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Abstract 

Cross-efficiency evaluation is recognized as an effective way of efficiency 
assessment for a set of decision making units (DMUs) in the framework of 
data envelopment analysis (DEA). It has been generally suggested that sec-
ondary goals be introduced for cross-efficiency evaluation owing to the 
non-uniqueness of optimal solutions in self-evaluation. This paper develops a 
variety of secondary goals in the spirit of promoting balance in the output ef-
ficiencies of the DMU under evaluation. The proposed models attempt to 
make each output contribute as equally as possible to the self-evaluated effi-
ciency. In this way, the weight flexibility can for one thing be reduced by the 
introduced secondary goals with selections from alternate optimal solutions, 
in addition to counting on the dilution of flexibility in the subsequent 
peer-evaluation. The proposed approach might be applicable to evaluation 
problems in which multiple outputs are considered important and balance is 
encouraged to put all dimensions into sufficient use. The effectiveness of the 
proposed approach and its comparisons with some relevant secondary goals 
are illustrated empirically using numerical examples. 
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1. Introduction 

Data envelopment analysis (DEA) was first developed by Charnes et al. [1] for 
measuring the relative efficiencies of a set of decision making units (DMUs) with 
multiple inputs and outputs. By the self-evaluation under the CCR model short-
ened for Charnes, Cooper and Rhodes [1], each DMU can choose the input and 
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output weights most favorable to itself for evaluating its own efficiency. More 
than one DMU is generally evaluated as efficient. The flexibility in determining 
the weights of inputs and outputs may sometimes lead to unrealistic weight 
schemes [2]. For example, a DMU specialized in one aspect may heavily weight 
it with the other aspects ignored. This flexibility also makes the favorable 
weights differ from one DMU to another, implying that the efficiencies of all the 
DMUs obtained from self-evaluation are less comparable. 

To address these problems, the cross-efficiency evaluation method was first 
introduced by Sexton et al. [3] and later investigated by Doyle and Green [2] [4]. 
By cross-efficiency evaluation, a DMU is peer-evaluated with the input and out-
put weights of all the DMUs in the sample. The cross-efficiency evaluation im-
proves the discrimination power of DEA [4] and reduces weight flexibility. 
However, as indicated in [2], the non-uniqueness of weight schemes as the op-
timal solutions to CCR model may reduce the use of cross-efficiency evaluation. 
One remedy for that, suggested by Sexton et al. [3] and Doyle and Green [2], is 
to introduce a secondary goal to choose a weight scheme from alternate optimal 
solutions. The previous secondary goals include those proposed by Anderson et 
al. [5], Liang et al. [6], Wang and Chin [7], and Wu et al. [8]. 

The conventional secondary goals for cross-efficiency evaluation are linked to 
the aggressive and benevolent ideas proposed by Sexton et al. [3] and Doyle and 
Green [2]. For example, Oral et al. [9] utilized the benevolent cross-efficiency 
technique to evaluate and select industrial R&D projects in a collective decision 
setting. Talluri and Sarkis [10] applied the aggressive cross-efficiency evaluation 
to an efficiency and productivity study on a cellular manufacturing system. An-
derson et al. [5] employed the aggressive formulation to prove the fixed weight-
ing nature of a cross-evaluation model in the case of one input and multiple 
outputs. Liang et al. [6] extended the cross-efficiency evaluation model by in-
troducing a number of different secondary objective functions. Liang et al. [11] 
generalized the original cross-efficiency to game cross-efficiency, where each 
DMU is treated as a player that seeks to maximize its own efficiency while keep-
ing the cross-efficiencies of the other DMUs not deteriorate. Wu et al. [12] in-
troduced a modified DEA game cross-efficiency model in variable returns to 
scale, which was applied to Olympic rankings, considering each country as a 
competitor in a non-cooperative game. Flokou et al. [13] employed aggressive 
and benevolent cross-efficiency formulations to evaluate Greek NHS general 
hospitals. Liu et al. [14] applied aggressive cross-efficiency evaluation to an 
eco-efficiency analysis of coal-fired power plants considering undesirable output 
and ranking priority. Liu et al. [15] introduced an aggressive secondary model by 
which the cross-efficiencies of the other DMUs are minimized while the aggres-
sive game cross-efficiency of the DMU under evaluation is guaranteed. 

Besides the aggressive and benevolent cases, practical situations may turn out 
the case that in peer-evaluation a DMU acts neither aggressive nor benevolent to 
others but concerns its own when choosing a set of input and output weights. 
For instance, Wang and Chin [7] proposed a DEA model which determines a set 
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of weights for each DMU to put each of the outputs into as much use as possible. 
In practice, promoting balance in output efficiencies is appropriate for various 
circumstances where all the considered outputs should be valued [16], as in the 
case such as financial portfolio selection, funding agencies, and new product de-
velopment [17].  

In light of promoting balance, this paper introduces a variety of secondary 
goals for DEA cross-efficiency evaluation to enable decision makers (DMs) to 
have more methodological choices. Each of the proposed models represents an 
evaluation criterion in pursuit of balance in the output efficiencies of a DMU to 
make all of its outputs contribute as equally as possible to its self-evaluated effi-
ciency. The advantage of the proposed secondary goals over varied others lies in 
that the weight flexibility can at the beginning be reduced by promoting balance, 
in addition to relying only on the dilution of flexibility using the peer-evaluation 
process as done by the conventional cross-efficiency evaluation.  

We begin in the next section with a brief description of the cross-efficiency 
evaluation process. Various secondary goals in the spirit of promoting balance in 
output efficiencies are developed in Section 3. In Section 4, numerical examples 
are provided to illustrate the effectiveness of the proposed approach and its 
comparisons to some previous methods, followed by concluding remarks. 

2. The Cross-Efficiency Evaluation Process 

Suppose there are n peer DMUs { }DMU : 1,2, ,j j n=   to be evaluated, with m 
positive inputs, ( )1,2, ,ijx i m=  , and s positive outputs, ( )1,2, ,rjy r s=  . 
The self-evaluated efficiency of a particular DMUo, { }1,2, ,o n∈  , can be 
measured by the following CCR model [1]: 
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where iov  and rou  are, respectively, the weights of the ith input and the rth 
output of DMUo. 

Note that model (1) is a non-linear programming. By the transformation in 
Charnes and Cooper [18], it can be equivalently transformed into the following 
linear programming (LP) for computation. 
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Let { }, ,io ro oov u θ∗ ∗ ∗  be the optimal solution to (1) when DMUo is under evalua-
tion, then the self-evaluated efficiency of DMUo is formulated as  

1

1
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oo oo m

io ioi

u y

v x
θ θ

∗
∗ =

∗
=

= = ∑
∑

                      (3) 

which is the maximum efficiency that DMUo can achieve relative to the other 
DMUs in the sample. 

