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Abstract 

In this article, we revisit some aspects of the computation of the cohomology 
class of ( )2 Witt,H   using some methods in two-dimensional conformal 

field theory and conformal algebra to obtain the one-dimensional central ex-
tension of the Witt algebra to the Virasoro algebra. Even though this is 
well-known in the context of standard mathematical physics literature, the oper-
ator product expansion of the energy-momentum tensor in two-dimensional 
conformal field theory is presented almost axiomatically. In this paper, we at-
tempt to reformulate it with the help of a suitable modification of conformal 
algebra (as developed by V. Kac), and apply it to compute the representative 
element of the cohomology class which gives the desired central extension. 
This paper was written in the scope of an undergraduate’s exploration of 
conformal field theory and to gain insight on the subject from a mathematical 
perspective. 
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1. Introduction 

The computation of the cohomology class ( )2 Witt,H   is well-known in the 
context of central extension of the Witt algebra (see [1], [2] for more details) and 
conformal field theory (CFT) (see [3], [4] for more details). However, we note 
that this computation in the opinion of these authors is unclear, especially in the 
mathematical physics literature dealing with CFT. In particular, in [3] we find 
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that the form of the operator product expansion of the energy-momentum ten-
sor is presented almost axiomatically as  

( ) ( )
( )

( )
( )

( )
4 2

22 .w

c
T w T w

T z T w
z wz w z w

∂
+ +

−− −
               (1) 

In this article we compute ( )2 Witt,H   analytically using ideas from CFT 
[3] and some tools from Kac’s conformal algebra [5]. In Section 2 we present the 
necessary background material on Lie algebras, their cohomology (in the fi-
nite-dimensional case), and central extensions of a Lie algebra by a one-dimensional 
complex vector space c . Section 3 briefly introduces two-dimensional CFT. 
One aspect discussed in detail is the so-called energy-momentum tensor, which 
characterizes the two-dimensional CFT. Then in Section 4, we define the Witt 
algebra, which is an example of an infinite-dimensional Lie algebra, and discuss 
its central extension by c  to the Virasoro algebra. In Section 5, we compute 
the cohomology class ( )2 Witt,H   analytically using CFT. In Section 5.1 we 
adapt results related to conformal algebra from Kac [5] (specifically sections 
2.1-2.6 in [5]) to obtain the operator product expansion of two local eigenfields 
of conformal weight ∆  and ′∆ . In Section 5.2 we apply the results of Section 
5.1 to the energy-momentum tensor and use this to compute the cohomology 
class. Finally, in the Conclusion and Future work we summarize the key results 
which lead to the construction of the Virasoro algebra, and we propose to inves-
tigate the algebra that may arise in the case ( )1Nc w−  is a monomial of non-zero 
degree. 

2. Review of Key Ideas on Lie Algebras and Their  
Cohomology 

2.1. Lie Algebras 

Definition 2.1. (Lie algebra) A Lie algebra g  is a vector space over a field   
along with a bilinear map [ ], : × →

g
g g g  such that for all , ,X Y Z ∈g :  

1) [ ], 0X X =
g

,  

2) [ ] [ ] [ ], , , , , , 0X Y Z Y Z X Z X Y     + + =     g g gg g g
.  

This bilinear map is called a Lie bracket.  
Remark 2.1. The subscript is added to the bracket (i.e. [ ],

g
) to distinguish it 

from other bracket operations. If there is no potential confusion, the subscript is 
often omitted.  

Property (2) is called the Jacobi identity. Applying bilinearity and property (1) 
to [ ],X Y X Y+ +

g
 we obtain another property:  

[ ] [ ], , .X Y Y X= −                         (2) 

This is called skew-symmetry. If the characteristic of the field   is not 2, 
then skew-symmetry implies property (2) as well. We define the dimension of a 
Lie algebra to be its dimension as a vector space. 
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A first example of a Lie algebra is the space of linear transformations on a fi-
nite-dimensional vector space V along with the Lie bracket operation defined as 
[ ],X Y X Y Y X= −   where   is a composition, denoted ( )Vgl . For this 
reason, the bracket operation is often called the commutator, and if [ ], 0X Y =  
then we say X and Y commute. Any vector space V can be considered a Lie alge-
bra with the bracket operation [ ], 0X Y =  for all ,X Y V∈ . Such a Lie algebra 
is called abelian. More background on Lie algebras can be found in [6] [7].  

2.2. Lie Algebra Cohomology 

(Co)homology first arises in algebraic topology, where it involves associating a 
sequence of groups to a topological space in order to study various properties of 
the topological space. It also can be generalized to study other objects, such as 
Lie algebras. In this section we present the basic definitions and discuss the 
properties in the cohomology theory of finite-dimensional Lie algebras. However, 
in section 4 we discuss the infinite-dimensional Lie algebra of vector fields on 

{ }\ 0  or its restriction on 1S  known as the Witt algebra, whose cohomology 
can be handled similarly with appropriate modifications. 

2.2.1. Lie Algebra Cohomology with Complex Coefficients 
Let g  be a finite-dimensional complex Lie algebra and let  

: kω × × = → g g g  be a k-linear form. Such a k-linear form is called alter-
nating if the following is true:  

( ) ( )1 1, , , , , , , , , , , ,i j k j i kX X X X X X X Xω ω= −     
      (3) 

where 1, , kX X ∈ g . The set of all alternating k-linear forms is denoted by 
( ),kC g  and is called the k-th cochain. Note that ( )0 , :C = g . 

We recall that given ( ),pCη ∈ g , ( ),qCθ ∈ g , and ( ),rCω∈ g , we 
can define a product ∧  with the following properties:  
• ( ),p qCη θ +∧ ∈ g , 
• ( )η θ ω η θ η ω∧ + = ∧ + ∧ , 
• ( ) ( )η θ ω η θ ω∧ ∧ = ∧ ∧ , 
• ( )1 pqη θ θ η∧ = − ∧   

We call this the wedge product or exterior product. This gives  
( ) ( )*

0, : ,k
kC C∞
==⊕ g g  the structure of a ring. 

Given ( ),kCω∈ g , we define the coboundary operator  
( ) ( )1: , ,k k

k C C +∂ → g g  for all 1k ≥  as follows:  

( )( )
( ) ( )
1 1

1 1
1 1

, ,
ˆ ˆ1 , , , , , , , ,

k k

i j
i j i j k

i j k

X X

X X X X X X

ω

ω

+

+
+

≤ < ≤ +

∂

 = −  ∑


  

       (4) 

where 1 1, , kX X + ∈ g  and ˆ
nX  signifies that the element has been removed. If 

0k =  we define 0 0ω∂ = . We can use the coboundary operator to construct a 
long sequence, known as the Chevalley-Eilenberg Complex denoted by  :  

{ } ( ) ( ) ( )
( ) ( )

0 10 1 2

1

: 0 , , ,

, ,kk k

C C C

C C

∂ ∂

∂ +

→ → →

→ → → → 

  

 

g g g

g g


          (5) 
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Remark 2.2. For simplicity we write k∂ = ∂  if there is no chance of confu-
sion.  

