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Abstract 

A theoretical investigation concerning hematocrit and slip velocity influence 
on the flow of blood and heat transfer by taking into account the externally 
applied magnetic field has been carried out. The mathematical models consi-
dered in this work treated blood as a non-Newtonian fluid obeying the third 
grade fluid model. A suitable geometry of the stenosis is taken into account. 
Galerkin weighted residual and Newton Raphson methods are used to solve 
the equations that govern the flow of blood and heat transfer. Analytical ex-
pression for the velocity profile, temperature profile, volume flow rate, wall 
shear stress and resistance to flow were obtained. Graphical representation of 
results shows that the flow velocity, volumetric flow rate and shear stress in-
crease while resistance to flow and heat transfer rate decrease when the slip 
velocity increases. Also, flow velocity and volume flow rate decrease while 
shear stress, heat transfer rate, and resistance to flow increase when the he-
matocrit parameter increases. Finally, increases in magnetic field parameter 
lead to decrease in flow velocity, flow rate and shear stress but increase the 
flow resistance. 
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1. Introduction 

Atherosclerosis is the deposition or accumulation of cholesterol in the arterial 
wall and this can cause local narrowing in the lumen of the arterial segment 
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commonly referred to as stenosis. One of the serious consequences, when an ob-
struction is developed in an artery, is the increased resistance and the associated 
reduction of the blood flow which can lead to arterial diseases such as stroke, 
heart attack and serious circulating disorders. Those diseases have been identi-
fied as the major causes of death globally (Shanthi et al. [1]). Since the normal 
blood flow is disturbed as a result of formation of lumps in the lumen of the ar-
teries, the heat transfers between the living tissues particularly in the peripheral 
vessels where the temperature is generally closely related with blood flow rate, 
will also be disturbed. Different studies on blood flow and heat transfer through 
stenosed arteries have been carried out theoretically and experimentally by sev-
eral researchers [2]-[10]. Most of these studies considered only the magnetic 
field effect with no-slip boundary conditions. However, a number of studies of 
suspensions in general and blood flow in particular have both experimentally 
(Misra and Shit [11], Ponalgusamy [12]), and theoretically (Verma et al. [13], 
Guar and Gupta [14]) suggested the likely presence of slip at the flow bounda-
ries. 

In a recent development, Srikanth, et al., [15] investigated blood flow through 
an overlapping clogged tapered artery in the presence of catheter. They consi-
dered velocity slip at the arterial wall since cholesterol deposition is resulting in 
the stenosis formation. They solved analytically the equation governing the fluid 
flow under the assumption of mild stenosis. Their results were presented graph-
ically and from the graphs, it was observed that the slip velocity and divergence 
tapered artery facilitate the fluid flow. The effect of slip velocity on blood flow 
through an arterial tube in the presence of multiple stenosis was studied by Arun 
[16]. He considered the effects of length of stenosis and shape parameter on re-
sistance to flow and shear stress. He observed from the graphs that the parame-
ters have small variations for different values of stenosis shape parameter. An 
approximate perturbation scheme has been adopted by Geeta and Siddique [17] 
to solve the equations governing the unsteady blood flow through constricted 
artery in the presence of velocity slip. They characterized the rheology of the 
blood flow by Bingham plastic fluids model. They considered the important flow 
parameters such as velocity, flow rate and shear stress and represented the re-
sults graphically. They concluded that, since high blood viscosity is very dan-
gerous for the cardiovascular disorders, slip velocity at the stenotic wall may be 
used as the major tool in reducing the blood viscosity. They also found that the 
effect of stenosis reduces the flow rate. 

All the above mentioned researchers considered only constant viscosity. Va-
riable viscosity of blood dependence on red blood cell concentration (Hemato-
crit) is another interesting study since the mechanical property of the whole 
blood depends on the mechanical properties of red blood cell concentration. 
Hematocrit effect on the axisymmetric blood flow through stenosed arteries has 
been investigated by Sanjeev and Chandrashekhar [18]. The mathematical model 
of blood flow through a tapered artery with mild stenosis and hematocrit were 
studied by Verma and Parihar [19]. Some of the other researchers that consi-
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dered variable blood viscosity in their studies include Shit and Screenparna [20]; 
Singh and Rathee [21]; Chitra and Karthikeyan [22]; Jagdish and Rajbala [23]. 

This paper therefore, is concerned with the problem of investigating hemato-
crit and slip velocity influence on third grade blood flow and heat transfer 
through a stenosed artery taking into account the effect of the externally applied 
magnetic field. 

