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Abstract 
In this paper, we build an epidemiological model to investigate the dynamics 
of the spread of dengue fever in human population. We apply optimal control 
theory via the Pontryagins Minimum Principle together with the Runge-Kutta 
solution technique to a “simple” SEIRS disease model. Controls representing 
education and drug therapy treatment are incorporated to reduce the latently 
infected and actively infected individual populations. The overall thrust is the 
minimization of the spread of the disease in a population by adopting an op-
timization technique as a guideline. 
 

Keywords 
Epidemiological Model, SEIRS, Dengue Fever, Optimal Control, Pontryagins 
Minimum Principle, Fourth-Order Runge-Kutta 

 

1. Introduction 

Dengue fever is a painful, debilitating mosquito-borne disease caused by one of 
four closely related dengue viruses (Noorani [1]). It is transmitted by the bite of 
an infected Aedes mosquito. Until now, more than 100 million cases of dengue 
fever occur worldwide in the Indian subcontinent, Southeast Asia, Southern 
China, Taiwan area, The Pacific Islands, The Caribbean, Mexico, Africa, Central 
and South America, Southern United States, and Southern Australia. In Indone-
sia, dengue cases increase yearly in almost all regions (Rodriguez and Monteiro 
[2]). The virus can be spread partly due to an increase in urbanization and also 
by climate change. Since considerable damage can result from the effects of 
dengue fever infection, effective control strategies are of vital importance. 

A very important aspect of the strategy related to dengue fever spreading is 
quick and effective action (Rodriguez and Monteiro [2]). Dengue hemorrhagic 
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fever (DHF) is a more severe form of dengue infection especially if unrecognized 
and not properly treated in a timely manner. However it has been shown that 
with good medical management, mortality due to DHF can be less than 1% 
(Chikaki and Ishikawa [3]). Patients who are already infected with dengue virus 
can transmit the infection via the Aedes mosquito just after the first symptoms 
appear (during 4 - 5 days; maximum 12). Hence, in order to devise effective 
means of control, it is important to understand the epidemiology of the trans-
mission. Transmission can occur more than once; as a result, if a person has suf-
fered from one virus, there can be a repeat occurrence if a different strain is sub-
sequently involved. Usually people who suffer repeat infections have it worse. 
They come down with dengue hemorrhagic fever and suffer massive internal 
bleeding and possible liver damage. The virus causing dengue fever comes in 
four strains, and immunity to one seems to make infection by a second strain 
more dangerous (Laurencia et al. [4]). Experiments for producing and testing 
those control measures, such as education, antiviral drugs, are costly and time 
consuming, so any tool, such as a mathematical model(Lasalle [5]) that will ena-
ble us to predict the outcome is highly valuable. Mathematical models avail us 
with useful predictions about the potential transmission of a disease and the ef-
fectiveness of possible control measures. In addition, epidemiology has emerged 
as an effective tool in disease control. The relationship between mathematics and 
epidemiology has been increasing. For the mathematician, epidemiology pro-
vides new and exciting branches, while for the epidemiologist; mathematical 
modeling offers an important research tool in the study of the spread of diseases. 
Bernoulli [6] proposed an epidemiological model which is considered by many 
authors as the first epidemiological mathematical model. Further work between 
1927 and 1933 including those of Kermack and McKendrick [7] largely influ-
enced the development of mathematical epidemiology models (James [8]). These 
attempts provided the fundamental framework for the compartmentalization of 
epidemiological models. Understanding them is vital in gaining important 
knowledge of the underlying aspects of the dengue fever spread (Thome et al. 
[9]). It is also important in assessing the impact of control measures for reducing 
mortality. 

The discovery of antibiotics and vaccines heralded a new hope in disease con-
trol. Despite this, new challenges resulting from factors such as drug-resistance 
have also emerged. Sometimes this led to the emergence of more virulent forms 
of previously eradicated diseases. For example resistances to such diseases as 
malaria, tuberculosis, dengue and yellow fever have emerged and, as a result of 
climate changes, they have been spreading into new regions (Helena &Teresa 
[10]). Efforts to cope with this challenge have given rise an increasing trend in 
the application of mathematical models and interdisciplinary approaches in dis-
ease study. Their uses have contributed immensely in decision making and 
planning in the health sector. In the work reported herein, an SEIRS compart-
mentalized model is introduced, followed by an optimal control technique in a 
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typical rural environment in Ethiopia. The Pontryagin Minimum Principle is 
presented as a groundwork for the application of the optimization principle. The 
resulting system of equations is solved by a fourth-order Runge-Kutta method. 