Proposition 2.1. For ( ),pCη ∈ g , ( ),qCω∈ g ,  

( ) ( ) ( ) ( )1 pη ω η ω η ω∂ ∧ = ∂ ∧ + − ∧ ∂                 (6) 

Proof. We prove the claim by induction on p. For the case 0p = , choose 
( )0 ,Cη ∈ g  and ( ),qCω∈ g , then since η  is a scalar  

( ) ( ) ( )η ω η ω η ω∂ ∧ = ∂ = ∧ ∂ . Let us assume that the statement is true for 
( )1 ,pCη −∈ g , then choose ( )1 ,Cθ ∈ g   and let ( ),pCη θ η′ = ∧ ∈ g . Since 

( ) ( ) ( ) ( ) ( )η ω θ η ω θ η ω θ η ω′∂ ∧ = ∂ ∧ ∧ = ∂ ∧ ∧ − ∧ ∂ ∧  (applying the case  
1p = ), then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 pθ η ω θ η ω θ η ω θ η ω θ η ω−∂ ∧ ∧ − ∧ ∂ ∧ = ∂ ∧ ∧ − ∧ ∂ ∧ − − ∧ ∧ ∂ .  
Combining, the first two terms of the previous expression we have 
( ) ( ) ( ) ( )1 pη ω θ η θ η ω′∂ ∧ = ∂ ∧ + − ∧ ∧ ∂ , hence  
( ) ( ) ( ) ( )1 pη ω η ω η ω′ ′ ′∂ ∧ = ∂ ∧ + − ∧ ∂ . Therefore, Equation (6) is true if 

η θ η′ = ∧ . The claim follows by linearity for any ( ), .pCη′∈ g    
Proposition 2.2. For all k ∈ , 1 0k k+∂ ∂ = .  
Proof. We prove the claim by induction on k. If 1k = , then for any 

( )1 ,Cω∈ g   

( )( ) [ ]( )1 1 2 1 2: , ,X X X Xω ω ω′ = ∂ = −  

( )( ) ( )( )
[ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )
[ ] [ ] [ ]( )
[ ] [ ] [ ]( )

2 1 1 2 3 2 1 2 3

1 2 3 1 3 2 2 3 1

1 2 3 1 3 2 2 3 1

1 2 3 1 3 2 2 3 1

1 2 3 3 1 2 2 3 1

, , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

ω ω

ω ω ω

ω ω ω

ω

ω

′⇒ ∂ ∂ = ∂

′ ′ ′= − + −

    = − +     

    = − +     

    = + +     



 

By the Jacobi identity on g , we get 2 1 0∂ ∂ = . Let the induction hypothesis 
be true for 1k q= − . Consider η θ η′ = ∧  where ( )1 ,Cθ ∈ g  and 

( )1 ,qCη −∈ g . Then by proposition 2.2.1, ( ) ( ) ( )η θ η θ η′∂ = ∂ ∧ − ∧ ∂  and 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 0η θ η θ η θ η θ η′∂ = ∂ ∧ + ∂ ∧ ∂ − ∂ ∧ ∂ + ∧ ∂ = . Once again, it 

follows by linearity that ( )2 0η′∂ =  for all ( ),qCη′∈ g  [8].  
If 1Im kω −∈ ∂ , then ( ),kCω∈ g  is called a k-coboundary. The set of all 

k-coboundaries is denoted by ( , )kB g  . 
If Ker kω∈ ∂ , then ( ),kCω∈ g  is called a k-cocycle. The set of all 

k-cocycles is denoted by ( ),kZ g . 
Given a k-coboundary ω , we know that ω ω′= ∂  for some ( )1 ,kCω −′∈ g . 

Applying the coboundary operator yields 2ω ω′∂ = ∂ . It follows that 0ω∂ = , 
which implies that  

( ) ( ), , .k kB Z⊂ g g  

Definition 2.2. (Singular cohomology) The kth singular cohomology with 
values in  , ( ),kH g , is defined by  
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( ) ( ) ( ), , / ,k k kH Z B=  g g g                   (7) 

Remark 2.3. If g  is an infinite-dimensional Lie algebra, we must consider 
continuous k-linear forms, obtained by topologizing the Lie algebra g  and  . 
For example, let M be a smooth compact manifold and let g  be the Lie algebra 
of all smooth vector fields on M with the C∞  topology, then the corresponding 
cohomology is called the Gelfand-Fuchs cohomology. Details can be found in [9] 
[10] [11].  

2.2.2. Central Extensions and ( )H 2 ,g  

Consider two complex Lie algebras g  and ĝ , and let { }: spanc c=  where c 
is contained in the center of ĝ , i.e. [ ], 0X c =  for all ˆX ∈g . Consider the fol-
lowing short sequence  

{ } { }ˆ0 0 .c η π→ → → → g g  

This sequence is called exact if Im Kerη π= . The splitting lemma states that 
if there exists a map ˆ:σ →g g  such that idσ π = g , then  

ˆ .c⊕g g                           (8) 

or equivalently  
ˆ / cg g                            (9) 

Moreover  

c I                             (10) 

where I is some ideal contained in the center of ĝ . 
The map σ  is called a section of g . Note that this result is a generalization 

of the rank-nullity theorem from linear algebra. If (9) and (10) hold for ĝ , then 
ĝ  is called a central extension of g  by c . 

Theorem 2.1. The inequivalent central extensions of a Lie algebra g  by c  
are classified by ( )2 ,H g .  

Proof. Let ĝ  be a central extension of g  arising from the following short 
exact sequence:  

{ } { }ˆ0 0c
π

σ
→ → → g g



 

where ˆ:π →g g  is the canonical projection and ˆ:σ →g g  is a section of ĝ . 
For ,X Y ∈g , let ( ) ( ) ( ) [ ]( )ˆ

, , ,X Y X Y X Yω σ σ σ= −   gg
. Thus,  

[ ]( ) [ ]( ) [ ]( ), , , , , , 0X Y Z Y Z X Z X Yω ω ω+ + =
g g g

 using the Jacobi identity in 
ĝ . Hence, ω  satisfies the 2-cocycle property. Suppose σ ′  is another section, 
and note that for all X ∈g , ( )( ) 0Xπ σ σ ′− = , thus ( )( )X cσ σ ′− ∈  or 
( ) ( )X X kcσ σ ′= +  where k ∈ . Given another bilinear form ω′  arising 

similarly from σ ′ , we would like to show that ω ω′−  belongs to the coboun-
dary, i.e. ( )1ω ω σ σ′ ′− = ∂ − :  

( )( )
( ) ( ) ( ) [ ]( )

1 ,

, ,

X Y

X Y X Y

σ σ

σ σ σ σ σ σ

′∂ −

′ ′ ′= − − − −  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ]( ) [ ]( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

, , ,

, , ,

, ,

, ,

, ,

X Y X Y X Y

X Y X Y X Y

X Y X Y kc

X k c Y X Y

X Y X Y

σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

ω ω

′ ′= − −          
′ ′ ′+ − +  

′ ′= − +      
′ ′ ′ ′ ′− + +      

′= −

 

where ,k k ′∈ . Hence ω  is a 2-cocycle. 
Conversely, take a 2-cocycle ω  which is a representative element of a coho-

mology class in ( )2 ,H g , i.e. for all , ,X Y Z ∈g :  

( ) ( ), ,X Y Y Xω ω= −                      (11) 

[ ]( ) [ ]( ) [ ]( ), , , , , , 0X Y Z Y Z X Z X Yω ω ω+ + =
g g g

         (12) 

We can define a bracket on the vector space ˆ c= ⊕g g  as follows  

[ ] [ ] ( )ˆ, , ,X c Y c X Y X Y cα β ω+ + = +
g g

               (13) 

where ,α β ∈ . If ω′  is another bilinear form satisfying (11) and (12), then 
ω  and ω′  define isomorphic Lie algebra structures on c⊕g  if and only if 
there exists a map :µ → g  such that 

( ) ( ) [ ]( ), , ,X Y X Y X Yω ω µ′= +
g

                 (14) 

In the above construction, the Lie algebra ĝ  is a central extension of g  by 
c  obtained by associating the bilinear form ω . This shows that correspond-

ing to any element of ( )2 ,H g  we can associate an isomorphism class of a 
central extension of g . Hence, we have shown that there is a one-to-one cor-
respondence between the inequivalent central extensions of a Lie algebra g  by 

c  and ( )2 ,H g  [12].  