2. Mathematical Models 

The equations governing the steady fluid flow and the steady heat transfer as 
obtained by Mohammed [24] are respectively given as 

2 3 22 2
3 3 0

2 2

ˆ6 21 0
ww w w w w

r r r r r z
P

r r
β β σβµ

ρ ρ ρ ρ ρ
 ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =     ∂ ∂ ∂ ∂∂ ∂    

   (2.1) 

and 
2 4 2

3
2

2 1 0
p p p

w w K T T
c r c r c r rr

βµ
ρ ρ ρ

 ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂∂     
          (2.2) 

Since we are considering variable viscosity dependent on red blood cell con-
centration (Hematocrit) we therefore, replace µ  with ( )rµ  in (2.1) and (2.2) 
to respectively obtain 

( ) 2 3 22 2
3 3 0

2 2

6 ˆ21 0
r ww w w w w

r r r r r z
P

r r
µ β β σβ
ρ ρ ρ ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =     ∂ ∂ ∂ ∂∂ ∂    
  (2.3) 

( ) 2 4 2
3

2

2 1 0
p p p

r w w K T T
c r c r c r rr

µ β
ρ ρ ρ

 ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂∂     
          (2.4) 

According to Einstein formular for the variable viscosity of blood taken to be  

( ) ( )( )0 1r h rµ µ β= +                      (2.5) 

and the hematocrit h(r) is described by Lih [25] 

( )
0

1 , 2
m

rh r H m
R

   = − ≥    
                 (2.6) 

The first term in the LHS of (2.3) can be re-written as  

( ) ( )2

2

1r rw w wr
r r r r rr

µ µ
ρ ρ

 ∂ ∂ ∂ ∂ + =   ∂ ∂ ∂∂   
               (2.7) 

putting (2.5), (2.6) and (2.7) into (2.3) gives 

2 2
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2
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611 1

2 1 ˆ
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m
r w w wN r
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w
r

Pw
r Z

β
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µ      ∂ ∂ ∂ ∂     + − +        ∂ ∂ ∂ ∂          

∂ ∂ + − − = ∂ ∂ 

       (2.8) 

Since we employed velocity slip at the constricted artery as shown in Figure 1 
below, the associated slip conditions to (2.8) are 
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Figure 1. Geometry of the stenosis. 

 
( )

0

at

at   0

sw w r R z
w r
r

= = 

∂

= = ∂ 

                   (2.9) 

Similarly, the last term in the LHS of (2.4) can be written as: 
2

2

1   K T T K Tr
C r r r C r rrρ ρρ ρ

 ∂ ∂ ∂ ∂ + =   ∂ ∂ ∂∂   
             (2.10) 

Substituting (2.5), (2.6) and (2.10) into (2.4) to obtain 

2 4
0 3

0

2
1 1 0

m
r K TN r

C R r C r r C r rρ ρ ρ

βω ω
ρ ρ
µ

ρ

    ∂ ∂ ∂ ∂       + − ⋅ + + =         ∂ ∂ ∂ ∂          
(2.11) 

The associated slip conditions to (2.11) are: 

( )at

0 at 0

wT T r R z
T r
r

= = 

∂

= = ∂ 

                 (2.12) 

In order to non-dimensionalize Equations (2.8), (2.9), (2.11) and (2.12), the 
following parameters and variables were introduced. 

0 0

0
0

0

,

, s
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w ry
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t d
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t

θ


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                  (2.13) 

Substituting (2.13) into (2.8) and simplified to obtain 
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+ − =

   (2.14) 

where 
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and the corresponding dimensionless slip conditions to (2.14) can be simplified 
as 

( )
0

0

a
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y
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                 (2.16) 

Similarly, substituting (2.13) into (2.11) and simplified to obtain 
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where, 
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and the associated slip conditions to (2.17) can be simplified as 

0 at

0 at 0

by R

y
y

θ

θ

= =

∂

= = ∂ 

                 (2.19) 

and has been described by Young [26] and Biswas [27] 

( )
0 0

0

cos π1 1 for
2

for

R z z z L
R R L

R z L

Σ  = − + ≤    
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             (2.20) 

3. Methods of Solution 

To obtain the velocity profile to (2.14) using Galerkin weighted residual method, 
we assume a trial solution of the form 

( ) 2
0 1 2y a a yw a y= + +                      (3.1) 

Subjecting (3.1) to the slip conditions (2.16) and simplified to obtain 

( )
2 2 2

20
0 22 2 21 1NV y y yy a a y

Rb Rb
w

Rb
   

= + − + −   
   

           (3.2) 

Let yr
Rb

=                           (3.3) 

Using (3.3) in (3.2) and simplified to obtain 

( ) ( ) ( )2 2 2 2
0 0 21 1Nr V r a r a rw r= + − + −             (3.4) 
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For convenience sake, we drop the bar and write (3.4) as 

( ) ( ) ( )2 2 2 2
0 0 21 1Nw r V r a r a r r= + − + −               (3.5) 

From (3.5), we have the followings 
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The residue for Equation (2.14) can be written as 
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2 32
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       (3.12) 

Taking the shape of the profile (m = 2), using the transformation (3.3) and 
substituting (3.5), (3.8), (3.10), and (3.11) into (3.12) to obtain 
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We obtain the weight functions by differentiating (3.5) with respect to 0a  
and 2a  respectively to obtain 

