci-
tation source and located in the upper left corner of the model (0.3 m, 0.5 m), 
and the receiver is located at the center of the model (2.3 m, 2.2 m).  

The model is performed with FETD forward modeling under PML-free, split 
PML and non-split PML boundary conditions respectively, and the snapshots of 
wave fields at different times are obtained as shown in Figures 2-4. Figure 2(a) 
and Figure 2(b) respectively are the snapshots of GPR wavefields at time of 4 ns 
and 8.5 ns under PML-free boundary condition. Figure 2(a) shows strong ref-
lections from the upper and left boundaries when propagating at time of 4 ns. At  
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Figure 1. Homogenous model with PML boundary condition. 

 

 
Figure 2. Snapshot of homogenous model under PML-free boundary condition at 4 ns 
(a) and 8.5 ns (b). 
 
8.5 ns, the reflections from the upper and left boundaries continue to spread to 
the middle of the model. Meanwhile, the wave fronts have propagated to the 
right and bottom boundaries and been reflected. The above non-physical re-
flected waves seriously interfere with the propagation of GPR waves in the model 
space.  

Figure 3(a) and Figure 3(b), Figure 4(a) and Figure 4(b) are the snapshots 
of GPR wavefields under the split and non-split PML boundary conditions, re-
spectively. The figures show that there is almost no difference between the split 
and non-split PML boundary conditions. They are both ideal to absorb waves of 
different incident angles without obvious spurious reflections near the bounda-
ries. When the GPR waves propagate into the PML layers, there are no visible 
reflections as shown in the wave field snapshots at 8.5 ns.  

Figure 5 shows the variation curves of electric field energy with time in the 
calculation region under three kinds of boundary conditions. And from 0 ns to 6 
ns, the variations of electric field energy with time are identical because the elec-
tromagnetic waves only propagate in the calculation region. After 6 ns, when no 
boundary condition is imposed, electric field energy always fluctuates around 
110 J and propagates with time, which will seriously affect the energy distribu-
tion in the calculation region. When the PML boundary condition is imposed,  
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Figure 3. Snapshot of homogenous model under split PML boundary condition at 4 ns 
(a) and 8.5 ns (b). 
 

 
Figure 4. Snapshot of homogenous model under non-split PML boundary condition at 4 
ns (a) and 8.5 ns (b). 
 

 
Figure 5. Curves of electric-field energy evolution with the time. 

 
electric field energy gradually propagates into the PML layers after 6 ns and at-
tenuates rapidly to zero after 18 ns. It is clear that both of the PML boundary 
conditions have good absorption effects.  

Figure 6 shows the comparison among the GPR waveforms at the receiver 
respectively calculated under the split and non-split PML boundary conditions 
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and their reference solution. The reference solution used in this paper is calcu-
lated using the same numerical method in a large enough region (to ensure that 
spurious reflections do not reach the receiver during the modeling time) where 
no boundary conditions are imposed, and the relative positions of the fluctua-
tion source and the receiver remain unchanged. It can be seen from the figure 
that calculation results under the two PML boundary conditions are consistent 
with the reference solution, which means that both of them are relatively accu-
rate for simulating electromagnetic waves. Meanwhile, it also proves that the 
PML boundary condition built in this paper has good absorption effects without 
generating spurious reflections from the artificial truncated boundaries.  

In order to better analyze the absorption effects of the two PML boundary 
conditions, we use the formula ( )max20 logdb S ref refError E E E= × −  to cal-
culate the reflection errors at the receiver under the two different boundary con-
ditions, as shown in Figure 7. Compared with the split PML boundary condi-
tion, the reflection errors under the non-split PML boundary condition are sig-
nificantly reduced by 20 dB on average.  

For better analysis of the calculation efficiency of the split and non-split PML 
boundary conditions, we program the FETD GPR forward modeling under the 
two boundary conditions using the Matlab platform and test them on the same 
computer (Lenovo Think Centre M8300t). The statistics of CPU time consum-
ing and memory occupation under the two boundary conditions is shown as 
Table 1. Compared with the split PML boundary condition, the calculation 
speed under the non-split PML boundary condition are doubled and the memo-
ry usage is also reduced by about 1/4 times. Thus in conclusion, the non-split 
PML boundary condition can ensure calculation accuracy, improve calculation 
efficiency and reduce memory space, which means a significant advantage in 
rapid and high-precision FETD modeling of complex GPR models. 
 

 
Figure 6. Compared reference solution and single signal with different PML boundary 
condition at receiving point. 
 
Table 1. Statistics of CPU time consuming and memory occupation under two different 
PML boundary conditions. 

Homogeneous medium Split PML boundary condition Non-split PML boundary condition 

CPU time consuming (ns) 45.6 23.8 

Memory occupation (MB) 32.5 24.8 
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Figure 7. Comparison reflection error of different PML boundary condition. 