2. Dengue Fever Transmission Model with Education 

Quantitative methods are often applied to achieve optimization of investments 
in the control of a disease. This is necessary in order to obtain maximum bene-
fits from a fixed amount of financial resources. In this case, our efforts will be 
directed towards the dynamics of the Aedes mosquito vector as well as some 
management protocols aimed at controlling or alleviating the spread of the dis-
ease. Such management principles involving the termination of the reproduction 
cycle of mosquitoes by avoiding the accumulation of still water in pot-holes and 
ditches especially after a heavy downpour, are of vital importance as well as 
educating the local population on issues related to basic hygiene through the 
television (TV) and radio. 

Model Assumptions and Mathematical Formulation 

1) The population is uniform and mixes homogeneously. The total population 
size, ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + +  at any time t > 0, where N stands for the 
total population, E for exposed I for infected, S for susceptible and R for recov-
ered. 

2) The natural birth rate b and death rates μn are assumed to be different. 
3) Each individual in the population is considered as having an equal proba-

bility of contacting the disease with a contact rate β. 
4) An infected individual makes contact and is able to transmit the disease 

with βN per unit time, that is, the contact rate is proportional to the total popu-
lation size. 

5) The fraction of contacts by an infected with a susceptible is S/N. Therefore 
the number of new infections in unit time per infective becomes (βN)(S/N). This 
rate is called an infection rate. This gives the rate of new infections or those 
leaving the susceptible category as (βN(S/N)I = βSI, which is called an incidence 
of the disease. This type of incidence is called bilinear incidence i.e., proportion-
al to the product of the number of infective individuals and the number of sus-
ceptible individuals. 

6) The number of infected individuals move from the exposed compartment 
per unit time is δE at time t. 

7) The exposed E move from their compartment to I-compartment at a con-
stant rate δ, so that 1/δ is the mean latent period. 

8) The infectious I move from their compartment to R-compartment at a 
constant rate γ, so that 1/γ is the mean infectious period. 

9) The rate of susceptible, exposed, infected and recovered individual removed 
from each compartments through natural death and disease induced death are 
μnS, μnE, μnI, μnR and μdI respectively. 
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10) The recovered individual R move from their compartment to suscepti-
ble(S)-compartment at a constant rate α, 

11) The differential equations from these assumptions can be represented by a 
system of ordinary differential equations: 

( )

( )

d
d
d
d
d
d
d
d

n

n

n d

n

S b IS S uS R
t
E IS E E
t
I E I
t
R I R uS
t

β µ α

β µ δ

δ µ µ γ

γ µ α

= − − − +

= − −

= − + +

= − + +
                 

 (1) 

An optimal control strategy aimed at minimizing the objective (cost) func-
tional J of the cost of education for a susceptible population is described by the 
following differential equations: 

( )

( )

d
d
d
d
d
d
d )
d

n

n

n d

n

S b IS S uS R
t
E IS E E
t
I E I
t
R I R uS
t

β µ α

β µ δ

δ µ µ γ

γ µ α

= − − − +

= − −

= − + +

= − + +

                  (2) 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥  

Subject to: ( ) 2

0

1min d
2

T

J u AI Bu t = + 
 ∫  

where, A is balancing cost factor due to the infective and B is the weight on the 
cost of education. 

Figure 1 is a compartmentalized representation of the mathematical formula-
tion and optimization strategy for education. 

Based on the above assumptions, an optimal control problem is formulated by 
incorporating one of the intervention strategies into our basic mathematical 
model (see Equations (1) and (2)). 
• u(t) is the control which represents the education ratio of susceptible indi-

viduals being educated per unit of time with bounds between 0 and 1. 
 