( ) ( )2
1 1w r r= −                       (3.14) 

and 

( ) ( )2 2
2 1w r r r= −                      (3.15) 

The following systems were obtained by taking into account the orthogonality 
of the residue ( )2 0 2, ,R a a r  with respect to the weight functions ( )1w r  and 

( )2w r  

( ) ( )1
1 2 0 20

, , d 0w r R a a r r =∫                  (3.16) 

( ) ( )1
2 2 0 20

, , d 0w r R a a r r =∫                  (3.17) 

When Equations (3.13) and (3.14) are substituted into (3.16), we integrate and 
simplified to obtain 
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0 0 2 0 2 2

0 0 2

14784 44352 12672

44352 25344 14784

14784 12672 1478 2560
231 924 132 1155

N N N N N N N N N
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 (3.18) 

Similarly, when Equations (3.13) and (3.15) are substituted into (3.17), we in-
tegrate and simplified to obtain 

3 2 2
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2 2
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3
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 (3.19)  

By substituting the appropriate values of the parameters NRE , 0NV , NΩ , 

NM , NG  and N into Equations (3.18) and (3.19), after some rearrangement, we 
respectively obtained  

3 3 2 2
0 2 0 2

2 2
0 2 2 0 0 2

85.33333333 14.776633478 64.00000000 21.33333333

85.33333333 73.14285714 23.89037037 1.973756613
4.24759292

a a a a

a a a a a a

− − + +

− − − −

= −

 (3.20) 

and 
3 3 2 2
0 2 0 2

2 2
0 2 2 0 0 2

36.5714285 15.00366300 27.42857142 13.57575758

54.30303030 73.14285714 8.153650793 5.229347442
1.083888889

a a a a

a a a a a a

− − + +

− − − −

= −

 (3.21) 

Solving (3.20) and (3.21) using Newton Raphson’s method, we obtained the 
values of 0a  and 2a  and when substituted into (3.5) and simplified, we ob-
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tained 

( ) ( )2 2 20.2582726 0.0582276 0.0037572 1w r r r r= − + −         (3.22) 

as the velocity profile of blood flow with hematocrit. 
By simulating the appropriate values of the parameters NRE , 0NV , NΩ , 

NM , NG  and N into (3.18) and (3.19) and follow the same procedures above, 
we obtain the corresponding values of 0a , 2a  and velocity profile w(r). The 
results are shown in Table 1. 

Similarly, to obtained the temperature profile of the heat transfer using Gerla-
kin’s method, we assume a trial function of the form 

( ) 2
0 1 2y C C y C yθ = + +                    (3.23) 

Subjecting (3.23) to the slip conditions (2.19) and after simplification we ob-
tain 

( )
2 2 2

3 42 2 21 1
b b b

y y yy a a
R R R

θ
   

= − + −   
   

             (3.24) 

By using the transformation (3.3) and dropping bar, Equation (3.24) can be 
written as 

( ) ( ) ( )2 2 2
3 41 1r a r a r rθ = − + −                  (3.25) 

 
Table 1. Values of the parameters used in the numerical results and the corresponding 
Velocity profile for the blood flow with Hematocrit. 