5.2. Forward Modeling Examples 

To verify the absorption effects of the non-split PML boundary condition in the 
FETD forward modeling of complex GPR model, a complex geo-electric model 
is established as shown in Figure 8. The model is divided into two layers by an 
undulating interface, including an upper layer medium of concrete with relative 
dielectric constant of 5.0 and electrical conductivity of 0.001 S∙m−1 and a lower 
layer medium of soil with relative dielectric constant of 10.0 and electrical con-
ductivity of 0.002 S∙m−1. In the lower layer medium, three circular anomalies 
with a radius of 0.1m are buried at different depths. From left to right, their rela-
tive dielectric constants and center coordinates are 20, 15, 81 and (1.4 m, 1.0 m), 
(2.4 m, 1.1 m), (3.4 m, 1.2 m), respectively. The model is discretized by quadri-
lateral meshes with a total of 480 × 180 meshes and a distance of 0.01 m between 
each other. In addition, there are 20 PML boundary layers on the outer boun-
dary of the calculation region. At last, a zero-phase Ricker wavelet with a center 
frequency of 500 MHz is given as an excitation source on the surface, and FETD 
method based on the non-split PML boundary condition is used for forward 
modeling with a time step of 0.02 ns and a window length of 40 ns.  

Figure 9(a) shows the profile of GPR forward modeling based on the FETD 
algorithm under the non-split PML boundary condition. In the profile, there are 
no obvious reflections from the artificial truncation boundaries, indicating that 
the non-split PML boundary condition has a good effect on absorbing strong 
reflections from the artificial truncation boundaries. In the vicinity of 10 ns, 
from left to right, there are three obvious diffraction peaks, which correspond to 
the two lowest points and one highest point of the undulating surface respectively. 
The undulation shape of the undulating surface is clearly discernible in the pro-
file, and is consistent with the real shape. From 20 ns to 30 ns, the three circular 
anomalies in the lower layer medium present obvious hyperbolic diffraction 
waves which greatly extend on both sides. In addition, the multiple diffractions 
have occurred due to a large difference of the dielectric constant between  
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Figure 8. Sketch map of complex GPR model. 

 

 
Figure 9. Simulated GPR profile of complex model. Common offset profile (a) and 
common source profile (b). 
 
the water pipe medium and the background medium. Based on wide angle me-
thod, the profile of GPR forward modeling is shown as Figure 9(b). Compared 
with Figure 9(a), the shape of the undulating surface is not as obvious as that 
obtained by profiling method. Moreover, due to the influence of the undulating 
interface, the occurrence time, shape and vertex position of the hyperbolic ref-
lections from the three circular anomalies in the lower layer medium are differ-
ent from those obtained by profiling method.  

To better understand the absorption effects of non-split PML boundary con-
dition on the strong reflections from model boundaries, the excitation source is 
positioned in the center of the surface and the wave field snapshots of different 
times are obtained through the FETD forward modeling, as shown in Figure 10. 
In the wave field snapshots, the thicknesses of the PMLs on the left, right and 
lower boundaries are preserved. In Figure 10(a), the electromagnetic waves 
spread out in semi-concentric circles and just meet the undulating interface. In 
Figure 10(b), the electromagnetic waves are reflected from the undulating in-
terface and the reflections propagate upward. In Figure 10(c), the wave fronts 
continue to propagate forward meeting the undulating interface in a gradually 
increasing range; meanwhile, the reflections from the undulating interface 
propagate to the upper interface and are fully absorbed after entering the PML 
layers. In Figure 10(d), due to the undulation of the interface, the wave fronts 
are irregular and reflections are generated from the circular anomalies at the 
center when the wave fronts meet them. In Figure 10(e) and Figure 10(f), the  
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Figure 10. Field snapshots of shot point are located at 0 m with different time. 
 
wave fronts propagate to the three circular anomalies, from which the reflected 
waves spread and propagate; meanwhile, the reflected waves from the undulat-
ing interface all have entered the PML layers and have been completely ab-
sorbed. In Figure 10(g), the wave fronts meet the truncated boundaries of the 
model without spurious reflections; meanwhile, the diffraction waves caused by 
the three circular anomalies are clearly visible. In Figure 10(h), the wave fronts 
enter the PML layers without spurious reflections, which indicates that the 
non-split PML boundary condition used in this paper has good absorption ef-
fects and can be applied to the FETD forward modeling of complex GPR models. 

6. Conclusion 

In this paper, based on the second order electromagnetic wave equation, an effi-
cient non-split PML boundary condition is proposed by using the complex 
stretching coordinates and introducing the auxiliary functions. Furthermore, the 
FETD GPR wave equation under the non-split PML boundary condition is de-
rived based on the Galerkin method. The forward modeling examples show that 
spurious reflections from the boundaries can be well absorbed under the 
non-split PML boundary condition. Compared with the split PML boundary 
condition, the non-split PML boundary condition can reduce memory occupa-
tion and improve calculation efficiency without loss of forward modeling accu-
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racy. Therefore, based on the convenient and efficient non-split PML boundary 
condition and combined with the FETD method, which can represent complex 
geometric models easily by using irregular quadrilateral and triangular meshes, 
we can perform rapid and highly accurate FETD forward modeling of complex 
GPR models.  
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