3. A Brief Introduction to Conformal Field Theory 

A conformal field theory is a quantum field theory that is invariant under con-
formal transformations, which are transformations that preserve the angle be-
tween two lines. In a flat space-time with dimension 3D ≥ , the conformal al-
gebra is the Lie algebra corresponding to the conformal group generated by glo-
bally-defined invertible finite transformations, which are translations, rotations, 
dilations, and special conformal transformations (for more details see [3]). In 
this paper we are interested in dimension 2D =  since the Lie algebra of infini-
tesimal conformal transformations is infinite dimensional and has been investi-
gated in complete detail by Belavin et al. in [13]. Conformal field theory can be 
used to understand certain natural phenomena, and arises in string theory as 
well. It has long served as a meeting point between physics and mathematics, 
spurring progress in both fields. 

Consider the complexification of coordinates in 2 , ( )0 1 0 1,x x z x ix= + . 
Let 0 1:z x ix= − . In conformal field theory, z and z  are considered indepen-
dent complex variables. Thus the field ( )0 1,x xφ  on 2  becomes ( ),z zφ . If  
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0
z
φ∂
=

∂
, i.e. φ  depends only on z, then φ  is said to be a chiral field. We thus 

simply write ( )zφ , which is holomorphic i.e. a power series in z. On the other 

hand, if 0
z
φ∂
=

∂
, we call φ  anti-chiral and write ( )zφ , which is an-

ti-holomorphic i.e. a power series in z . 
We are interested in the infinitesimal conformal transformation 
( ) ( )f z z z= +   ( ( ) ( )f z z z= +  ) with ( ) 1z   ( ( ) 1z  ) where  

0 1i= +    
0 1i= −    

satisfying the Cauchy-Riemann conditions  

0 1
0 1x x
∂ ∂

= +
∂ ∂
   

1 1
0 1 .

x x
∂ ∂

= −
∂ ∂
   

Note that f  is simply notation.  
Definition 3.1. [3] If a field ( ),z zφ  transforms under any conformal trans-

formation ( )f z  and ( )f z  as follows:  

( ) ( ) ( )( ), ,
hhf fz z f z f z

z z
φ φ

 ∂ ∂ ′ =   ∂ ∂   
 

we call ( ),z zφ  a primary field of conformal dimension ( ),h h . If not, we call 
( ),z zφ  a secondary field.  
As an example, given a primary field ( ),z zφ  and the infinitesimal conformal 

transformation as discussed above, we compute :  

1 z
f
z
∂

= + ∂
∂

  

( )21
h

z
f h o
z
∂ ⇒ = + ∂ + ∂ 

   

so that ( ) ( ) ( ) ( )2, , ,zz z z z z z oφ φ φ+ = + ∂ +   . Then:  

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 2

2 2 2

, 1 1 ,

1 , ,

1 , , ,

, ,

z z

z z z

z z z z

z z z z

z z h o h o z z

h h o o z z z z o

h h z z z z z z

z z h h z z

φ φ

φ φ

φ φ φ

φ φ

′ = + ∂ + + ∂ + + +

= + ∂ + ∂ + + + + ∂ + +

= + ∂ + ∂ + ∂ + ∂

= + ∂ + ∂ + ∂ + ∂

     

       

   

   

 

Ignoring terms of order 2  and 2  in the above expression, we find that the 
primary field ( ),z zφ  is transformed under the infinitesimal conformal trans-
formation  

( ) ( ),z z z zh h z zφ∂ + ∂ + ∂ + ∂                   (15) 

For more details see [3]. 
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In our current approach, in order to study the central extension of the Witt 
algebra as discussed in section 4, we need to discuss the energy-momentum ten-
sor, which is derived as follows (see [3] [13] for details). Recall Nöether’s theo-
rem which essentially states that for every continuous symmetry in a field theory 
there is an object called current jµ  ( 0,1µ = ) which is conserved, i.e. using 
Einstein summation notation  

0jµ
µ∂ =                           (16) 

where 0
0x
∂

∂ =
∂

, 1
1x
∂

∂ =
∂

. For more information, see [3] [14]. Let 

00 01

10 11

T T
T

T T
 

=  
 

 denote the energy-momentum tensor. Then from [3], under the 

infinitesimal conformal transformation ( )x x xµ µ µ+   the current is  

0 1 0 1
0 00 01 1 10 11&

j T

j T T j T T

ν
µ µν=

⇒ = + = +



   
 

Applying Nöether’s theorem yields  

( ) ( ) ( )0 0 1 1 0 1
00 01 10 110 0T T T T Tµ ν

µν= ∂ ⇒ ∂ + + ∂ + =      

Since 0Tµ µν∂ = , the above expression can be rewritten as  
0 0 0 1 1 0 1 1

00 01 10 11 0T T T T∂ + ∂ + ∂ + ∂ =     

or using Einstein summation notation,  

0T µ ν
µν ∂ =  

Since this expression is true for all conformal transformations, in particular 
0 0x=   and 1 1x=  , then ( )00 11 0T T+ =  which implies that the ener-

gy-momentum tensor is traceless (i.e. 00 11 0T T+ = ). 

We now wish to complexify our coordinates, 0

2
z zx +

=  & 1

2
z zx

i
−

= . We 

make the following association:  

00 01

10 11

zz zz

zz zz

T T T T
T T T T
   
   

  
  

where  

( )00 10 11
1 2
4zzT T iT T= − −  

( )00 10 11
1 2
4zzT T iT T= + −  

( )00 11
1
4zz zzT T T T= = +  

From above, since the energy-momentum tensor is traceless, we have  

( )00 10
1
2zzT T iT= −  
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( )00 10
1
2zzT T iT= +  

0zz zzT T= =  

We now investigate the chirality of the energy-momentum operator:  

( )

( )( )

0 1

00 10

0 1 1 0
00 10 00 10

0 1 1 0
00 10 11 10

0 0

1
2 2

1
4

1
4

0

z zz
iT T iT

T T i T T

T T i T T
= =

 ∂ + ∂
∂ = − 

 

= ∂ + ∂ + ∂ − ∂

  
= ∂ + ∂ − ∂ + ∂      
=

 

 

It can be similarly shown that 0z zzT∂ = . We thus have that ( )T z  is chiral 
and ( )T z  is anti-chiral. We can write ( )T z  as a Laurent series as follows:  

( ) n
n

n
T z c z

∞

=−∞

= ∑  

where  

( ) 11 d .
2π

n
nc T z z z

i
− −= ∫  

With a change of variables, we obtain the desired form of the ener-
gy-momentum tensor :  

( ) 2

2

n
n

n
T z L z− −

∈− +

= ∑


 

where ( ) 1
2

1 d
2π

n
n nL c T z z z

i
+

− −= = ∫ . 