Figs NG  0 NV  NRE  NΩ  NM  N ( )w r  

 
2 
 

1.5 
1.5 
1.5 

0.25 
0.25 
0.25 

0.9 
0.9 
0.9 

10 
10 
10 

0.35 
0.35 
0.35 

1 
2 
3 

( )2 2 20.3281 0.1281 0.0128 1r r r− − −  

( )2 2 20.3040 0.1040 0.0038 1r r r− − −  

( )2 2 20.2875 0.0875 0.0117 1r r r− − −  

 
3 
 

1.5 
1.5 
1.5 

0.25 
0.25 
0.25 

0.9 
0.9 
0.9 

10 
10 
10 

0.35 
0.65 
0.95 

2 
2 
2 

( )2 2 20.3342 0.1342 0.0149 1r r r− − −  

( )2 2 20.3282 0.1282 0.0120 1r r r− − −  

( )2 2 20.3221 0.1221 0.0091 1r r r− − −  

 
4 
 

1.5 
1.5 
1.5 

0.25 
0.35 
0.45 

0.9 
0.9 
0.9 

10 
10 
10 

0.35 
0.35 
0.35 

2 
2 
2 

( )2 2 20.3996 0.1496 0.0289 1r r r− − −  

( )2 2 20.4919 0.1419 0.0253 1r r r− − −  

( )2 2 20.5838 0.1338 0.0216 1r r r− − −  

 
5 
 

1.5 
1.5 
1.5 

0.25 
0.25 
0.25 

0.9 
0.9 
0.9 

10 
20 
30 

0.35 
0.35 
0.35 

2 
2 
2 

( )2 2 20.3281 0.1281 0.0128 1r r r− − −  

( )2 2 20.3148 0.1148 0.0191 1r r r− − −  

( )2 2 20.3066 0.1066 0.0215 1r r r− − −  

 
6 
 

1.5 
1.5 
1.5 

0.25 
0.25 
0.25 

0.3 
0.6 
0.9 

10 
10 
10 

0.35 
0.35 
0.35 

2 
2 
2 

( )2 2 20.2406 0.0406 0.0058 1r r r− − −  

( )2 2 20.2746 0.0746 0.0047 1r r r− − −  

( )2 2 20.2998 0.0998 0.0036 1r r r− − −  

 
7 
 

1.5 
2.0 
2.5 

0.25 
0.25 
0.25 

0.9 
0.9 
0.9 

10 
10 
10 

0.35 
0.35 
0.35 

2 
2 
2 

( )2 2 20.2582 0.0582 0.0038 1r r r− − −  

( )2 2 20.3065 0.1065 0.0069 1r r r− − −  

( )2 2 20.3438 0.1438 0.0210 1r r r− − −  
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From (3.5) and (3.25) we have 

2
3 4 4

1 4 4 16r a a a r
r r r

θ∂ ∂  = − + − ∂ ∂ 
                 (3.26) 

4
2 2 3 4 3 4 3 6 2 2 4

0 2 0 0 0 2 0 2 0 2

2 2 4 2 2 6 2 2 8 3 10
0 0 0 2 0 2 0 2

3 6 3 4 3 8 3 4 3 4
0 2 0 0 0 2 0 2 0 2
3 6 2 2 4
0 2 0 2

64 64 64 128 96

96 384 384 512

384 64 768 64 64

128 96 38

N N N N N

N N N N

N N N N

w V a r V a r V a r V a r V a r
r

V a r V a r V a r V a r

V a r V a r V a r V a r a a r

a a r a a r

∂  = − − − + ∂ 
+ − + −

− − + + −

+ + − 2 2 6 2 2 8 3 10
0 2 0 2 0 24 384 512a a r a a r a a r+ +

 

3 6 3 8 3 4 3 4 3 6 4 4
0 2 0 2 0 2 2 2 0
4 10 4 8 4 4 4 12 2 4
2 2 0 2 0 0 2

2 6 2 4 2 6 2 8
0 0 2 0 0 2 0 0 2 0 0 2
2 4 2 6

0 0 2 0 0 2

384 768 64 16 128 16

512 384 16 256 192

384 192 768 768

192 384

N N

N N N N

N N

a a r a a r a a r a r a r a r

a r a r V r a r V a a r

V a a r V a a r V a a r V a a r

V a a r V a a r

+ − − + − +

− + + + +

− − + −

− +

    (3.27) 

The residue for Equation (2.17) using (3.3) can be written as  

( ) ( )( )
2 4

3 3 4
1, , 1 1 0m

nN N N
w wR r a a E N r r
r r r r r

θφ
 ∂ ∂ ∂ ∂   = + − + + Λ =    ∂ ∂ ∂ ∂     

(3.28) 

Substituting (3.9), (3.26) and (3.27) into (3.28) to obtain 

( ) ( )( )(
)

(

2 2 2 2 2
3 3 4 0 0 0 0 2 0 2

2 2 2 4 2 2 2 4 2 6
0 0 2 0 2 2 2 2

2 2 3 4 3 4 3 6
0 2 0 0 0 2 0 2

2 2 4 2 2 4 2 2 6 2 2 8
0 2 0 0 0 2 0 2

, , 1 1 4 8 8 16

4 8 16 4 16 16

64 64 64 128

96 96 384 384

m
nN N N N N

N N N N N

N N N N

R r a a E N r V r a V r V a r V a r

a r a a r a a r a r a r a r

V a r V a r V a r V a r

V a r V a r V a r V a r

φ

= + − − + −

+ − + + − +

+ − − −

+ + − +

− 3 10 3 6 3 4 3 8
0 2 0 2 0 0 0 2512 384 64 768N N N NV a r V a r V a r V a r− − +

 

3 4 3 4 3 6 2 2 4 2 2 6
0 2 0 2 0 2 0 2 0 2

2 2 8 3 10 3 6 3 8 3 4
0 2 0 2 0 2 0 2 0 2

3 4 3 6 4 4 4 10 4 8 4 4
2 2 0 2 2 0

64 64 128 96 384

384 512 384 768 64

16 128 16 512 384 16

N

N

V a r a a r a a r a a r a a r

a a r a a r a a r a a r a a r

a r a r a r a r a r V r

+ − + + −

+ + − −

++−

+

+ − +

 

)
( )

4 12 2 4 2 6 2 4
2 0 0 2 0 0 2 0 0 2

2 6 2 8 2 4 2 6
0 0 2 0 0 2 0 0 2 0 0 2

2
3 4 4

256 192 384 192

768 768 192 384

4 4 16

N N N

N N N N

N

a r V a a r V a a r V a a r

V a a r V a a r V a a r V a a r

a a a r

+ + − −

− − +

− +

+

−Λ

  (3.29) 

By taking the derivative of (3.25) with respect to 3a  and 4a , we obtained the 
weight functions as obtained in (3.14) and (3.15) respectively. 