Similarly, the cross-efficiency of DMUj ( )1, 2, , ,j n j o= ≠  peer-evaluated 
by DMUo can be formulated as  

1

1
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                       (4) 

In this way, DMUj ( )1,2, ,j n=   obtains n efficiencies, one from 
self-evaluation and the other n-1 from peer-evaluation. Averaging these n effi-
ciencies of DMUj, we have 

1

1 ,n
j ojon

θ θ
=

= ∑                        (5) 

which is referred to as the cross-efficiency score of DMUj ( )1,2, ,j n=  . 

3. Secondary Goals for Promoting Balance in Output  
Efficiencies 

As mentioned above, the weight flexibility in self-evaluation often results in un-
realistic weight schemes. That is, the inputs and outputs favorable to the eva-
luated DMU will be heavily weighted whereas those unfavorable to it will be less 
weighted or even neglected. In practice, promoting balance in weights is appro-
priate for various circumstances where all the measures taken into consideration 
should be valued. By this promotion, the weight flexibility will be reduced. The 
resultant balanced weights will be more realistic for these circumstances. In the 
spirit of promoting balance, we propose various secondary goals below for 
cross-efficiency evaluation. 

Note that, in practice, the units of measurement often vary from one measure 
to another. Model formulations based on absolute weights may not be appropri-
ate, because absolute weights are relevant to the units of measurement and 
comparisons between them are meaningless. For instance, when evaluating in-
dustrial robots, it is difficult to compare the absolute weights on measures like 
load capacity and repeatability which have different units of measurement. In 
contrast, a virtual weight, which, as defined in Sarrico and Dyson [19], 
represents the product of the value in terms of a measure by the absolute weight 
assigned to this measure, is units invariant. Using virtual weights instead of ab-
solute weights is therefore more appropriate for comparisons. Moreover, for 
managerial implications, it is difficult to ascertain meaningful restrictions on 
absolute weights. With restrictions on virtual weights, however, DMs can intui-
tively identify the contribution of a DMU’s performance under each dimension 
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to its efficiency [19] [20]. Based on these discussions, our proposed secondary 
goals will be modeled based on virtual weights. 

3.1. Minimizing the Differences between Output Efficiencies 

Dimitrov and Sutton [16] defined a so-called measure of “symmetry” as  

, , ,klo ko ko lo loZ u y u y k l= − ∀                      (6) 

where kloZ  is the difference between output k and output l for DMUo. Based on 
this measure, the difference between the output efficiencies of output k and 
output l for DMUo can be formulated as  

1 1

, , ,ko ko lo lo
klo m m

io io io ioi i

u y u y
D k l

v x v x
= =

= − ∀
∑ ∑

                (7) 

where ( )
1

 ko ko
m

io ioi

u y
k

v x
=

∀
∑

 is defined as the output efficiency of the kth output of 

DMUo, because the sum of all the s output efficiencies, i.e., 1
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, is de-

fined as the self-evaluated efficiency of DMUo in CCR model. 
In pursuit of balance in output efficiencies, a reasonable way is to force 
( ),kloD k l∀  to be no more than a level γ . In virtue of this, a model for mini-

mizing the differences between output efficiencies as a secondary goal is con-
structed as follows: 
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where ( ) ( )1,2, , , , , , , 1, 2, , ,io ro ko lov i m u u u r k l s k l= = ≠   and γ  are decision 
variables.  

Model (8) aims to derive a weight scheme that minimizes the pairwise differ-
ences between the output efficiencies of DMUo while keeping unchanged its 
self-evaluated efficiency. In so doing, all the output efficiencies of DMUo may get 
closer in value with a reduction of zero output efficiencies. This method might 
be applicable to, for example, DEA-based multi-criteria decision making 
(MCDM) problems such as inventory classification, in which the criteria are 
viewed as multiple outputs produced by a constant input [21]. The criteria such 
as average unit cost, annual dollar usage and lead time are considered as impor-
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tant in assessing an inventory item. Thus, all of them should be valued in some 
way. 

Theorem 1. Model (8) is equivalent to model (9).  
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where ( ) ( )1,2, , , 1, 2, , , ,io rov i m u r s α β= =   and γ  are decision variables. 
Proof. Note that model (8) can be equivalently expressed as below. 
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tion of model (10) can be converted into (11). 
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Comparing with (11), it is easily obtained that models (8) and (9) are equivalent.  
Note that , , 1, 2, , ,kloD k l s k lγ≤ = ≠  in model (8) result in ( )1s s −  con-

straints, whereas 
1
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  in model (9) lead to 2s con-

straints. Theorem 1 is thus important for easing the computation of model (8) 
especially when the number of outputs is large.  

Model (9) can be interpreted as to seek a weight scheme that minimizes the 
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range of output efficiencies for DMUo with its self-evaluated efficiency un-
changed. By Charnes and Cooper transformation, model (9) can be linearized as 
model (12) for the solution. 
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3.2. Minimizing the Deviations of Output Efficiencies from the  
Mean 

In pursuit of balance, an ideal point for DMUo is intuitively where all the output 
efficiencies equal the mean, i.e., 

.oo oo sθ θ ∗=                            (13) 

The absolute deviation of output r from the mean can then be formulated as 
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To approach such an ideal point, one way is to make the difference as small as 
possible between each output efficiency and the mean. Specifically, the following 
model is proposed to formalize this secondary goal. 
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where ( ) ( )1,2, , , 1, 2, ,io rov i m u r s= =   and σ  are decision variables.  
By model (15), DMUo searches for a weight scheme to minimize the absolute 

deviations of output efficiencies from the mean with its self-evaluated efficiency 
remaining unchanged. In this way, model (15) attempts to provide balanced 
output efficiencies for DMUo by promoting centralization on the mean, which 
more directly aims at equal output efficiencies. As a result, the output efficien-
cies may turn out less variation than in the previous case. This model might be 
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appropriately applied to specific settings where all the outputs count for as much 
as each other and should make contributions as equal as possible to the 
self-evaluated efficiency. An example would be the performance evaluation of 
new product development projects, as in Swink et al. [17], with a large sample 
size and a fairly parsimonious set of dimensions. 