 
Figure 1. SEIRS model with education. 
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• The inflow of population to the susceptible class is obtained, by combining 
assumptions 2, 5, 9, 10 and control (education). 

• A number of individuals leaves S and enter E, at the same time, a fraction of 
exposed E moves to infectious group I with a latent rate δ. δE represents an 
individual’s move from exposed to infectious. Some of the exposed group die 
through natural death rate μn, μnE represents movement from exposed to 
death. 

• Some individuals leave E and enter into the infected individuals I with latent 
rate δ. 

• A part of the population leaves I and enter the recovered group with recovery 
rate γ. Combination of assumptions 2, 5, 9, 10 in addition to the control u, 
gives the rate of recovered. 

3. Combination of Education and Treatment by Drug therapy 

Antiviral drugs are known to be very helpful in decreasing or preventing disease 
symptoms at the first sign of a dengue outbreak even when there is no evidence 
of fever. Before we incorporate drug therapy as part of our treatment protocol 
and control measures, we will deal with how the application of drug therapy af-
fects some of the model compartments. 
• Consider control variables u1, u1E as representing an individual’s move from 

exposed to recovered. The exposed populations change per unit of time be-
comes, 

1
d
d n
E IS E E u E
t

β µ δ= − − −                    (3) 

• In addition, a number of individuals leaves the infected group I and enter the 
recovered group with recovery rate γ. A number of individuals also leaves the 
susceptible and exposed groups S and E to enter the recovered group with 
controls u and u1 respectively. This gives rate of recovered as: 

( ) 1
d
d n
R I R uS u E
t

γ µ α= − + + +                   (4) 

The differential equation of the diagram for t ≥ 0 is given in a system of ordi-
nary differential equation. Introducing the controls representing the education 
and drug therapy treatment the model of Equation (1) becomes 

( )

( )

1

1

d
d
d
d
d
d
d
d

n

n

n d

n

S b IS S uS R
t
E IS E E u E
t
I E I
t
R I R uS u E
t

β µ α

β µ δ

δ µ µ γ

γ µ α

= − − − +

= − − −

= − + +

= − + + +

                  (5) 

where, S(0), E(0), I(0), R(0) are the initial conditions. The definitions of above 
model parameters are listed in Table 1. The control functions, u(t) and u1(t) are 
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bounded, Lebesgue integrable functions(van den Driessche and Watmough [11]). 
The control, u1(t), represents the effort on drug therapy treatment of latently in-
fected individuals to reduce the number of individuals that may be infectious. 
While the control u(t) is the effort on education of susceptible individuals to in-
crease the number of recovered individuals. 

A is balancing cost factor due to the infective, B and B1 are the weight on the 
cost of education and drug respectively. Figure 2 is now the overall representa-
tion of the model formulation. 

The control problem involves a number of individuals with latent and active 
dengue fever infections. The cost of applying education and drug therapy treat-
ment controls u(t) and u1(t) are minimized subject to the differential equations 
(6). The performance specification involves the numbers of individuals with la-
tent and susceptible components respectively, as well as the cost for applying 
education control (u) and drug therapy treatment control (u1). The objective 
functional is defined as: 

( ) [ ] ( )2 2
1 1 1 1

0

1, min , d
2

T

J u u u u AI Bu B u t = + + 
 ∫            (6) 

where T is the final time and the coefficients, A, B, B1 are balancing cost factors 
reflecting the importance of the three parts of the objective function. We need to  

 
Table 1. Value of variables and parameters. 

Symbols Description Value Reference 

μn 
β 
b 

Natural death rate 

Contact rate 

Average birth rate 

1/(71 * 365) per year 

0.375 per year 

1/(71 * 365) per year 

Helena [12] 

μd Disease related death rate 1/11 per year Assumption 

δ 
γ 

Exposed rate 

Recovery rate 

1/4 per year 

1/3 per year 
Helena [12] 

α Recovering rate of remove disease to Susceptible 0.00008 per year Assumption 

A 
B 

Balancing cost factor due to the infective 

The weight on the cost of education 

100 

0.04 
Esayas [13] 

B1 The weight on the cost of treatment 0.06 Assumption 

 

 
Figure 2. SEIRS model with control. 
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find an optimal control pair, u and u1, such that 

( ) ( )1 1 1, min , | ,J u u J u u u u U= ∈                  (7) 

where, ( ) ( )( ) ( ) ( )( )1 1, | ,U u t u t u t u t=  measurable, ( ) ( )( )1,i ia u t u t b≤ ≤ ,  
1,2i = , [ ]0,t T∈  is the control set. 