Remark 3.1. ( )T z  is an example of a secondary field.  

4. The Witt Algebra 

4.1. Construction of the Witt Algebra 

We now begin our application of the topics previously discussed with a specific 
Lie algebra:  

Definition 4.1. (Witt algebra) The Witt algebra over { }* : \ 0=   is defined 
as follows:  

( ) 1dWitt | ,
d

f z f z z
z

−  = ∈   
  

with a basis given by  

1 d: |
d

j
jL z j

z
+ = − ∈ 

 
  

Remark 4.1. jL  can be thought of as a vector field over  .  
Note that the basis of the Witt algebra can also be interpreted from a Lau-

rent expansion of ( )z  in the infinitesimal conformal transformation 
( ) ( )f z z z= +   about 0z =  [3] [15]:  
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( ) ( )1n
n

n
f z z c z +

∈

= + −∑


 

We define the following commutator over the Witt algebra  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2

2 2

d d,
d d

d d d d
d d d d

d d d d
d dd d

d
d

f z g z
z z

f z g z g z f z
z z z z

f z g z f z g z g z f z g z f z
z zz z

f z g z g z f z
z

 
  
     = −     
     

′ ′= + − −

′ ′= −

    (17) 

Proposition 4.1. The commutator defined above is a Lie bracket  
Proof. In order to be a Lie bracket, the commutator must be skew-symmetric 

and satisfy the Jacobi identity. 
Skew-symmetry is relatively easy to show:  

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

d d d,
d d d

d
d

d d,
d d

f z g z f z g z g z f z
z z z

g z f z f z g z
z

g z f z
z z

  ′ ′= −  

′ ′= − −

 = −   

 

The Jacobi identity, on the other hand, is not difficult per se, but rather te-
dious. We wish to show the following:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d d d d d d, , , ,
d d d d d d

d d d, , 0
d d d

f z g z h z g z h z f z
z z z z z z

h z f z g z
z z z

      +            
  + =    

 

Examining the first term yields  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

d d d d, ,
d d d d

d d d
d d d

d
d

d
d

d
d

f z g z f z g z h z h z g z
z z z z

f z g z h z h z g z g z h z h z g z
z z z

f z g z h z g z h z h z g z h z g z
z

g z h z h z g z f z
z

f z g z h z f z h z g z f z g z h z f z h z g z
z

   ′ ′= −      

′ ′ ′ ′= − − −

′ ′ ′′ ′ ′ ′′= + − +

′ ′ ′− −

′′ ′′ ′ ′ ′ ′= − − +

 

by the definition of the commutator. Similarly,  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

d d d, ,
d d d

d
d

g z h z f z
z z z

g z h z f z g z f z h z g z h z f z g z f z h z
z

  
    

′′ ′′ ′ ′ ′ ′= − − +
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and  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

d d d, ,
d d d

d
d

h z f z g z
z z z

h z f z g z h z g z f z h z f z g z h z g z f z
z

  
    

′′ ′′ ′ ′ ′ ′= − − +

 

Adding these three expressions, we get  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) d
d

f z g z h z f z g z h z f z g z h z f z g z h z

f z g z h z f z g z h z f z g z h z f z g z h z

f z g z h z f z g z h z f z g z h z f z g z h z
z

′′ ′′ ′ ′ ′ ′− − +

′′ ′′ ′ ′ ′ ′+ − − +

′′ ′′ ′ ′ ′ ′+ − − +

 

A careful glance shows that this vanishes to zero, meaning  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d d d d d d, , , ,
d d d d d d

d d d, , 0
d d d

f z g z h z g z h z f z
z z z z z z

h z f z g z
z z z

      +            
  + =    

 

Because [ ],  is skew-symmetric and satisfies the Jacobi identity, it is a Lie 
bracket and therefore the Witt algebra is a Lie algebra.  

Restricting the vector field to 1S  i.e. eiz θ= , the element of the basis 

1 d
d

n
nL z

z
+= −  becomes  

( )( )

( )

1 de
d
de e e d e d

e d
de

d

i n
n

in i i i
i

in

L
z

z z i
i

i

θ

θ θ θ θ
θ

θ

θ
θ

θ

+= −

= − = =

=

 

Proposition 4.2. [ ] ( ),m n m nL L m n L += −   
Proof. Using the definition in 17 and the above value for nL  restricted to 1S , 

we get  

[ ]

( ) ( )

( ) ( )

( )

d d, e , e
d d

d de e
d d

de
d

im in
m n

i m n i m n

i m n

m n

L L i i

in im

m n i

m n L

θ θ

θ θ

θ

θ θ

θ θ

θ

+ +

+

+

 =   

= − +

= −

= −

 

4.2. Central Extension of the Witt Algebra 

It can be shown that ( )2 Witt,H   is one-dimensional, meaning that in the fol-
lowing exact short sequence:  

0 Witt 0c→ → → →                      (18) 

the central extension Witt c⊕   is unique up to a constant. This unique 
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central extension   is known as the Virasoro algebra. It is spanned by 
{ } { }:mL m c∈  . The vector c is called the central charge. The bracket opera-
tion on   is defined by  

[ ] ( ) ( ), ,m n m n m nL L m n L L L cω+= − +


              (19) 

where ω  is some representative element of the cohomology class of 
( )2 Witt,H  . In the next section we will compute this cohomology class using 

standard results from Kac, which in the mind of these authors fill up the gap that 
seems to exist in physics literature (see for example [3]). 

5. Computation of Cohomology Class Using Conformal Field  
Theory 

This section is adapted from Victor Kac, who develops the theory in much more 
generality in [5]. For the sake of continuity in following along [5], we use much 
of the same notation. However, we introduce the term eigenfield for the Hamil-
tonian H of conformal weight ∆  (see definition 5.3) in our discussion. 

5.1. Operator Product Expansion of Two Eigenfields ( )a z , ( )b w   

with Conformal Weights ∆ , ′∆  

Consider a formal field ( ) 1 1
,,, , , ,m n

m nm na z w a z w z z w w− −
∈

 = ∈  ∑   . Here the 
word “formal” indicates that we are not concerned with convergence. We also 
introduce the formal delta-function ( )z wδ −  defined by  

( ) 1: .
n

n

wz w z
z

δ −

∈

 − =  
 

∑


 

Given a rational function ( ),R z w  with poles only at 0z = , 0w = , and 
z w= , let ,z wi R  (resp. ,w zi R ) denote the power series expansion of R in the 

domain z w>  (resp. w z> ). In particular  

( )
1

, 1
0

1 m m j
z w j

m

m
i z w

jz w
− − −

+
≥

 
=  

−  
∑                 (20) 

( )
1

, 1
0

1 m m j
w z j

m

m
i z w

jz w
− − −

+
<

 
= −  

−  
∑                (21) 

Using the above we can conclude that  

( ) ( )
( ) ( ), ,1 1

1 1j
w z w w zj jz w i i

z w z w
δ + +∂ − = −

− −
           (22) 

1m m j

m

m
z w

j
− − −

∈

 
=  

 
∑


                     (23) 