In addition, for computation, model (15) is equivalent to the LP model below. 
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3.3. Minimizing the Total Deviation of Output Efficiencies from  
the Mean 

In light of promoting centralization on the mean, model (15) restricts the abso-
lute deviations ( )1,2, ,ro r sΘ =   to no more than a level σ  and minimizes 
the value of σ . Alternatively, in attempting to minimize the total absolute devia-
tion 
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cross-efficiency evaluation by the following model. 
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where ( ) ( )1,2, , , 1, 2, , ,io ro rov i m u r s= = Θ   and oΘ  are decision variables. 
Model (17) tries to intensify the balance in the output efficiencies of DMUo by 

minimizing the total absolute deviation of output efficiencies from the mean 
when the self-evaluated efficiency keeps unchanged. Model (17) therefore runs 
on the equalization principle for each output of DMUo. To put this evaluation 
criterion into practice, model (17) would be suitable for similar cases as model 
(15) adapts to, e.g., in the setting where performance evaluation works for new 
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product development projects, but more strongly aims at balance in multiple 
outcomes of the projects. When considerable dimensions are involved in the 
project analysis, using model (17) may significantly mitigate the partial emphasis 
on favorable dimensions as well as the neglect of unfavorable dimensions, hence 
putting all the dimensions into use as much as possible. 

Note that model (17) is non-linear due to the equality constraint. However, 
when minimizing the objective function of model (17), the equalities in the third 
group of constraints can be replaced by inequalities because any optimal solu-
tion will finally meet the equality. Based on this transform, model (17) becomes 
the LP model (18) with ( ) ( )1,2, , , 1, 2, , ,io ro rov i m u r s τ= =   and oτ  as de-
cision variables. 

1

1

1

1 1

min

s.t. 1,

,

0, 1, 2, , , ,

, 1, 2, , ,

s
o ror

m
io ioi

s
ro ro oor

s m
ro rj io ijr i

oo
ro ro ro

v x

u y

u y v x j n j o

u y r s
s

τ τ

θ

θ
τ

=

=

∗
=

= =

∗

=

=

=

− ≤ = ≠

− ≤ =

∑
∑
∑
∑ ∑ 



 

, 1, 2, , ,

0, 1, 2, , ,
0, 1, 2, , .

oo
ro ro ro

io

ro

u y r s
s

v i m
u r s

θ
τ

∗

+ ≥ =

≥ =

≥ =







                 (18) 

3.4. Relationships with Some Previous Secondary Goals 

Observingly, the model proposed by Wang and Chin [7] as below has an implicit 
goal to reduce the differences between output efficiencies.  
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Note that model (19) imposes a lower bound to the output efficiencies and the 
objective is to maximize the lower bound. Symmetrically, we can draw a model 
that imposes an upper bound to the output efficiencies and the objective is to 
minimize the upper bound, as below.  
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By comparing model (12) with models (19) and (20), it might be deemed that 
model (12) is an enhancement of models (19) and (20), as the former more di-
rectly aims at promoting balance with both upper and lower bounds for output 
efficiencies.  

Another secondary goal proposed in Jahanshahloo et al. [22] employs the 
weight assignment technique introduced in Dimitrov and Sutton [16]. Both in 
light of promoting balance, their model seeks to minimize the total difference 
between all the output efficiencies, whereas model (8) aims at minimizing the 
maximum difference between output efficiencies. We present an input-oriented 
version of their model as below for numerical comparisons in the next section, 
since all the models discussed in this study are conducted under in-
put-orientation. 
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4. Illustrative Examples 

In practice, performance evaluation is often conducted based on multiple output 
dimensions, each of which is important. The impact of any dimension on the 
evaluation results cannot be arbitrarily ignored. For example, in addition to tal-
ent cultivation and faculty strength, the evaluation of university departments 
may also examine their scientific research output; in addition to the quantity of 
output, the evaluation of manufacturing systems also considers the quality fac-
tors. When multiple dimensions need to be examined, the approach proposed in 
this paper aims to enable all the dimensions to play a role in the evaluation and 
in a further step attempts to balance their importance. Therefore, we in this sec-
tion apply the proposed secondary goals to two illustrative examples for 
cross-efficiency evaluation and show the differences between the related models. 
Particularly, the evaluation features are illustrated through the results of using 
different secondary goals. 

4.1. Seven Academic Departments in a University 

The data of seven academic departments in a university are derived from Wong 
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and Beasley [20] and documented in Table 1. Each department is observed as a 
DMU with three inputs (Input 1: number of academic staff, Input 2: academic 
staff salaries (￡’000), Input 3: support staff salaries (￡’000)) and three outputs 
(Output 1: number of undergraduate students, Output 2: number of postgra-
duate students, Output 3: number of research papers).  

Note that Output 3 was discarded by Wang and Chin [7], since it has no effect 
on the self-evaluated efficiencies of the seven departments as reported in the last 
column of Table 1. This means that for self-evaluation, Output 3 may or may 
not be assigned a zero weight, depending on which of the alternative optimal 
solutions (if any) to model (2) the solver finds first. However, as pointed out in 
Wong and Beasley [20], “general expectations about what constitutes a universi-
ty department lead us to believe that research output should be an important 
component of total departmental output”. Hence, assigning a zero weight to 
Output 3 is generally unsatisfactory. Moreover, having no impact on the 
self-evaluated efficiencies does not mean that Output 3 has no influence on the 
cross-efficiencies of the seven departments. It is therefore more preferable to 
maintain Output 3 for cross-efficiency evaluation and promoting balance in the 
three departmental outputs is to be claimed. 

Based on the above discussion, Output 3 remains in our study. As a result of 
using model (2), six out of the seven departments are self-evaluated as efficient. 
To further discriminate between them, cross-efficiency evaluation with various 
secondary goals is implemented. Table 2 presents the three output efficiencies of 
the seven departments as a result of using models (8), (15), (17), (19), (20) and 
(21). It is found that the six models provide balanced output efficiencies for 
DMUs 1, 5, 6 and 7. These four DMUs are more likely to be all-round perfor-
mers because they can be self-evaluated as efficient with balanced output effi-
ciencies. The six models also provide non-zero output efficiencies for DMU 3, 
although they do not reach an agreement on the result. DMU 2 obtains non-zero 
output efficiencies from using models (8), (19) and (21), whereas it receives a 
zero output efficiency on Output 2 from using the other three models. Finally, 
DMU 4 obtains the least balanced output efficiencies since only Output 1 is rated 
with non-zero efficiency by the six models. From Table 1 it can be seen that 
DMU 4 is the worst performer on Outputs 2 and 3, and even on Output 1 it is 
the last but one. It is therefore the only one which is inefficient. As inefficient 
DMUs have a unique optimal solution to CCR model, i.e., model (2), it is not 
wondering that secondary goal models render the same three output efficiencies 
for it. 

Tables 3-8 contain the cross-efficiency matrices resulting from using the six 
models, respectively. The cross-efficiency scores calculated by (5) and the rank-
ing are reported in the last two columns of each table.  