4. Analysis of Optimal Control 

The necessary conditions that an optimal pair must satisfy come from the Pon-
tryagins Maximum Principle (Helena [12]). This principle converts (5) and (6) 
into a problem of minimizing point-wise Hamiltonian H, with respect to (u,u1). 
First we formulate the Hamiltonian from the cost functional (6) and the go-
verning dynamics (5) to obtain the optimality conditions. Pontryagin introduced 
the adjoint function to relate the differential equation to the objective functional. 
The necessary conditions needed to solve this OC problem, can be followed 
stepwise: 

Step 1: Formulate the Hamiltonian for the problem and by applying Pontrya-
gin’s principle to the Hamiltonian and find optimal controls u*, 1u∗  with the 
corresponding solution S*, E*, I* and R* of equation (5). 

Step 2: Write the adjoint differential equation, the optimality condition and 
transversality boundary condition (if necessary). Using the Hamiltonian to find 
the differential equation of the adjoint λ, and obtain the adjoint variables λ1, λ2, 
λ3 and λ4 that satisfy adjoint condition. 

( ) , where 1,2,3,4i
i

Ht i
x

λ ∂′ = =
∂

 

Adjoint Functions 

( ) , adjoint conditioni x x
H F g
x

λ λ λ∂′ ′= − ⇒ = − +
∂

                (8) 

( )1 1 1 2 4n
H I u I u
S

λ λ λ β µ λ β λ∂′ ′= − ⇒ = + + − −
∂

 

( )2 2 2 3n
H
E

λ λ λ µ δ λ δ∂′ ′= − ⇒ = + −
∂

 

( ) ( )3 3 1 2 3 4n d
H A S S mu
I

λ λ λ β λ β λ µ γ λ γ∂′ ′= − ⇒ = − + − + + + −
∂

 

( )4 4 1 4 n
H
E

λ λ λα λ µ α∂′ ′= − ⇒ = − + +
∂

 

with transversality conditions ( ) 0, 1,2,3,4i T iλ = = . 
The optimality condition is given by, 

1 1

*

1 1
1

0 at 0

0 at 0

u u

u u

H u u F g
u
H u u F g
u

δ λ
δ
δ λ
δ

∗

= = ⇒ + =

= = ⇒ + =
 

Step 3: Solve for u* and 1u∗  in terms of S*, E*, I*, R* and λ 
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( )4 1 0H Bu S
u

δ λ λ
δ

= + − =                     (9) 

In this way we obtain an expression for the OC: 

*0 at 0u u
H u u F g
u

δ λ
δ

= = ⇒ + =  

( )1 4* S
u

B
λ λ−

=  

( )1 1 4 2
1

0H B u E
u

δ λ λ
δ

= + − =                   (10) 

( )2 4
1

1

E
u

B
λ λ∗ −

=  

Step 4: Solve the four differential equations for S*, E*, I*, R* and λ with boun-
dary conditions, substituting u* and 1u∗  in the differential equations with the 
expression for the optimal control from the previous step. 

Step 5: After finding the optimal state and adjoint, solve for the optimal control. 
We solve that system of differential equations for the optimal state and adjoint. 

The solution of the optimal control in problem terms of S*, E*, I*, R* and λ, 
represents the characterization of the optimal control (u*). The state equations 
and the adjoint equations together with the characterization of the optimal con-
trol and the boundary conditions constitute the optimality system. 

Remark 1: If the Hamiltonian is linear in the control variable u, it can be dif-

ficult to calculate u* from the optimality equation, since H
u

δ
δ

 would not contain 

u. Specific ways of solving these kind of problems can be found in Lenhart and 
John [14]. 