Recall that the residue in z of a field ( ) n
nnf z f z

∈
= ∑



 is defined as  

( ) 1Resza z f−=  

1) For any formal field ( ) 1,f z z z−  ∈    ,  

( ) ( ) ( )Resz f z z w f wδ − =  

https://doi.org/10.4236/jamp.2019.73042


J. Bakeberg, P. Nag 
 

 

DOI: 10.4236/jamp.2019.73042 579 Journal of Applied Mathematics and Physics 

 

2) ( ) ( )z w w zδ δ− = −  
3) ( ) ( )z wz w z wδ δ∂ − = −∂ −  
4) ( ) ( ) ( ) ( ) ( )1j j

w wz w z w z wδ δ+− ∂ − = ∂ − , j +∈  
5) ( ) ( ) ( )1 0j j

wz w z wδ+− ∂ − = , j +∈   
Proof.  
1) It is sufficient to check ( ) n

nf z az
∈

= ∑  :  

( ) ( )

( )

1

1 1

n m m

n m

n n

f z z w az w z

z aw aw a aw aw

δ − −

∈ ∈

− − −

  − =   
  

= + + + + + + + + +

∑ ∑

    

   

( ) ( ) ( )Resz f z z w f wδ⇒ − =  

2) ( ) ( )1 1n n m m

n m
z w z w z w w zδ δ− − − −

∈ ∈

− = = = −∑ ∑
 

 

3) ( ) ( ) ( )1 1 21m m n n
w z

m n
z w mw z n w z z wδ δ− − − − −

∈ ∈

−∂ − = − = − − = ∂ −∑ ∑
 

 

4) This is an application of Equation (22):  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1
, ,2 2

, ,1 1

1 1

1 1

j
w z w w zj j

z w w zj j

j
w

z w z w z w i i
z w z w

i i
z w z w

z w

δ

δ

+
+ +

+ +

 
 − ∂ − = − −
 − − 

= −
− −

= ∂ −

 

5) We again use Equation (22):  

( ) ( ) ( ) ( )
( ) ( )

1 1
, ,1 1

1 1 0j jj
w z w w zj jz w z w z w i i

z w z w
δ+ +

+ +

 
 − ∂ − = − − =
 − − 

 

We want to know when a formal field  

( ) 1 1
,

,
, , , ,m n

m n
m n

a z w a z w z z w w− −

∈

  = ∈   ∑


  

has an expansion of the form  

( ) ( ) ( ) ( )
0

, jj
w

j
a z w c w z wδ

∞

=

= ∂ −∑                  (24) 

It follows from Proposition 5.1 that  

( ) ( )( )Res , nn
zc w a z w z w= −                  (25) 

Let 
01 1, , ,z z w w− −      be the subspace consisting of formal  -valued dis-

tributions ( ),a z w  for which the following series converges:  

( ) ( )( )( ) ( ) ( )
0

, : Res , j j
z w

j
a z w a z w z w z wπ δ

∞

=

= − ∂ −∑         (26) 

Proposition 5.2. 
1) The operator π  is a projector, i.e. 2π π= . 

2) ( ){ }01 1, , , , which are holomorphic inKer a z w z z w w zπ − −  = ∈    . 

Remark 5.1. Recall that a complex function ( )f z  is holomorphic if in some 
neighborhood of its domain ( ) 0

n
nnf z a z∞

=
= ∑  where ia ∈ .  
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3) Any formal field ( ),a z w  from 
01 1, , ,z z w w− −      is uniquely represented 

in the form:  

( ) ( ) ( ) ( ) ( )
0

, ,jj
w

j
a z w c w z w b z wδ

∞

=

= ∂ − +∑               (27) 

where ( ),b z w  is a formal field holomorphic in z.  
Proof.  
1) We want to show ( )( ) ( )( )Res , Res ,n n

z za z w z w a z w z wπ − = − .  

( )( )

( )( )( ) ( ) ( ) ( )

( )( )( ) ( ) ( )

( )( )( )

0

1

,

Res ,

Res ,

Res ,

n

j nj
z w

j

j j n
z w

j n

j m m n j
z

j n m

a z w z w

a z w z w z w z w

a z w z w z w

m
a z w z w z w

j n

π

δ

δ

∞

=

∞
−

=

∞
− − + −

= ∈

−

 
= − ∂ − − 
 

= − ∂ −

  
= −   −  

∑

∑

∑ ∑


 

( )( ) ( )( )Res , Res ,n n
z za z w z w a z w z wπ⇒ − = −  

2) Suppose ( ), 0a z wπ = . Then  

( )( )( ) ( ) ( )
0

0 Res , j j
z w

j
a z w z w z wδ

∞

=

= − ∂ −∑  

( )( )( ) 1

0
0 Res , j m m n j

z
j m j

m
a z w z w z w

j

∞ ∞
− − + −

= =

  
⇒ = −   

  
∑ ∑  

( )( )

( )( )( )

1

0

1 1

1

0 Res ,
0

Res ,
1

m m
z

m

m m
z

m

m
a z w z w

m
a z w z w z w

∞
− −

=

∞
− − −

=

 
⇒ =  

 
 

+ − + 
 

∑

∑ 

 

Thus all the coefficients of 1 1 1, ,m m m mz w z w− − − − −
  are zero for all 0m ≥∈ . 

Thus ( ),a z w  is holomorphic. Conversely, if ( ),a z w  is holomorphic then 
clearly ( ), 0a z wπ = . 

3) Since π  is a projector, 
01 1, , , Im Kerz z w w π π− −   = ⊕   . The claim 

follows.  
Corollary 5.1. The null space of the operator of multiplication by 

( ) , 1Nz w N− ≥ , in 
01 1, , ,z z w w− −      is  

( ) ( )
1

1

0
,

N
j

w
j

z w w wδ
−

−

=

  ∂ −   ∑                    (28) 

Any element ( ),a z w  from (28) is uniquely represented in the form  

( ) ( ) ( ) ( )
1

0
,

N
jj

w
j

a z w c w z wδ
−

=

= ∂ −∑                  (29) 

Proof. Suppose ( ) ( ) ( ) ( )0 0N jj
wjz w c w z wδ∞

=
− ∂ − =∑ . Then  

( ) ( ) ( )0 j Nj
w

j N
c w z wδ

∞
−

=

= ∂ −∑  
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( ) ( )1 0N Nc w c w+⇒ = = =  

Conversely, that ( ) ( )1 1
0 ,N j

wj z w w wδ− −
=

  ∂ −   ∑   lies in the null space of 
( )Nz w−  follows by Proposition (5.1) (5).  

We sometimes write a formal field in the form  

( ) ( )1 1 1
,

,
, ,n m n

n m n
n m n

a z a z a z w a z w− − − − − −

∈ ∈

= =∑ ∑
 

          (30) 

here ( )Res n
n za a z z= . 