The following systems are obtained by taking into account the orthogonality 
of the residue ( )3 3 4, ,R r a a  with respect to the weight functions given in (3.14) 
and (3.15) 

( ) ( )1
3 3 4 10

, , d 0R r a a w r r =∫                  (3.30) 

( ) ( )1
3 3 4 20

, , d 0R r a a w r r =∫                  (3.31) 

Substituting (3.14) and (3.29) into (3.30), we integrate and simplified to ob-
tained 
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2 2
0 2 0 2 0 0 0 2

3 2 2 2 2 3 3
0 2 0 2 0 2 0 2 0 2

3 2 2 3
0 0 0 0 0 0

64 64 64 32 32
315 315 105 105 385

256 2432 2432 256 256
715 1155 1155 315 315
256 384 256 16
35 35 35 105

nN N nN nN N nN N nN

N N N N N N N

N N N N N N nN

N N N N NE V a E a a E V a E V E a

a a V a a a V a a a

V a V a V a E

φ φ φ φ φ

φ φ φ

− − + +

− + + − +

− + − + 0 2 0 2

4 2 4 4 2
0 0 2 2 0 0 0

2 2 2 2 2
0 3 0 0 2 0 0 2 0 0 2

16
105

16 6592 8 64 64 8
15 45045 63 35 35 15
8 8 4864 256 256 0

15 3 1155 105 105

N nN

nN N N nN N N N nN N

nN N N N N N N N

V a E a a

E V a a E a V a E V

E a a V a a V a a V a a

φ φ φ

φ φ φ

−

− + + + + +

+ − Λ − + − =

 (3.32) 

Also, putting (3.15) and (3.29) into (3.31), we integrate and simplified to ob-
tained 

2 2
0 2 0 2 0 0 0 0

2 3 3 2 2 2 2
2 0 2 0 2 0 2 0 2

3 3
0 2 0 2

64 64 64 32 32
3465 3465 315 315 315

736 21248 21248 3968 3968
45045 45045 45045 3003 3003
256 256 256
315 231 231

nN N nN nN N nN N nN

nN N N N N N N

N N N N N

N N N N NE V a E a a E V a E V E a

N E a V a a a V a a a

V a V a a

φ φ φ φ

φ φ φ

− − + +

+ − + + +

− − + 3 3 2 2
0 2 0 0 0 0

3 4
0 0 0 2 0 2 0 0 2

2 4 4 2 2
2 0 0 0 0 3

2
4 0 0 2

256 128
63 21

256 16 16 16 8384
63 315 315 35 85085
152 64 64 8 8 8
3465 63 63 35 35 15
8 7936 256

15 3003 77

N N N N

N N nN N nN nN N N

nN N N N nN N nN N

N N N

a V a V a

V a E V a E a a E V a a

E a V a E V E a a

a V a a

φ φ

φ φ

φ φ

φ φ

− +

− − + − +

+ + + + + − Λ

− Λ − + 2 2
0 0 2 0 0 2

256 0
77N N N NV a a V a aφ− =

 (3.33) 

Solving the system of non-linear Equations (3.32) and (3.33) using Newton 
Raphson’s method, we obtained the expression for 3a  and 4a  as 

( 4 3 3
3 0 0 0 0 2

2 2 2 2 2
0 0 0 0 2 0 0

3 2 2
0 0 0 0 2 0 0 2

3 4 3
0 2 0 0 2

1 194480 777920 141440
204204

1166880 424320 236640

777920 424320 473280

60928 194480 141440 236640

N N N N N N
N

N N N N N N

N N N N N N

N N N N

a V V a V a

V a V a a V a

V a V a a V a a

V a a a a

φ φ φ

φ φ φ

φ φ φ

φ φ φ

= − −
Λ

+ + +

− − −

− + + + 2 2
0 2N a aφ

 

)

3 4 2
0 2 2 0 0 0

2 2
0 2 0 0 2 2

2 2
0 0 0 0 2 0

2
0 2 2

60928 17008 26741 53482

13702 26741 1370 6341

51051 102102 4862 51051

4862 11271

N N nN N nN N

nN N nN nN nN

nN N nN N nN N nN

nN nN

a a a NE V NE V a

NE V a NE a NE a a NE a

E V E V a E V a E a

E a a E a

φ φ+ + + −

+ + − +

+ − + +

− +

 (3.34) 