Backward-forward Sweep Method 
From the model the optimal control problem becomes: 

( ) 2

0

1min d
2

T

J u AI Bu t = + 
 ∫  

Subject to: 

( )

( )

d
d
d
d
d
d
d
d

n

n

n d

n

S b IS S uS R
t
E IS E E
t
I E I
t
R I R uS
t

β µ α

β µ δ

δ µ µ γ

γ µ α

= − − − +

= − −

= − + +

= − + +

                 (11) 

With initial value, 

( ) 00 0S S= ≥ , ( ) 00 0E E= ≥ , ( ) 00 0I I= ≥ , ( ) 00 0R R= ≥  and 

( ) ( )2 2
1 1

0

1min d
2

T

J u AI Bu B u t = + + 
 ∫  
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Subject to: 

( )

( )

1

1

d
d
d
d
d
d
d
d

n

n

n d

n

S b IS S uS R
t
E IS E E u E
t
I E I
t
R I R uS u E
t

β µ α

β µ δ

δ µ µ γ

γ µ α

= − − − +

= − − −

= − + +

= − + + +
                

 (12) 

As previously indicated, any solution to the above optimal control problem 
must also satisfy 

( )i
i

Ht
x

λ ∂′ = −
∂

                        (13) 

where, i = 1, 2, 3, 4, x1 = S, x2 = E, x3 = I, x4 = R 

*0 atH u
u

δ
δ

=                         (14) 

1
1

0 atH u
u

δ
δ

∗=
                       

 (15) 

The optimal controls are, 

( )1 4*

0 if 0

if 0

0.9 if 0

H
u

S Hu
B u

H
u

δ
δ

λ λ δ
δ
δ
δ

 <


−= =



>


                 (16) 

( )
1

2 4
1

1 1

1

0 if 0

if 0

0.9 if 0

H
u

E Hu
B u

H
u

δ
δ

λ λ δ
δ
δ
δ

∗

 <

 −= =



>


                (17) 

The optimality condition can usually be manipulated to find a representation 
of u∗ in terms of t, state variables and λ. If this representation is substituted back 
into the ODEs for the state variables and λ then the Equations (11) and (12) 
form a two-point boundary value problem. The Runge-Kutta method is then ap-
plied to solve initial value problems, and resolve the optimality system of the op-
timal control problem. This approach is generally referred to as the For-
ward-Backward Sweep method. Information about convergence and stability of 
this method can be found in (Lenhart & John [14]). The process begins with an 
initial guess on the control variable. Then, the state equations are simultaneously 
solved forward in time and adjoint equations are solved backward in time. The 
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control is updated by inserting the new values of states and adjoint into its cha-
racterization, and the process is repeated until convergence occurs. 

5. Numerical Illustrations and Conclusions 

Numerical solutions to the optimality system comprising the state Equation 
(5)and adjoint equations are carried out using MATLAB and using parameters 
in Table 1 and the following weight factors and initial conditions: A = 100, B = 
0.04, B1 = 0.06, S(0) = 86.46%, E(0) =4.5%, I(0) = 9.042%, R(0) = 0%. The algo-
rithm is the forward-backward scheme; starting with an initial guess for the op-
timal controls u and u1, the state variables are then solved forward in time from 
the dynamics (5) using a Runge-Kutta method of the fourth order. Then those 
state variables and initial guess u and u1 are used to solve the adjoint equations 
backward in time with given final conditions (16) and (17) by employing a 
fourth order Runge-Kutta method. The controls u and u1 are updated and used 
to solve the state and then the adjoint system. This iterative process terminates 
when current state, adjoint, and control values converge sufficiently (Helena 
&Teresa [10]). 

5.1. Results for Optimal Education Only 

With this strategy, education (u) is utilized in the disease control while the con-
trol on drug therapy treatment (u1) is set to zero, with weight factors B1 = 0, A = 
100, B = 0.04. For this strategy, we observed that the number of susceptible in-
dividuals is higher when education and drug therapy treatment are absent 
(Figure 3). For the latently exposed (E) individuals in Figure 4, it can be seen 
that with the presence of education the percentage rate of the exposed is lower 
than when there is no education. The same trend is followed in Figure 5, 
where the percentage of the infected group (I) is lower when exposed to edu-
cation. However the percentage of the recovered individuals (R) with educa-
tion is higher than when there is no exposure to education. Figure 5 and Fig-
ure 6 are respectively less and greater respectively than the percentage of in-
fected individuals and recovered individuals in the absence of education and 
drug therapy treatment. 