Proposition 5.3. If ( ),a z w  has the expansion (29) then  
1

,
0

N
j

m n m n j
j

m
a c

j

−

+ −
=

 
=  

 
∑  

Proof. Let  

( ) ( ) ( ) ( )

( )

1

0

1
1

0

,
N

jj

j

N
j m m j

j m

a z w c w z w

m
c w z w

j

δ
−

=

−
− − −

= ∈

= ∂ −

 
=  

 

∑

∑∑


 

Expand ( )jc w  as  

( ) 1j j n
n

n
c w c w− −

∈

= ∑


 

Then  

( )
1

1 1

0

1
1 1

, 0

,
N

j n m m j
n

j n m

N
j m n

m n j
m n j

m
a z w c w z w

j

m
c z w

j

−
− − − − −

= ∈ ∈

−
− − − −

+ −
∈ =

   =    
    

 
=  

 

∑ ∑ ∑

∑ ∑

 



 

1

,
0

N
j

m n m n j
j

m
a c

j

−

+ −
=

 
⇒ =  

 
∑  

Definition 5.1. A field ( ),a z w  is said to be local if for some 0N    

( ) ( ), 0.Nz w a z w− =                       (31) 

Corollary 5.1 says that any local formal field ( ),a z w  has the expansion (29). 
Definition 5.2. Two formal fields ( )a z  and ( )b z  are said to be mutually 

local, simply local, or a local pair if the formal field  
( ) ( ) 1 1, , , ,a z b w z z w w− −  ∈       is local, i.e. if  

( ) ( ) ( ), 0 for 0Nz w a z b w N− =                  (32) 

Given a formal field ( ) na z
∈

= ∑


, let  

( ) ( )1 1

0 0
, .n n

n n
n n

a z a z a z a z− − − −
− +

≥ <

= =∑ ∑  

This is the only way to break ( )a z  into a sum of “positive” and “negative” 
parts such that ( )( ) ( )( )a z a z

± ±
∂ = ∂  We re-define the formal field ( ) ( )a z b w  

using the “positive” and “negative” parts as follows,  
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( ) ( ) ( ) ( ) ( ) ( ): : .a z b w a z b w b w a z
+ −

= +              (33) 

Proposition 5.4. 

( ) ( ) ( ) ( ) ( ) ( ), : :a z b w a z b w a z b w
−

 = +              (34) 

( ) ( ) ( ) ( ) ( ) ( ), : :b w a z a z b w a z b w
+

 = − +              (35) 

Proof.  

( ) ( ) ( ) ( ) ( ) ( ),a z b w a z b w b w a z
− − −

  = −   

( ) ( ) ( ) ( ) ( ) ( ): :a z b w a z b w b w a z
+ −

= +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), : :a z b w a z b w a z b w a z b w a z b w
− − +

 ⇒ + = + =   

With this new notation in hand we can show the following: The following are 
equivalent to 31:  

1) ( ) ( ) ( ) ( ) ( )
1

0
,

N
j j

w
j

a z b w z w c wδ
−

=

= ∂ −   ∑ , where ( ) 1,jc w w w−  ∈     

2) ( ) ( )
( )

( )
1

, 1
0

1,
N

j
z w j

j
a z b w i c w

z w

−

+−
=

 
   =   − 

∑ ,  

( ) ( )
( )

( )
1

, 1
0

1,
N

j
w z j

j
a z b w i c w

z w

−

++
=

 
   − =   − 

∑  

3) ( ) ( )
( )

( ) ( ) ( )
1

, 1
0

1 : :
N

j
z w j

j
a z b w i c w a z b w

z w

−

+
=

 
 = +
 − 

∑   

( ) ( )
( )

( ) ( ) ( )
1

, 1
0

1 : :
N

j
w z j

j
b w a z i c w a z b w

z w

−

+
=

 
 = +
 − 

∑  

4) [ ]
1

0
, , ,

N
j

m n m n j
j

m
a b c m n

j

−

+ −
=

 
= ∈ 

 
∑   

5) ( ) ( )
1

0
, ,

N
j m j

m
j

m
a b w c w w m

j

−
−

=

 
= ∈    

 
∑   

Proof.  
1) This is a clear result of Corollary (5.1). 
2) By (1),  

( ) ( ) ( ) ( ) ( )
1

0

1 1
1 1

0 0 0 0

,
N

j j
w

j

N N
m m j m m j

j m j m

a z b w z w c w

m m
z w z w

j j

δ
−

=

− −
− − − − − −

= ≥ = <

= ∂ −  

   
= +   

   

∑

∑∑ ∑∑
 

Using the bilinearity of the bracket operation,  
( ) ( ) ( ) ( ) ( ) ( ), , ,a z b w a z b w a z b w

− +
   = +       . Thus  

( ) ( ) ( ) ( )
1 1

1 1

0 0 0 0

, ,
N N

m m j m m j

j m j m

a z b w a z b w

m m
z w z w

j j

− +

− −
− − − − − −

= ≥ = <

   +   
   

= +   
   

∑∑ ∑∑
 

The claim follows. 
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3) By Equation (34),  

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

1

, 1
0

, : :

1 : :
N

j
z w j

j

a z b w a z b w a z b w

i c w a z b w
z w

−

−

+
=

 = + 
 
 = +
 − 

∑
 

The other case is similar. 
4) By (1), ( ) ( ),a z b w    has the expansion 29, thus by proposition (5.3),  

( ) ( ) 1 1
,

,
, m n

m n
m n

a z b w d z w− − − −

∈

=   ∑


 

where  
1

,
0

N
j

m n m n j
j

m
d c

j

−

+ −
=

 
=  

 
∑  

By bilinearity of the bracket,  

( ) ( ) 1 1 1 1
,

,
, ,m n m n

m n m n
m n m n

a z b w a z b w d z w− − − − − − − −

∈ ∈ ∈

 = =     
∑ ∑ ∑
  

 

[ ] 1 1 1 1
,

,
, m n m n

m n m n
m n m n

a b z w d z w− − − − − − − −

∈ ∈ ∈

⇒ =∑∑ ∑
  

 

[ ] 1 1 1 1
,

, ,
, m n m n

m n m n
m n m n

a b z w d z w− − − − − − − −

∈ ∈

⇒ =∑ ∑
 

 

[ ] ,,m n m na b d⇒ =  

5) Let  

( ) ( ) 1 1
,

,
, m n

m n
m n

a z b w d z w− − − −

∈

=   ∑


 

Then  

( ) ( )1 1 1 1
,

,
, ,m m m n

m m m n
m m m n

a z b w a b w z d z w− − − − − − − −

∈ ∈ ∈

  = =    
∑ ∑ ∑
  

 

( )
1

1

0
,

N
j n

m m n j
j n

m
a b w c w

j

−
− −

+ −
= ∈

 
⇒ =    

 
∑ ∑



 

Recall that ( ) 1j j n
nnc w c w− −

∈
= ∑



. Replace n by k j m+ − . Then  

( )

( )

1
1

0

1
1

0

1

0

,
N

j k j m
m k

j k

N
m j j k

k
j k

N
j m j

j

m
a b w c w

j

m
w c w

j

m
c w w

j

−
− − + −

= ∈

−
− − −

= ∈

−
−

=

 
=    

 
 

=  
 
 

=  
 

∑ ∑

∑ ∑

∑





 

Recall that 
( ), 1

1
z w ji

z w +−
 denotes the power series expansion of 

( ) 1

1
jz w +−

 

in the domain z w> . Thus assuming z w>  we can write proposition (5.5) 
(3) simply as  
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( ) ( ) ( )
( )

( ) ( )
1

1
0

: :
jN

j
j

c w
a z b w a z b w

z w

−

+
=

= +
−

∑  

or just the singular part:  

( ) ( ) ( )
( )

1

1
0

jN

j
j

c w
a z b w

z w

−

+
= −
∑                    (36) 

Equation (36) is called the operator product expansion (OPE) of ( ) ( )a z b w  
for z w> . 