We first focus on the comparison of the results from using models (8) and 
(21). The two models lead to both different cross-efficiency scores and inconsis-
tent rankings for the seven departments. As seen from Table 3 and Table 4, 
DMU 5 ranks 3rd and DMU 1 ranks 4th by model (8), whereas by model (21)  
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Table 1. Data of the seven university departments. 

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 ooθ  

1 12 400 20 60 35 17 1 

2 19 750 70 139 41 40 1 

3 42 1500 70 225 68 75 1 

4 15 600 100 90 12 17 0.8197 

5 45 2000 250 253 145 130 1 

6 19 730 50 132 45 45 1 

7 41 2350 600 305 159 97 1 

 
Table 2. Output efficiencies of the seven departments by using different models. 

Model (8) Model (15) Model (17) 

DMU Output 1 Output 2 Output 3 DMU Output 1 Output 2 Output 3 DMU Output 1 Output 2 Output 3 

1 0.3333 0.3333 0.3333 1 0.3333 0.3333 0.3333 1 0.3333 0.3333 0.3333 

2 0.7371 0.1314 0.1314 2 0.7283 0.0000 0.2717 2 0.7283 0.0000 0.2717 

3 0.4272 0.1457 0.4272 3 0.3333 0.1587 0.5080 3 0.3333 0.1587 0.5080 

4 0.8197 0.0000 0.0000 4 0.8197 0.0000 0.0000 4 0.8197 0.0000 0.0000 

5 0.3333 0.3333 0.3333 5 0.3333 0.3333 0.3333 5 0.3333 0.3333 0.3333 

6 0.3333 0.3333 0.3333 6 0.3333 0.3333 0.3333 6 0.3333 0.3333 0.3333 

7 0.3333 0.3333 0.3333 7 0.3333 0.3333 0.3333 7 0.3333 0.3333 0.3333 

Model (19) Model (20) Model (21) 

DMU Output 1 Output 2 Output 3 DMU Output 1 Output 2 Output 3 DMU Output 1 Output 2 Output 3 

1 0.3333 0.3333 0.3333 1 0.3333 0.3333 0.3333 1 0.3333 0.3333 0.3333 

2 0.7371 0.1314 0.1314 2 0.7283 0.0000 0.2717 2 0.7371 0.1314 0.1314 

3 0.1800 0.1800 0.6400 3 0.4272 0.1457 0.4272 3 0.4272 0.1457 0.4272 

4 0.8197 0.0000 0.0000 4 0.8197 0.0000 0.0000 4 0.8197 0.0000 0.0000 

5 0.3333 0.3333 0.3333 5 0.3333 0.3333 0.3333 5 0.3333 0.3333 0.3333 

6 0.3333 0.3333 0.3333 6 0.3333 0.3333 0.3333 6 0.3333 0.3333 0.3333 

7 0.3333 0.3333 0.3333 7 0.3333 0.3333 0.3333 7 0.3333 0.3333 0.3333 

 
Table 3. Cross-efficiencies of the seven departments by using model (8). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.8069 1.0000 0.6874 0.8012 0.8878 0.7423 0.8465 4 

2 0.8103 1.0000 0.7547 1.0000 0.9218 0.9085 0.8778 0.8961 2 

3 0.9181 0.7716 1.0000 0.7349 0.7270 0.7692 0.6944 0.8022 5 

4 0.3594 0.7212 0.3011 0.8197 0.5613 0.4749 0.5269 0.5378 7 

5 0.7175 0.9093 0.6096 0.7649 1.0000 1.0000 1.0000 0.8573 3 

6 1.0000 1.0000 1.0000 0.9506 0.9660 1.0000 0.9271 0.9777 1 

7 0.3727 1.0000 0.2750 1.0000 1.0000 0.8061 1.0000 0.7791 6 
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Table 4. Cross-efficiencies of the seven departments by using model (21). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.8069 1.0000 0.6874 0.8742 0.9795 0.7423 0.8701 3 

2 0.8103 1.0000 0.5795 1.0000 0.9549 0.9256 0.8778 0.8783 2 

3 0.9181 0.7716 1.0000 0.7349 0.7690 0.7920 0.6944 0.8114 5 

4 0.3594 0.7212 0.2054 0.8197 0.6002 0.5379 0.5269 0.5387 7 

5 0.7175 0.9093 0.4288 0.7649 1.0000 0.9767 1.0000 0.8282 4 

6 1.0000 1.0000 0.8446 0.9506 1.0000 1.0000 0.9271 0.9603 1 

7 0.3727 1.0000 0.1717 1.0000 0.9704 0.8283 1.0000 0.7633 6 

 
Table 5. Cross-efficiencies of the seven departments by using (19). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.8069 1.0000 0.6874 0.8742 0.9795 0.7423 0.8701 3 

2 0.8103 1.0000 0.5611 1.0000 0.9549 0.9256 0.8778 0.8757 2 

3 0.9181 0.7716 1.0000 0.7349 0.7690 0.7920 0.6944 0.8114 5 

4 0.3594 0.7212 0.1742 0.8197 0.6002 0.5379 0.5269 0.5342 7 

5 0.7175 0.9093 0.4748 0.7649 1.0000 0.9767 1.0000 0.8347 4 

6 1.0000 1.0000 0.8522 0.9506 1.0000 1.0000 0.9271 0.9614 1 

7 0.3727 1.0000 0.1741 1.0000 0.9704 0.8283 1.0000 0.7637 6 

 
Table 6. Cross-efficiencies of the seven departments by using model (20). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.6915 1.0000 0.6874 0.8012 0.9795 0.7423 0.8431 3 

2 0.8103 1.0000 0.5795 1.0000 0.9218 0.9256 0.8778 0.8736 2 

3 0.9181 0.7712 1.0000 0.7349 0.7270 0.7920 0.6944 0.8054 5 

4 0.3594 0.7426 0.2054 0.8197 0.5613 0.5379 0.5269 0.5362 7 

5 0.7175 0.9208 0.4288 0.7649 1.0000 0.9767 1.0000 0.8298 4 

6 1.0000 1.0000 0.8446 0.9506 0.9660 1.0000 0.9271 0.9555 1 

7 0.3727 1.0000 0.1717 1.0000 1.0000 0.8283 1.0000 0.7675 6 

 
Table 7. Cross-efficiencies of the seven departments by using model (15). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.6915 1.0000 0.6874 0.8742 0.9795 0.7423 0.8536 3 