5.2. Optimal Drug Therapy Treatment Only 

The control (u1) on drug therapy treatment is utilized while the control on edu-
cation(u) is set to zero, with weight factors A = 100, B = 0.04, B1 = 0.06. For this 
strategy, it can be observed in Figure 7, that controls with education and drug 
therapy treatment lowers the percentage of susceptible individuals (hardly per-
ceptible in the diagram) than with education alone. This is because the recovered 
individuals go back to susceptible group and increase the susceptible group at 
higher rate. For the latently infected individuals in Figure 8, it can be seen that 
in the absence of education, and with an initially exposed population of 4.5%; 
there is hardly any change in the percentage of the individuals exposed both with  
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Figure 3. Susceptible with education Vs without education. 

 

 
Figure 4. Exposed with education Vs without education. 
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Figure 5. Infectives with education Vs without education. 

 

 
Figure 6. Recovered with education Vs without education. 
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Figure 7. Susceptibles with education Vs with education anddrug therapy treatment. 

 

 
Figure 8. Exposed with education Vs with education and drug therapy treatment. 
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education and with education and treatment during the first 5 weeks. It is ob-
vious that the impact of education takes time to be felt or manifested in the dy-
namics. However there is a dramatic change in the dynamics after this period as 
the percentage of the exposed with education and treatment becomes signifi-
cantly lower than for those with education alone. For the infected individuals in 
Figure 9, with an initially infected population of 9.04%, it can be seen that using 
both intervention mechanisms is better than using education as only control 
mechanism. As earlier observed, there is a time lag of about ten weeks for the 
impact of education to be reflected in the dynamics. The same trend is observed 
in Figure 10 for the percentage of the recovered where the time lag for educa-
tion is about five weeks before the influence of education with treatment shows a 
higher percentage than with education alone. 

5.3. Optimal Education and Drug Therapy Treatment 

With this strategy, the controls on education (u) and drug therapy treatment 
(u1) are utilized, with weight factors A = 100, B = 0.04, B1 = 0.06. Figure 11 
shows that the percentage of susceptible individuals with education and treat-
ment is lower than the susceptible population in the absence of education and 
drug therapy treatment. Figure 12, shows that without control the percentage 
of exposed individuals is higher than would be the case with education and 
treatment options. The positive effect of treatment and education is further 
confirmed in Figure 13 where there is a higher percentage of individuals rec-
orded without any control measures. Figure 14 shows that as more people get  

 

 
Figure 9. Infectives with education Vs with education and drug therapy treatment. 
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Figure 10. Recovered with education Vs with education and drug therapy treatment. 

 

 
Figure 11. Susceptibles without education and drug therapy treatment Vs with education. 

 
exposed to treatment and education the more they are likely not to get in-
fected. 
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Figure 12. Exposed without education and drug therapy treatment Vs with education. 

 

 
Figure 13. Infectives without education and drug therapy treatment Vs with education and drug 
therapy treatment. 
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Figure 14. Recovered without education and drug therapy treatment Vs with education and drug 
therapy treatment. 

6. Concluding Remarks 

The results displayed herein not only confirm the validity of the mathematical 
formulation derived but also illustrate how to optimally apply control measures 
involving treatment and education for the control of dengue fever. Utilizing 
education and drug therapy treatment lead to better disease control in the popu-
lation than utilizing drug therapy treatment only. In addition, the application of 
only one form of control measure though it results in a delayed peak in the per-
centage of exposed and infected, is not as effective as using both controls. Thus 
control programs that specialize in an optimal application of multi-control 
measures can effectively reduce or alleviate the effects of dengue fever spread. 

Further work should include other control variables like the effect of bio- 
immunology on the spread of dengue fever, the use of medicated mosquito nets, 
development and application of vaccines, creation of sterile mosquito males for 
the control of mosquito population etc. 
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