( 4 3 3
4 0 0 0 0 2

2 2 2 2 2
0 0 0 0 2 0 0

3 2 2
0 0 0 0 2 0 0 2

3 4 3 2
0 2 0 0 2 0 2

1 38896 155584 56576
204204

233376 169728 53856

155584 169708 107712

23936 38896 56576 53856

N N N N N N
N

N N N N N N

N N N N N N

N N N N N

a V V a V a

V a V a a V a

V a V a a V a a

V a a a a a a

φ φ φ

φ φ φ

φ φ φ

φ φ φ φ

= − −
Λ

+ + +

− − −

− + + + 2

3 4 2
0 2 2 0 0 0

2 2
0 2 0 0 2 2

23936 4144 2431 4862

1326 2431 1326 17
N N nN N nN N

nN N nN nN nN

a a a NE V NE V a

NE V a NE a NE a a NE a

φ φ+ + + −

− + + −
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)
2

0 0 0 2 0 0 2

2
2

7293 4862 7293 4862

1105
nN N nN N nN nN

nN

E V a E V a E a E a a

E a

+ − + +

+
     (3.35) 

Substituting the appropriate values of the parameters Nφ , 0NV , nNE , NΛ  
and N, and the constants 0a  and 2a  into (3.34) and (3.35), we obtain the val-
ues of 3a  and 4a  and when substituted into (3.25) and simplified, we obtain 

( ) ( )2 2 20.00834891 0.00834891 0.0083121 1r r r rθ = − + −
    

(3.36) 

as the temperature profile of the heat transfer with hematocrit. 
By simulating the appropriate values of the parameters Nφ , 0NV , nNE , NΛ  

and N, and the constants 0a  and 2a  in (3.34) and (3.35), we obtain the cor-
responding values of 3a , 4a  and ( )rθ  which are shown in Table 2. 

Volume Flow Rate 
The volume flow rate denoted by Q is given by 

( )( )
0

2π d
R z

Q rw r r= ∫                     (3.37) 

Putting (3.5) into (3.37) and evaluate to obtain 

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )4 2 4 4 6
0 0 212 3 6 3 3 2Q V R z a R z R z a R z R z = + − + −  

 (3.38) 

Shear Stress 
The shear stress denoted by sτ  is given as 
 

Table 2. Values of the parameters used in the numerical results and the corresponding 
temperature profile for the heat transfer with hematocrit. 

Figs N Nφ  nNE  NΛ  0 NV  ( )rθ  

 
8 
 

1 
2 
3 

1.25 
1.5 
1.75 

1.5 
1.5 
1.5 

1.35 
1.35 
1.35 

0.25 
0.25 
0.25 

( )2 2 20.0246 0.0246 0.0226 1r r r− − −  

( )2 2 20.0296 0.0296 0.0252 1r r r− − −  

( )2 2 20.0347 0.0347 0.0278 1r r r− − −  

 
9 
 

2 
2 
2 

1.25 
1.25 
1.25 

1.5 
1.5 
1.5 

1.35 
1.35 
1.35 

0.25 
0.35 
0.45 

( )2 2 20.0395 0.3947 0.5503 1r r r− − −  

( )2 2 20.6442 0.6444 0.9036 1r r r− − −  

( )2 2 21.0000 1.0000 1.4076 1r r r− − −  

 
10 
 

2 
2 
2 

1.25 
1.25 
1.25 

1.5 
1.5 
1.5 

1.35 
1.65 
1.95 

0.25 
0.25 
0.25 

( )2 2 20.0253 0.0253 0.0232 1r r r− − −  

( )2 2 20.0207 0.0207 0.0189 1r r r− − −  

( )2 2 20.0175 0.0175 0.0160 1r r r− − −  

 
11 
 

2 
2 
2 

1.25 
1.25 
1.25 

1.5 
1.8 
2.1 

1.35 
1.35 
1.35 

0.25 
0.25 
0.25 

( )2 2 20.0054 0.0054 0.0045 1r r r− − −  

( )2 2 20.0065 0.0065 0.0053 1r r r− − −  

( )2 2 20.0075 0.0075 0.0061 1r r r− − −  

 
12 
 

2 
2 
2 

1.25 
1.5 
1.75 

1.5 
1.5 
1.5 

1.35 
1.35 
1.35 

0.25 
0.25 
0.25 

( )2 2 20.0083 0.0083 0.0083 1r r r− − −  

( )2 2 20.0055 0.0055 0.0052 1r r r− − −  

( )2 2 20.0043 0.0043 0.0038 1r r r− − −  

https://doi.org/10.4236/jamp.2019.73046


A. Jimoh et al. 
 

 

DOI: 10.4236/jamp.2019.73046 649 Journal of Applied Mathematics and Physics 

 

( ) ( )

3

32s
r R z r R z

w w
r r

τ µ β
= =

∂ ∂ = +  ∂ ∂ 
                 (3.39) 

Simplified (3.39) to obtain 

( ) ( )( )( )
( ) ( )( )( )