2 0.8103 1.0000 0.5725 1.0000 0.9549 0.9256 0.8778 0.8773 2 

3 0.9181 0.7712 1.0000 0.7349 0.7690 0.7920 0.6944 0.8114 5 

4 0.3594 0.7426 0.1935 0.8197 0.6002 0.5379 0.5269 0.5400 7 

5 0.7175 0.9208 0.4462 0.7649 1.0000 0.9767 1.0000 0.8323 4 

6 1.0000 1.0000 0.8475 0.9506 1.0000 1.0000 0.9271 0.9607 1 

7 0.3727 1.0000 0.1727 1.0000 0.9704 0.8283 1.0000 0.7634 6 
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Table 8. Cross-efficiencies of the seven departments by using model (17). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 

1 1.0000 0.6915 1.0000 0.6874 0.8742 0.9795 0.7423 0.8536 3 

2 0.8103 1.0000 0.5725 1.0000 0.9549 0.9256 0.8778 0.8773 2 

3 0.9181 0.7712 1.0000 0.7349 0.7690 0.7920 0.6944 0.8114 5 

4 0.3594 0.7426 0.1935 0.8197 0.6002 0.5379 0.5269 0.5400 7 

5 0.7175 0.9208 0.4462 0.7649 1.0000 0.9767 1.0000 0.8323 4 

6 1.0000 1.0000 0.8475 0.9506 1.0000 1.0000 0.9271 0.9607 1 

7 0.3727 1.0000 0.1727 1.0000 0.9704 0.8283 1.0000 0.7634 6 

 
these two DMUs exchange their positions. The difference is traceable to the rat-
ing DMUs 3, 5 and 6, whose weight schemes determined by model (8) are dif-
ferent from that determined by model (21), leading to distinctive cross-efficiencies 
of the other DMUs. The cross-efficiencies of the six DMUs rated by the weight 
scheme of DMU 3 derived from model (21) are all no greater than that derived 
from model (8). Conversely, most of the DMUs are better rated by the weight 
schemes of DMUs 5 and 6 derived from model (21) than that from model (8). 
For DMU 1, the weight schemes of DMU 3 derived from both models (8) and 
(21) rate it as efficient, while the weight schemes of DMUs 5 and 6 derived from 
models (21) rate it better than those derived from models (8) do. As for DMU 5, 
the weight schemes of DMUs 3 and 6 derived from models (8) rate it better than 
those derived from models (21) do. As a result, both DMUs 1 and 5 obtain dif-
ferent ranking positions by models (8) and (21). 

Next, we turn to the results of using models (19) and (20). As shown in Table 
5 and Table 6, the two models lead to different cross-efficiency scores for the 
seven departments, however, they yield a consistent cross-efficiency ranking. 
DMU 6 is rated as the most efficient, followed by DMUs 2, 1, 5, 3 and 7, while 
DMU 4 is regarded as the least efficient. The cross-efficiency scores of the five 
top-ranked departments resulting from model (19) are greater than those re-
sulting from model (20). This occurs mainly due to the fact that model (19) aims 
at maximizing the output efficiency of the worst-performing output, which di-
rectly reduces the number of zero weights, whereas model (20) seeks to minim-
ize the output efficiency of the best-performing output, which does less on re-
ducing zero weights. Apparently, with a reduction of zero weights more outputs 
can be put into use in peer-evaluation. For DMUs 4 and 7, which are bot-
tom-ranked, DMUs 5 and 3 are, respectively, the only one whose weight scheme 
derived from model (19) rate it better than that derived from model (20). Thus, 
the cross-efficiency scores of DMUs 4 and 7 resulting from model (19) are lower 
than those resulting from model (20). 

The results of using models (15) and (17) are reported in Table 7 and Table 8. 
For this example, the two models yield identical cross-efficiency scores. DMUs 6 
and 4 are identified as the most and the least efficient, respectively. Since both 
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models attempts to promote centralization on the mean of output efficiencies, it 
is not wondering to obtain the same or similar results for some cases. The same 
result implies that the effectiveness of models (15) and (17) in promoting bal-
ance in output efficiencies for this example is equal. 

4.2. Twelve Flexible Manufacturing Systems 

Consider another example regarding the evaluation of twelve flexible manufac-
turing systems (FMSs), each viewed as a DMU with two inputs (Input 1: capital 
and operating costs ($00 000), Input 2: floor space rqmts. (000 ft2)) and four 
outputs (Output 1: improvements in qualitative factors (%), Output 2: 
work-in-process (10), Output 3: percentage of tardy jobs, Output 4: yield (00)). 
Table 9 presents the data extracted from Sheng and Sueyoshi [23]. The last 
column contains the self-evaluated efficiencies of the twelve FMSs. 

The four output efficiencies of the twelve FMSs obtained from the six models 
are documented in Table 10. The six models provide balanced output efficien-
cies for DMUs 2, 5 and 7, all of which are self-evaluated as efficient and there-
fore can be deemed as all-round performers among the twelve DMUs. The six 
models also provide non-zero output efficiencies for DMUs 1 and 4, indicating 
that these two DMUs can be self-evaluated as efficient without ignoring their 
performance on any output. DMU 6 receives non-zero output efficiencies from 
all the models except model (20), under which Output 1 is ignored by DMU 6. 
DMU 9 obtains non-zero output efficiencies from models (15) and (19), while 
under the other four models Output 3 is ignored by DMU 9. For the other five 
inefficient DMUs, each of them is provided with the same four output efficien-
cies by the six models and all of them receive some zero output efficiencies from 
each of the six models. DMU 10, which is self-evaluated as inefficient, obtains 
the least balanced output efficiencies because only Output 2 is given a non-zero 
efficiency by the six models. 

 
Table 9. Data of the twelve flexible manufacturing systems. 

DMU Input 1 Input 2 Output 1 Output 2 Output 3 Output 4 ooθ  

1 17.02 5 42 45.3 14.2 30.1 1.0000 

2 16.46 4.5 39 40.1 13 29.8 1.0000 

3 11.76 6 26 39.6 13.8 24.5 0.9824 

4 10.52 4 22 36 11.3 25 1.0000 

5 9.5 3.8 21 34.2 12 20.4 1.0000 

6 4.79 5.4 10 20.1 5 16.5 1.0000 

7 6.21 6.2 14 26.5 7 19.7 1.0000 

8 11.12 6 25 35.9 9 24.7 0.9614 

9 3.67 8 4 17.4 0.1 18.1 1.0000 

10 8.93 7 16 34.3 6.5 20.6 0.9536 

11 17.74 7.1 43 45.6 14 31.1 0.9831 

12 14.85 6.2 27 38.7 13.8 25.4 0.8012 
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Table 10. Output efficiencies of the twelve FMSs by using different models. 