Let H denote the Hamiltonian, essentially a semi-postive definite self-adjoint 
operator.  

Definition 5.3. A formal field ( ),a z w  is called an eigenfield for H of con-
formal weight ∆∈  if  

( ) 0z wH z w a− ∆ − ∂ − ∂ =  

We often write an eigenfield ( )a z  of conformal weight ∆  as  

( ) n
n

n
a z a z− +∆

∈∆+

= ∑


 

In this form the condition of being an eigenfield is equivalent to  

n nHa na= −                         (37) 

Proposition 5.6. Suppose ( )a z  and ( )b w  are eigenfields of conformal 
weights ∆  and ′∆  respectively. Then  

1) za∂  is an eigenfield of conformal weight 1∆ + . 
2) ( ) ( ): :a z b w  is an eigenfield of conformal weight ′∆ + ∆ .  
Proof.  
1) Let ( ) n

n
n

a z a z− −∆

∈−∆+

= ∑


. Then  

( ) 1n
z n

n
a n a z− −∆−

∈−∆+

∂ = − − ∆∑


 

( )( )2 11 n
z n

n
z a n n a z− −∆−

∈−∆+

∂ = − − ∆ − − − ∆∑


 

( ) ( ) ( )( ) 11 1 n
z n

n
a z n a z− −∆−

∈−∆+

∆ + ∂ = ∆ + − − ∆∑


 

( ) ( ) ( ) ( )2 11 n
z z

n
a z z a z n n z− −∆−

∈∆+

⇒ ∆ + ∂ + ∂ = + ∆∑


 

We know n nHa na= − . Then  

( ) ( )

( )

( )

( ) ( ) ( )

1

1

1

21

n
z n

n

n
n

n
n

n

z z

H a z H n a z

n Ha z

n n z

a z z a z

− −∆−

∈−∆+

− −∆−

∈−∆+

− −∆−

∈−∆+

 ∂ = − − ∆ 
 

= − − ∆

= − − − ∆

= ∆ + ∂ + ∂

∑

∑

∑







 

2) Consider two eigenfields ( ) n
nna z a z− −∆

∈∆+
= ∑



 and  
( ) n

nnb w b w ′− −∆
′∈∆ +

= ∑   of conformal weight ∆  and ′∆  respectively. Thus  
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( ) ( ) ( )zHa z z a z= ∆ + ∂  

( ) ( ) ( )wHb w w b w′= ∆ + ∂  

Hence  

( )( ) ( ) ( ) ( ) ( )( ) ( )zHa z b w a z b w z a z b w= ∆ + ∂  

( ) ( )( ) ( ) ( ) ( ) ( )wa z Hb w a z b w w b a z′= ∆ + ∂  

( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )z w

Ha z b w a z Hb w

a z b w z a z b w w a z b w

⇒ +

′= ∆ + ∆ + ∂ + ∂
 

Since the Hamiltonian acts as a derivation, i.e.  
( ) ( )( ) ( )( ) ( ) ( ) ( )( )H a z b w Ha z b w a z Hb w= + , then ( ) ( ) ( ) ( ): :a z b w a z b w=  

is an eigenfield of conformal weight ′∆ + ∆ .  
Corollary 5.2. If ( )a z  and ( )b z  are mutually local eigenfield of conformal 

weights ∆  and ′∆ , then in the OPE  

( ) ( ) ( )
( )

1

1
0

jN

j
j

c w
a z b w

z w

−

+
= −
∑  

all the summands have the same conformal weight ′∆ + ∆ .  
Proof. Let ( ) m

mma z a z− −∆
∈−∆+

= ∑


 and ( ) n
nnb w b w ′− −∆

′∈−∆ +
= ∑



. We know  

( ) ( ) ,
m n

m n
m
n

a z b w z wα ′− −∆ − −∆

∈−∆+
′∈−∆ +

= ∑




 

where ,m nα ∈  is an eigenfield of conformal weight ′∆ + ∆ . Since the Hamil-
tonian acts as a derivation and ( )a z  and ( )b w  are eigenfields,  

( ) ( ) ( )

( )

m n m n m n

m n m n

m n

H a b H a b a H b
ma b na b
m n a b

= +

= − −

= − −

 

On the other hand,  

( )
( ) ( )
( )

( )

m n
z w m n

m n m n
m n m n

m n
m n

m n
m n

z w a b z w

a b z w m a b z w

n a b z w

m n a b z w

′− −∆ − −∆

′ ′− −∆ − −∆ − −∆ − −∆

′− −∆ − −∆

′− −∆ − −∆

′∆ + ∆ + ∂ + ∂

′= ∆ + ∆ + − − ∆

′+ − − ∆

= − −

 

Hence  

( ) ( )m n m
m n z w m nH a b z w z w a b z′− −∆ − −∆ − −∆′= ∆ + ∆ + ∂ + ∂  

Thus every term of ( ) ( )a z b w  is itself an eigenfield of conformal weight 
′∆ + ∆ .  

Proposition 5.7. Take ( ) ( ),a z b w  to be local eigenfields of conformal 

weight , ′∆ ∆  resp., with OPE ( ) ( ) ( )
( )

1

1
0

jN

j
j

c w
a z b w

z w

−

+
= −
∑ . Supposing 

( )1 :Nc w c− =  is constant, then N′∆ + ∆ ≥ .  

https://doi.org/10.4236/jamp.2019.73042


J. Bakeberg, P. Nag 
 

 

DOI: 10.4236/jamp.2019.73042 586 Journal of Applied Mathematics and Physics 

 

Proof.  

( )
( )

0z w N

cH z w
z w

′− ∆ − ∆ − ∂ − ∂ =
−

 

( )
( )

( ) ( ) ( )1 1N N N N

c c Nc NcH z w
z w z w z w z w+ +

′⇒ = ∆ + ∆ − +
− − − −

 

( ) ( )N N

c z w cH N
z w z wz w z w

  ′⇒ = ∆ + ∆ − −  − − − − 
 

( )
( )

( )N N

c cH N
z w z w

′⇒ = ∆ + ∆ −
− −

 

Since H is a semi-positive definite self-adjoint operator, its eigenvalues must 
be non-negative real numbers. Thus N′∆ + ∆ ≥ .  

5.2. Computing Cohomology Class Using Operator Product  
Expansion of the Energy-Momentum Tensor 

Note that the energy-momentum tensor ( )T z  is a local eigenfield of conformal 
weight 2∆ =  [3].  