2
0 0 2 2

2
3 0 0 2 2

2 2

16 2

s R Z V a a R Z a

R Z V a a R Z a

τ µ

β

= − + −

+ − + −
           (3.40) 

Resistance to Flow 
The resistance to flow can be denoted as ψ and is given by 

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )4 2 4 4 6
0 0 2

ˆ

12 3 6 3 3 2

P
z

V R z a R z R z a R z R z
ψ

∂
−
∂=

 + − + −  

(3.41) 

4. Results and Discussion 

In the previous section we have obtained analytical expressions for different flow 
characteristics of blood and heat transfer through a stenosed artery under the ac-
tion of an externally applied magnetic field. In this section we are to discuss the 
flow and heat transfer characteristics graphically so as to extract useful informa-
tion difficult or impossible to obtain in the laboratory and also to get a better 
understanding of physics of the problem under study. 

We used Maple 17 computer software to evaluate the analytical results ob-
tained for velocity profiles, temperature profiles, volumetric flow rate, wall shear 
stress and resistance to flow. In order to observe the quantitative effects of he-
matocrit parameter, slip velocity, magnetic field parameter, shear shinning, 
pressure gradient, Eckert number and third grade parameter, we used the results 
from numerical simulation of the models and these are tabulated in the previous 
section. 

Figures 2-7 shows the variation of velocity profiles along the radial distance 
for different values of the hematocrit parameter, magnetic field parameter, slip 
velocity, shear thinning, Reynold number and pressure gradient. It is observed 
from Figure 1 that the velocity profiles of blood flow decreases significantly as 
the value of the hematocrit parameter increases. This happen because increase in 
hematocrit parameter lead to increase in percentage volume of red blood cells 
and this bring about increase in density and viscosity of the blood flow relatively. 
Increase in density and viscosity slow down the flow of blood and this causes 
decreased in velocity of blood significantly. Also, from Figure 2, increases in 
magnetic field parameter slightly decreases the velocity profile of the blood flow. 
This is because the Lorentz force which opposes the motion of the blood flow 
and as a result slow down the flow velocity. It is seen from Figure 4 that velocity 
profile increases significantly with increase values of the slip velocity. This is be-
cause the slip velocity at the stenotic wall reduces the effect of induced magnetic 
field and viscosity and as such influencing the flow velocity positively. Other pa-
rameters that can as well influence the flow significantly are shown in Figures 
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5-7. We observed from the figures that velocity profile increases with increase 
values of the shear thinning, Reynold number and pressure gradient.  

Figures 8-12 shows the variation of the temperature profiles along the radial 
distance for different values of the hematocrit parameter, slip velocity, third 
grade parameter and Eckert number. It is reviewed from Figure 8 that tempera-
ture profiles increase with hematocrit parameter because more heat will be gen-
erated as the concentration of red blood cells increases. Also, it is seen from 
Figure 9 that temperature profiles decrease with increases values of the slip ve-
locity. Temperature profiles increase with Eckert number and shear thinning 
and these are shown in Figure 11 and Figure 12 respectively while decrease with 
increase in third grade parameter as shown in Figure 10. 

Figures 13-15 depicts the effect of hematocrit parameter on volumetric flow 
rate, shear stress and resistance to blood flow. we observe from the figures that 
hematocrit parameter increases with shear stress and resistance to flow but re-
duces the volume flow rate. This happens because high values of hematocrit pa-
rameter lead to increases in both low shear rate and blood viscosity and as such 
reduces the flow rate. Figures 16-18 illustrate the effect of slip velocity on volu-
metric flow rate, shear stress and resistance to blood flow. It is found that volu-
metric flow rate and shear stress increase with slip velocity while resistance to 
flow decreases as slip velocity increases. Variation of volume flow rate, shear 
stress and resistance to blood flow with magnetic field parameter are illustrated 
in Figures 19-21. It is seen from Figure 21 that higher values of magnetic field 
parameter offer more resistance to the flow while volume flow rate and shear 
stress decreases with increases values of the magnetic field parameter as illu-
strated in Figure 19 and Figure 20. 

 

 
Figure 2. Variation of velocity profile of blood along radial distance for different values of 
hematocrit parameter. 
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Figure 3. Variation of velocity profile of blood along radial distance for different values of 
magnetic field parameter. 
 

 
Figure 4. Variation of velocity profile of blood along radial distance for different values of 
slip velocity. 
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Figure 5. Variation of velocity profile of blood along radial distance for different values of 
the shear thinning. 

 

 
Figure 6. Variation of velocity profile of blood along radial distance or different values of 
reynold number. 
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Figure 7. Variation of velocity profile of blood along radial distance for different values of 
the pressure gradient. 

 

 
Figure 8. Variation of temperature profile of heat transfer along radial distance for dif-
ferent values of hematocrit parameter. 
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Figure 9. Variation of temperature profile of heat transfer along radial distance for dif-
ferent values of slip velocity. 