Model (8) Model (15) Model (17) 

DMU Output 1 Output 2 Output 3 Output 4 DMU Output 1 Output 2 Output 3 Output 4 DMU Output 1 Output 2 Output 3 Output 4 

1 0.2944 0.2944 0.2056 0.2056 1 0.2944 0.2944 0.2056 0.2056 1 0.3166 0.2500 0.2500 0.1834 

2 0.2500 0.2500 0.2500 0.2500 2 0.2500 0.2500 0.2500 0.2500 2 0.2500 0.2500 0.2500 0.2500 

3 0.7365 0.0000 0.2231 0.0228 3 0.7365 0.0000 0.2231 0.0228 3 0.7365 0.0000 0.2231 0.0228 

4 0.2023 0.2977 0.2023 0.2977 4 0.2023 0.2977 0.2023 0.2977 4 0.2500 0.2500 0.1875 0.3125 

5 0.2500 0.2500 0.2500 0.2500 5 0.2500 0.2500 0.2500 0.2500 5 0.2500 0.2500 0.2500 0.2500 

6 0.1400 0.3600 0.1400 0.3600 6 0.1400 0.3600 0.1400 0.3600 6 0.0965 0.2500 0.2500 0.4035 

7 0.2500 0.2500 0.2500 0.2500 7 0.2500 0.2500 0.2500 0.2500 7 0.2500 0.2500 0.2500 0.2500 

8 0.5271 0.1428 0.0000 0.2916 8 0.5271 0.1428 0.0000 0.2916 8 0.5271 0.1428 0.0000 0.2916 

9 0.1761 0.4120 0.0000 0.4120 9 0.0054 0.4946 0.0054 0.4946 9 0.2053 0.2500 0.0000 0.5447 

10 0.0000 0.9536 0.0000 0.0000 10 0.0000 0.9536 0.0000 0.0000 10 0.0000 0.9536 0.0000 0.0000 

11 0.8858 0.0000 0.0000 0.0973 11 0.8858 0.0000 0.0000 0.0973 11 0.8858 0.0000 0.0000 0.0973 

12 0.4508 0.0000 0.0681 0.2823 12 0.4508 0.0000 0.0681 0.2823 12 0.4508 0.0000 0.0681 0.2823 

Model (19) Model (20) Model (21) 

DMU Output 1 Output 2 Output 3 Output 4 DMU Output 1 Output 2 Output 3 Output 4 DMU Output 1 Output 2 Output 3 Output 4 

1 0.3414 0.2195 0.2195 0.2195 1 0.2867 0.2867 0.2867 0.1398 1 0.2944 0.2944 0.2056 0.2056 

2 0.2500 0.2500 0.2500 0.2500 2 0.2500 0.2500 0.2500 0.2500 2 0.2500 0.2500 0.2500 0.2500 

3 0.7365 0.0000 0.2231 0.0228 3 0.7365 0.0000 0.2231 0.0228 3 0.7365 0.0000 0.2231 0.0228 

4 0.2234 0.2234 0.2234 0.3297 4 0.2903 0.2903 0.1290 0.2903 4 0.2234 0.2234 0.2234 0.3297 

5 0.2500 0.2500 0.2500 0.2500 5 0.2500 0.2500 0.2500 0.2500 5 0.2500 0.2500 0.2500 0.2500 

6 0.1910 0.1910 0.1910 0.4269 6 0.0000 0.3600 0.2800 0.3600 6 0.1910 0.1910 0.1910 0.4269 

7 0.2500 0.2500 0.2500 0.2500 7 0.2500 0.2500 0.2500 0.2500 7 0.2500 0.2500 0.2500 0.2500 

8 0.5271 0.1428 0.0000 0.2916 8 0.5271 0.1428 0.0000 0.2916 8 0.5271 0.1428 0.0000 0.2916 

9 0.0077 0.0077 0.0077 0.9768 9 0.1761 0.4120 0.0000 0.4120 9 0.1761 0.4120 0.0000 0.4120 

10 0.0000 0.9536 0.0000 0.0000 10 0.0000 0.9536 0.0000 0.0000 10 0.0000 0.9536 0.0000 0.0000 

11 0.8858 0.0000 0.0000 0.0973 11 0.8858 0.0000 0.0000 0.0973 11 0.8858 0.0000 0.0000 0.0973 

12 0.4508 0.0000 0.0681 0.2823 12 0.4508 0.0000 0.0681 0.2823 12 0.4508 0.0000 0.0681 0.2823 

 
By means of models (8) and (21), the cross-efficiencies of the twelve FMSs are 

reported in Table 11 and Table 12, respectively. The two models lead to differ-
ent rankings. Four out of the twelve FMSs get new ranking positions when mod-
el (8) is used instead of model (21). Specifically, by model (8) DMUs 3 and 2 
come in, respectively, the 5th and 6th positions, while by model (21) the con-
trary is the case. Also, with model (8) DMUs 10 and 12 are queued at, respec-
tively, the 10th and 11th positions, whereas the converse is true with model (21). 
These differences are caused by DMUs 4 and 6, whose weight schemes deter-
mined by model (8) vary from that determined by model (21). Most of the 
DMUs are better rated with the weight schemes of DMUs 4 and 6 obtained from 
model (21) in contrast to those obtained from model (8). 
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Table 11. Cross-efficiencies of the twelve FMSs by using model (8).  

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 0.9968 0.8568 0.6906 0.7540 1.0000 0.7777 0.7645 1.0000 1.0000 0.9029 3 

2 1.0000 1.0000 0.9592 1.0000 0.8295 0.6630 0.7233 0.9766 0.7457 0.7043 0.9664 0.9844 0.8794 6 

3 0.8030 0.7939 0.9824 0.8085 0.9340 0.8123 0.8669 0.9488 0.8238 0.9045 0.9236 0.9529 0.8795 5 

4 0.9895 0.9901 0.9268 1.0000 0.9680 0.8263 0.8579 1.0000 0.8337 0.9564 0.8962 1.0000 0.9371 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8509 0.9054 1.0000 0.8493 1.0000 0.9271 1.0000 0.9611 1 

6 0.4988 0.4829 0.9316 0.5237 0.9663 1.0000 0.9803 0.9624 0.9896 0.9513 0.9542 0.9674 0.8507 7 

7 0.5599 0.5422 1.0000 0.5819 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8903 4 

8 0.7146 0.6947 0.9271 0.7296 0.8681 0.7684 0.7930 0.9614 0.8293 0.8596 0.9449 0.9503 0.8368 8 

9 0.2491 0.2346 0.4222 0.2791 0.7230 0.9989 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6415 12 

10 0.5356 0.5133 0.7605 0.5515 0.8075 0.7884 0.7669 0.8334 0.8159 0.9536 0.7829 0.7954 0.7421 10 