Proposition 5.8. 
1) Let ( )T z  and ( )T w  be mutually local eigenfields for H both of confor-

mal weights 2′∆ = ∆ = . Assume ( )1 1
4

Nc w c− = ∈  is constant. Then the sin-

gular part of the operator product expansion is of the form  

( ) ( )
( )

( )
( )

( )1 1

4 2

22 w

c
c w c w

T z T w
z wz w z w

∂
+ +

−− −
  

where each summand is of conformal weight 4. 
2) If we assume moreover that ( ), 0c T z =   , ( ) ( )1,L T z T z− = ∂   , and 

( ) ( ) ( )0 , 2zL T z z T z= ∂ +    then  

( ) ( )
( )

( )
( )

( )
4 2

1
22 .

c T w T w
T z T w

z wz w z w

∂
+ +

−− −
             (38) 

Proof.  
1) From proposition 5.7 and the assumption, we obtain 4N ≤  and 

( )3 1
2

c w c= . Then the singular part of the OPE looks like  

( ) ( )
( )

( )
( )

( )
( )

( )2 1 0

4 3 2

1
2 .

c c w c w c w
T z T w

z wz w z w z w
+ + +

−− − −
         (39) 

Exchanging z and w in Equation (39) we get  

( ) ( )
( )

( )
( )

( )
( )

( )2 1 0

4 3 2

1
2 .

c c z c z c z
T w T z

z wz w z w z w
− + −

−− − −
  

Applying Taylor’s formula expanding about w, this becomes  
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( ) ( )
( )

( ) ( )( ) ( )( )

( )
( ) ( )( )

( )
( )

22 2 2 2

4 3

1 1 0

2

1 1
2 2

.

w w

w

c c w c w z w c w z w
T w T z

z w z w

c w c w z w c w
z wz w

+ ∂ − + ∂ −
−

− −

+ ∂ −
+ −

−−



 (40) 

Due to locality, Equations (40) and (39) are equal. Thus ( )2 0c w = . The coef-

ficient of ( ) 1z w −−  in Equation (39) is ( )0c w , and in Equation (40) the coeffi-

cients of ( ) 1z w −−  are ( ) ( )0 1
wc w c w− + ∂ . Then ( ) ( )0 11

2 wc w c w= ∂ . Thus 

( ) ( )T z T w  can be written as  

( ) ( )
( )

( )
( )

( )1
1

4 2

1
4 2 w
c c wc w

T z T w
z wz w z w

∂
+ +

−− −
  

Thus (up to a constant)  

( ) ( )
( )

( )
( )

( )1 1

4 2

22 w

c
c w c w

T z T w
z wz w z w

∂
+ +

−− −
            (41) 

2) By proposition 5.5 (5),  

( ) ( )
3

1

0

1
, j m j

m
j

m
L T z c z z

j
+ −

=

+ 
=    

 
∑  

Thus  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 1
1, 2 2L T z c z c z zc z c z z c z− = = ∂ = + = ∂ +    

This along with the assumptions show that ( ) ( )1c w T w= .  
We would now like to consider the commutator bracket operation  

[ ] ( ) ( )

( ) ( )

1 1

1 1

1 1, d , d
2π 2π
d d ,
2π 2π

m n
m n

m n

L L T z z z T w w w
i i
z wz w T z T w
i i

+ +

+ +

 =   

=   

∫ ∫

∫ ∫
 

In conformal field theory, motivated by Equation (36), ( ) ( )T z T w  only 
makes sense if z w>  or w z> . This leads us to define the radial ordering 
of two operators  

( ) ( ) ( ) ( )
( ) ( )

if
:

ifR

T z T w z w
T z T w

T w T z w z
 >∗ =  >

 

Remark 5.2. In the physical theory, this radial ordering is related to the or-
dering of time. Thus  

[ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 1

1 1
0; 0; \

1 1
;

d d, ,
2π 2π

d dd d
2π 2π

d d
2π 2π

m n
m n

m m
w C r C r w

m n
RC w r

z wL L z w T z T w
i i

z wz zT z T w w wT w T z
i i

z w z w T z T w
i i

+ +

+ +
′ ′′∈

+ +

=   

= −

= ∗

∫ ∫

∫ ∫

∫ ∫
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Substituting the ( ) ( )T z T w  OPE yields  

[ ]
( )

( )
( )

( )

( ) ( )

1 1
4 2

1 1
4 2

2d d 2,
2π 2π 2

d 2 ( ) ( )2Res
2π 2

m n
m n

m n

c
T w T ww zL L z w

i i z wz w z

c
w T w T wz w
i z wz w z

+ +

+ +

 
 ∂

= + + + 
−− −  

 
  
  ∂

= + + +  
−− −      

∫ ∫

∫





 

To evaluate this expression, we must perform a Taylor expansion of 1mz +  
about w:  

( ) ( ) ( ) ( )

( )
( )

21 1 1

2
32

1
1

2
1

6

m m m m

m

m m
z w m w z w w z w

m m
w z w

+ + −

−

+
= + + − + −

−
+ − +

 

We substitute this expansion:  

[ ]

( ) ( ) ( ) ( )

( )
( )

( ) ( )
( )

21 1 1

2
32

4 2

,

1d Res 1
2π 2

1 2 ( )2
6 2

m n

n m m m

m

L L

m mw w w m w z w w z w
i

c
m m T wT ww z w

z wz w z

+ + −

−


+= + + − + − 

 
−  ∂+ − + + + +  
 −− −    

∫

 

 

We compute the residue by pairing terms that yield ( ) 1z w −−  and finding the 
coefficients:  

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 2

2 1 2 1

2 1

2 1

,

d 2 1 1
2π 12
d d d2 1 1
2π 2π 12 2π

d2 1 2 1
12 2π

d1
12 2π

m n

n m m m

m n m n m n

m n
m n m n

m n
m n

L L

w cw w T w m w T w m m w
i

w w c ww T w m w T w m m w
i i i

c wm L m n L m m w
i

c wm n L m m w
i

+ + −

+ + + + + −

+ −
+ +

+ −
+

 = ∂ + + + −  

= ∂ + + + −

= + − + + + −

= − + −

∫

∫ ∫ ∫

∫

∫

 

To calculate the integral, consider the following cases: if 0m n+ = , then 

1d 1
2π

m nw w
i

+ − =∫ ; if 1m n+ ≥ , then 1d 0
2π

m nw w
i

+ − =∫ . We can thus express the 

integral with the Kronecker delta ,0m nδ + . We finally conclude that  

[ ] ( ) ( )( )
,0

1 1
,

12m n m n m n

m m m
L L m n L c δ+ +

− +
= − +            (42) 

Thus the 2-cocycle ω  representing the central extension of the Witt algebra 
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can be rewritten by comparing with the Equation (4.3),  

( ) ( )( )
,0

1 1
,

12m n m n

m m m
L Lω δ +

− +
=                  (43) 

Since the ( ) ( )T z T w  OPE calculated in theorem (5.2) is unique up to a con-
stant, we have our justification that ( )2 Witt,H   , and thus the Virasoro 
algebra is the unique central extension of the Witt algebra. 

6. Conclusions and Future Work 

In this article we analytically computed the representative element of the coho-
mology class of ( )2 Witt,H   by using the operator product expansion of the 
energy-momentum tensor ( ) ( )T z T w  and the commutator [ ],m nL L  using 
integrals from standard complex variable theory. Note that in proposition (5.7) 
and in theorem (5.2) we made the assumption that the eigenfield ( )1Nc w−  is a 
constant in order to get the correct form of the commutator [ ],m nL L  for ob-
taining the Virasoro algebra. In our future work we would like to investigate the 
case where ( )1Nc w−  is a monomial in w of appropriate degree and obtain the 
corresponding algebra. For example, if ( )1Nc w w− = , it can be shown by re-
working proposition (5.7) that 1N′∆ + ∆ ≥ − ; hence the singular part of the 
corresponding operator product expansion is  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )3 2 1 0

5 4 3 2

c w c w c w c wwT z T w
z wz w z w z w z w

+ + + +
−− − − −

       (44) 

We intend to rework proposition (5.2) and details therein along with the cor-
responding algebra obtained by computing the commutator [ ],m nL L  in a fu-
ture article. 
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