 

 
Figure 10. Variation of temperature profile of heat transfer along radial distance for dif-
ferent values of third grade parameter. 
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Figure 11. Variation of temperature profile of heat transfer along radial distance for dif-
ferent values of eckert number.  

 

 
Figure 12. Variation of temperature profile of heat transfer along radial distance for dif-
ferent values of shear thinning. 
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Figure 13. Variation of volumetric flow rate of blood flow with increasing values of the 
hematocrit parameter in the entire arterial region along the axial direction. 

 

 
Figure 14. Variation of shear stress of blood flow with increasing values of the hematocrit 
parameter in the entire arterial region along the axial direction. 
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Figure 15. Variation of resistance to blood flow with increasing values of the hematocrit 
parameter in the entire arterial region along the axial direction. 

 

 
Figure 16. Variation of volumetric flow rate of blood flow with increasing values of the 
slip velocity in the entire arterial region along the axial direction.  
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Figure 17. Variation of shear stress of blood flow with increasing values of the slip veloc-
ity in the entire arterial region along the axial direction. 

 

 
Figure 18. Variation of resistance to blood flow with increasing values of the slip velocity 
in the entire arterial region along the axial direction. 
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Figure 19. Variation of volumetric flow rate of blood with increasing values of the mag-
netic field parameter in the entire arterial region along the axial direction. 

 

 
Figure 20. Variation of shear stress of blood with increasing values of the magnetic field 
parameter in the entire arterial region along the axial direction. 
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Figure 21. Variation of resistance to blood flow with increasing values of the magnetic 
field parameter in the entire arterial region along the axial direction. 

5. Conclusions  

In the present analysis, we have studied mathematical models towards investi-
gating the influence of hematocrit and slip velocity on velocity profile, tempera-
ture profile, volumetric flow rate, shear stress and resistance to blood flow. Ex-
ternally applied magnetic field effect was also taken into consideration. Blood is 
characterized as third grade fluid model. It is observed from the findings that 
hematocrit parameter significantly reduces the flow velocity and flow rate but 
increases the wall shear stress, flow resistance and heat transfer rate. The slip ve-
locity significantly increases the flow velocity, flow rate and shear stress but re-
duces the flow resistance and heat transfer rate. Magnetic field parameter gradu-
ally reduces the flow velocity, flow rate and wall shear stress but offers more re-
sistance to blood flow. Also, this study reveals that, elevation of blood hematocrit 
and blood viscosity are considered as risk factors in the cardiovascular or he-
morheological disorder, which can lead to cardiovascular diseases such as heart 
diseases (myocardial infarction), stroke (cerebrovascular diseases) and hyperten-
sion. Similarly, a low range of hematocrit which can lead to more deposition of 
cholesterol in the endothelium vascular wall is also a risk factor. Since magnetic 
field opposes the motion of the blood flow, appropriate value of the magnetic 
field can be used to control blood flow especially in a disease state like hyperten-
sion. High rate of heat transfer either as a result of high red blood cells concen-
trations or environmental factors can cause heat stroke or damage the cells in 
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the body. 
Finally, since slip velocity positively influences flow velocity and flow rate, we 

conclude that device should be suggested for restoring blood flow through the 
constricted region as well as for reducing the damage to the vessel wall. 
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Nomenclatures 

w—Fluid velocity      w —Dimensionless fluid velocity 
t—Time component     t —Dimensionless time component 
r—Radial distance      y—Dimensionless radial distance  
z—Axial distance      sw —Slip velocity 

0NV —Dimensionless Slip velocity for the flow with hematocrit 
T—Temperature profile     wT —Pipe temperature 
θ —Dimensionless temperature profile mT —Fluid temperature 

0R —Radius of the normal artery   0β —Magnetic Field Strength 
R(z)—Radius of the artery in a stenotic region σ —Electrical Conductivity 
ψ —Resistance to flow     K—Thermal conductivity 
Q—Volumetric flow rate    sτ —Wall Shear Stress 
Σ —Maximum height of the stenosis  L—Length of the stenosis 
N = Hβ = Haematocrit parameter   h(r) = Hematocrit at a distance r 
β  = A constant whose value for blood equal 2.5 W = Fluid velocity 
(m ≥ 2) = Shape Parameter of Hematocrit 

0µ  = Viscosity coefficient for plasma 
( )rµ  = Coefficient of viscosity of blood at radial distance 

NG —Pressure gradient for the flow with hematocrit 

0NV —Slip velocity for the flow with hematocrit 

NM —Magnetic field parameter for the flow with hematocrit 

NΩ —Shear thinning for the flow with hematocrit 

nNE —Eckert number for the heat transfer with hematocrit 

Nφ —Shear thinning for the heat transfer with hematocrit 

NΛ —Third grade parameter for the heat transfer with hematocrit 
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