11 0.7944 0.7783 0.9767 0.7989 0.8129 0.6721 0.7326 0.9507 0.7614 0.7140 0.9831 0.9528 0.8273 9 

12 0.7407 0.7383 0.8011 0.7443 0.7664 0.6489 0.6952 0.7943 0.6631 0.7200 0.7594 0.8012 0.7394 11 

 
Table 12. Cross-efficiencies of the twelve FMSs by using model (21). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 0.9951 0.8568 0.7188 0.7540 1.0000 0.7777 0.7645 1.0000 1.0000 0.9051 3 

2 1.0000 1.0000 0.9592 1.0000 0.8295 0.6966 0.7233 0.9766 0.7457 0.7043 0.9664 0.9844 0.8822 5 

3 0.8030 0.7939 0.9824 0.8178 0.9340 0.8286 0.8669 0.9488 0.8238 0.9045 0.9236 0.9529 0.8817 6 

4 0.9895 0.9901 0.9268 1.0000 0.9680 0.8382 0.8579 1.0000 0.8337 0.9564 0.8962 1.0000 0.9381 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8635 0.9054 1.0000 0.8493 1.0000 0.9271 1.0000 0.9621 1 

6 0.4988 0.4829 0.9316 0.5406 0.9663 1.0000 0.9803 0.9624 0.9896 0.9513 0.9542 0.9674 0.8521 7 

7 0.5599 0.5422 1.0000 0.5979 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8917 4 

8 0.7146 0.6947 0.9271 0.7379 0.8681 0.7761 0.7930 0.9614 0.8293 0.8596 0.9449 0.9503 0.8381 8 

9 0.2491 0.2346 0.4222 0.2859 0.7230 0.9317 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6365 12 

10 0.5356 0.5133 0.7605 0.5534 0.8075 0.7579 0.7669 0.8334 0.8159 0.9536 0.7829 0.7954 0.7397 11 

11 0.7944 0.7783 0.9767 0.8081 0.8129 0.7005 0.7326 0.9507 0.7614 0.7140 0.9831 0.9528 0.8304 9 

12 0.7407 0.7383 0.8011 0.7499 0.7664 0.6671 0.6952 0.7943 0.6631 0.7200 0.7594 0.8012 0.7414 10 

 
The results of using models (19) and (20) are reported in Table 13 and Table 

14. With both models, DMU 5 is rated as the most efficient, followed by DMUs 
4, 1 and 7, while DMU 9 is rated as the least efficient. The difference exists in the 
10th and 11th positions, where DMU 12 outperforms DMU 10 by model (19) 
but DMU 12 is inferior to DMU 10 by model (20). The two cross-efficiency ma-
trices show that for each of DMUs 1, 4, 6 and 9, the weight schemes determined 
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by models (19) and (20) lead to distinctive cross-efficiencies of the other DMUs. 
Specifically, the weight schemes of DMUs 1 and 6 determined by model (19) 
provide higher cross-efficiencies than those determined by model (20), while for 
DMUs 4 and 9 it turns out on the contrary. Thus, the cross-efficiency scores re-
sulting from models (19) and (20) present differences. It is seen that the 
cross-efficiency scores of all the DMUs except DMUs 6 and 9 obtained from us-
ing model (20) are greater than those obtained from using model (19). 

 
Table 13. Cross-efficiencies of the twelve FMSs by using model (19). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 0.9951 0.8568 0.7188 0.7540 1.0000 0.6088 0.7645 1.0000 1.0000 0.8910 3 

2 1.0000 1.0000 0.9592 1.0000 0.8295 0.6966 0.7233 0.9766 0.6034 0.7043 0.9664 0.9844 0.8703 6 

3 0.8158 0.7939 0.9824 0.8178 0.9340 0.8286 0.8669 0.9488 0.7667 0.9045 0.9236 0.9529 0.8780 5 

4 0.9872 0.9901 0.9268 1.0000 0.9680 0.8382 0.8579 1.0000 0.7958 0.9564 0.8962 1.0000 0.9347 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8635 0.9054 1.0000 0.8052 1.0000 0.9271 1.0000 0.9584 1 

6 0.5178 0.4829 0.9316 0.5406 0.9663 1.0000 0.9803 0.9624 1.0000 0.9513 0.9542 0.9674 0.8546 7 

7 0.5793 0.5422 1.0000 0.5979 1.0000 1.0000 1.0000 1.0000 0.9710 1.0000 1.0000 1.0000 0.8909 4 

8 0.7268 0.6947 0.9271 0.7379 0.8681 0.7761 0.7930 0.9614 0.6907 0.8596 0.9449 0.9503 0.8276 8 

9 0.2535 0.2346 0.4222 0.2859 0.7230 0.9317 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6368 12 

10 0.5400 0.5133 0.7605 0.5534 0.8075 0.7579 0.7669 0.8334 0.6823 0.9536 0.7829 0.7954 0.7289 11 

11 0.8091 0.7783 0.9767 0.8081 0.8129 0.7005 0.7326 0.9507 0.5925 0.7140 0.9831 0.9528 0.8176 9 

12 0.7477 0.7383 0.8011 0.7499 0.7664 0.6671 0.6952 0.7943 0.6195 0.7200 0.7594 0.8012 0.7383 10 

 
Table 14. Cross-efficiencies of the twelve FMSs by using model (20). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 1.0000 0.8568 0.6370 0.7540 1.0000 0.7777 0.7645 1.0000 1.0000 0.8987 3 

2 1.0000 1.0000 0.9592 0.9932 0.8295 0.6101 0.7233 0.9766 0.7457 0.7043 0.9664 0.9844 0.8744 6 

3 0.7884 0.7939 0.9824 0.8421 0.9340 0.8214 0.8669 0.9488 0.8238 0.9045 0.9236 0.9529 0.8819 5 

4 0.9720 0.9901 0.9268 1.0000 0.9680 0.8301 0.8579 1.0000 0.8337 0.9564 0.8962 1.0000 0.9359 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8721 0.9054 1.0000 0.8493 1.0000 0.9271 1.0000 0.9628 1 

6 0.4493 0.4829 0.9316 0.5970 0.9663 1.0000 0.9803 0.9624 0.9896 0.9513 0.9542 0.9674 0.8527 7 

7 0.5134 0.5422 1.0000 0.6565 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8927 4 

8 0.6747 0.6947 0.9271 0.7872 0.8681 0.7262 0.7930 0.9614 0.8293 0.8596 0.9449 0.9503 0.8347 8 

9 0.1915 0.2346 0.4222 0.3409 0.7230 0.9294 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6361 12 

10 0.4912 0.5133 0.7605 0.6135 0.8075 0.7659 0.7669 0.8334 0.8159 0.9536 0.7829 0.7954 0.7417 10 

11 0.7753 0.7783 0.9767 0.8411 0.8129 0.6154 0.7326 0.9507 0.7614 0.7140 0.9831 0.9528 0.8245 9 

12 0.7341 0.7383 0.8011 0.7565 0.7664 0.6516 0.6952 0.7943 0.6631 0.7200 0.7594 0.8012 0.7401 11 
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The results of using models (15) and (17) are documented in Table 15 and 
Table 16. Different cross-efficiency scores are also identified by the two models, 
leading to the difference in the ranking of DMUs 10 and 12. This is attributed to 
the weight schemes of DMUs 1, 4, 6 and 9. Comparing the corresponding col-
umns in both tables for each of these four rating DMUs, it is observed that the 
weight schemes of DMUs 4 and 9 determined by model (17) provide most of the 
DMUs with greater cross-efficiencies than those determined by model (15). 
However, for DMUs 1 and 6, their weight schemes derived from model (15) find 
most of the DMUs more cross-efficient than those derived from model (17). The 
results show that unlike Example 1, models (15) and (17) in this example have 
different effectiveness in promoting balance in output efficiencies for some 
DMUs. 
 

Table 15. Cross-efficiencies of the twelve FMSs by using model (15). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 0.9968 0.8568 0.6906 0.7540 1.0000 0.6322 0.7645 1.0000 1.0000 0.8907 3 

2 1.0000 1.0000 0.9592 1.0000 0.8295 0.6630 0.7233 0.9766 0.6036 0.7043 0.9664 0.9844 0.8675 6 

3 0.8030 0.7939 0.9824 0.8085 0.9340 0.8123 0.8669 0.9488 0.8032 0.9045 0.9236 0.9529 0.8778 5 

4 0.9895 0.9901 0.9268 1.0000 0.9680 0.8263 0.8579 1.0000 0.8181 0.9564 0.8962 1.0000 0.9358 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8509 0.9054 1.0000 0.8517 1.0000 0.9271 1.0000 0.9613 1 

6 0.4988 0.4829 0.9316 0.5237 0.9663 1.0000 0.9803 0.9624 1.0000 0.9513 0.9542 0.9674 0.8516 7 

7 0.5599 0.5422 1.0000 0.5819 1.0000 1.0000 1.0000 1.0000 0.9974 1.0000 1.0000 1.0000 0.8901 4 

8 0.7146 0.6947 0.9271 0.7296 0.8681 0.7684 0.7930 0.9614 0.7308 0.8596 0.9449 0.9503 0.8285 8 

9 0.2491 0.2346 0.4222 0.2791 0.7230 0.9989 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6415 12 

10 0.5356 0.5133 0.7605 0.5515 0.8075 0.7884 0.7669 0.8334 0.7849 0.9536 0.7829 0.7954 0.7395 10 

11 0.7944 0.7783 0.9767 0.7989 0.8129 0.6721 0.7326 0.9507 0.6120 0.7140 0.9831 0.9528 0.8149 9 

12 0.7407 0.7383 0.8011 0.7443 0.7664 0.6489 0.6952 0.7943 0.6362 0.7200 0.7594 0.8012 0.7372 11 

 
Table 16. Cross-efficiencies of the twelve FMSs by using model (17). 

Rated 
DMU 

Rating DMU 
jθ  Rank 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000 0.9940 1.0000 0.9993 0.8568 0.6796 0.7540 1.0000 0.8004 0.7645 1.0000 1.0000 0.9040 3 

2 1.0000 1.0000 0.9592 1.0000 0.8295 0.6559 0.7233 0.9766 0.7747 0.7043 0.9664 0.9844 0.8812 6 

3 0.8029 0.7939 0.9824 0.8256 0.9340 0.8279 0.8669 0.9488 0.8241 0.9045 0.9236 0.9529 0.8823 5 

4 0.9802 0.9901 0.9268 1.0000 0.9680 0.8362 0.8579 1.0000 0.8368 0.9564 0.8962 1.0000 0.9374 2 

5 1.0000 1.0000 1.0000 1.0000 1.0000 0.8707 0.9054 1.0000 0.8433 1.0000 0.9271 1.0000 0.9622 1 

6 0.4845 0.4829 0.9316 0.5570 0.9663 1.0000 0.9803 0.9624 0.9949 0.9513 0.9542 0.9674 0.8527 7 

7 0.5474 0.5422 1.0000 0.6154 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8921 4 

8 0.7023 0.6947 0.9271 0.7547 0.8681 0.7503 0.7930 0.9614 0.8390 0.8596 0.9449 0.9503 0.8371 8 

9 0.2228 0.2346 0.4222 0.3019 0.7230 0.9171 0.7933 0.7528 1.0000 0.8489 0.6721 0.7237 0.6344 12 

10 0.5166 0.5133 0.7605 0.5728 0.8075 0.7562 0.7669 0.8334 0.7948 0.9536 0.7829 0.7954 0.7378 11 

11 0.7934 0.7783 0.9767 0.8208 0.8129 0.6595 0.7326 0.9507 0.7857 0.7140 0.9831 0.9528 0.8300 9 

12 0.7414 0.7383 0.8011 0.7521 0.7664 0.6622 0.6952 0.7943 0.6688 0.7200 0.7594 0.8012 0.7417 10 
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5. Conclusions  

The original DEA allows each DMU to evaluate its efficiency relative to the other 
DMUs with its favorable weight scheme. The weight scheme is often unrealistic 
due to the flexibility in weight selection. To reduce the flexibility and further-
more promote balance in output efficiencies, a variety of secondary goals are in-
troduced in this study for cross-efficiency evaluation. Each of the proposed 
models seeks, under a particular evaluation criterion, a weight scheme that 
makes the contributions of output efficiencies of the DMU be evaluated as ba-
lanced as possible to the self-evaluated efficiency. The proposed approach is then 
applied to two empirical datasets to validate the effectiveness of the introduced 
secondary goals. For managerial implications, the proposed approach might be 
suitable and applicable to DEA-based multi-criteria evaluation problems, such as 
inventory classification and new product development projects, where multiple 
outputs are considered important and should be valued in a way, especially in 
the settings where a large sample size and considerable dimensions are involved 
and balance is strongly encouraged to put all the dimensions into use as much as 
possible. 

For future directions, it is noted that the secondary goals in light of promoting 
balance could be extended to other forms such as incorporating with DMs’ pre-
ference structure, considering the competitive relationships among DMUs [24], 
or the two-stage [25] and network [26] systems. Another extension lies in that 
the proposed approach uses the simple averaging for cross-efficiency aggrega-
tion and this can be extended to other choices [27] [28]. 
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