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Abstract 
In this article, we summarize some results on invariant non-homogeneous 
and dynamic-equilibrium (DE) continuous Markov stochastic processes. 
Moreover, we discuss a few examples and consider a new application of DE 
processes to elements of survival analysis. These elements concern the 
stochastic quadratic-hazard-rate model, for which our work 1) generalizes 
the reading of its Itô stochastic ordinary differential equation (ISODE) for 
the hazard-rate-driving independent (HRDI) variables, 2) specifies key 
properties of the hazard-rate function, and in particular, reveals that the 
baseline value of the HRDI variables is the expectation of the DE solution 
of the ISODE, 3) suggests practical settings for obtaining multi-dimensional 
probability densities necessary for consistent and systematic reconstruc-
tion of missing data by Gibbs sampling and 4) further develops the cor-
responding line of modeling. The resulting advantages are emphasized in 
connection with the framework of clinical trials of chronic obstructive 
pulmonary disease (COPD) where we propose the use of an endpoint re-
flecting the narrowing of airways. This endpoint is based on a fairly com-
pact geometric model that quantifies the course of the obstruction, shows 
how it is associated with the hazard rate, and clarifies why it is life-threatening. 
The work also suggests a few directions for future research. 
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1. Introduction 

Various non-stationary phenomena, which are studied in the natural/life 
sciences or engineering and described with solutions of deterministic (ordinary 
or partial) differential equations, develop on the entire time axis. Examples are a 
steady-state mode of a non-living system or the dynamic-equilibrium (DE) 
mode of a living system [1] provided that the latter is mature, i.e. considered in a 
time interval sufficiently far away from the birth of the system. However, the 
transition from deterministic differential equations to their stochastic counter-
parts, which are often associated with multi-dimensional non-homogeneous 
continuous Markov stochastic processes, is not free of problems. In particular, in 
the most common formulation, any of these processes can be solely defined at 
the time points to the right from the initial time point. The present work focuses 
on the versions of the processes that are defined on the entire time axis. 

These processes are in focus in Section 2. Section 3 considers the stochastic 
quadratic-hazard-rate (SQHR) model and deals with applications of DE conti-
nuous Markov stochastic processes to survival analyses based on this model. 
Specifications of the SQHR model for problems in chronic obstructive lung dis-
ease (COPD) are discussed in Section 4. Section 5 concludes the work and sug-
gests a few directions for future research. 

2. Invariant Non-Homogeneous and Dynamic-Equilibrium  
Continuous Markov Stochastic Processes 

We denote a stochastic process with ( ), tχ ξ  where ξ ∈Ξ  is a simple event, 
( ),t∈ = −∞ ∞  denotes time, and Ξ  is the space of simple events. We further 

let M ρ  be the set of non-homogeneous continuous Markov stochastic 
processes on the Euclidean space n  ( 1n ≥ ), that satisfy the following two 
properties.  
• All processes in M ρ  have the same transition probability distribution.  
• This distribution is defined at all time points ,s t∈  such that s t< , and 

has the density, ( ), , ,s x t yρ . (The fact that the transition density ρ  is the 
same for all processes in the set is emphasized with the subscript in the 
notation “ M ρ ”).  

As is well known, the transition density ( ), , ,s x t yρ , as a function of ny∈  
at any fixed s, t, and nx∈ , is the conditional probability density of a random 
variable ( ), tχ ⋅  under the condition that ( ), s xχ ξ = , and is such that    

( ) ( )lim , , ,t s s x t y x yρ δ↓ = −                     (1) 

where ( )δ ⋅  is the n-dimensional Dirac delta-function.   
Definition 1 ([2], Definition 1.11). A stochastic process M ρχ ∈  specified by 

its marginal probability density ( ),inv tρ ⋅  such that ([2], (1.7.3))   

( ) ( ) ( ), , , , , d ,ninv invt y s x s x t y x s tρ ρ ρ= <∫             (2) 

is called invariant. The density ( ),inv tρ ⋅  in (2) is called the invariant probability 
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density of the process.                                                
If the transition density ρ  is stationary, i.e. depends on t s−  only, rather 

than on both s and t, all processes in M ρ  are homogeneous (e.g. [3], (2.2.8)). 
Stationary invariant processes are well known since long ago (e.g. [3], (2.2.11), 
(9.2.14)).   

Proposition 1. Any process M ρχ ∈  is defined at all t if and only if it is in-
variant. 

Proof. By the definition of the set M ρ , the marginal probability density of the 
process χ  at time t is determined by the marginal density of the random 
variable ( ), sχ ⋅  where s t<  and the transition density ( ), , ,s x t yρ  by 
means of the well-known integral representation, which is similar to (2). The 
mentioned marginal density and marginal density ( ),inv tρ ⋅  need not be the 
same. If they are different, then the process is only defined at s t< . However, it 
is obvious that a process χ  is defined at all t∈  if and only if both 
marginal-density functions coincide, as is shown in relation (2). This proves the 
proposition.                                                        

The above consideration generalizes the notion of an invariant process for the 
case where the process does not need be stationary. This generalization goes 
back to [4]. Thus, invariant processes are, in general, non-homogeneous.  

The example below is probably the simplest example of invariant processes.   
Example 1. Consider the case where 1n =  and the stochastic process χ  

represents time, t, i.e. ( ), t tχ ξ =  for all t. Obviously, this process is defined and 
is continuous at all time points and its marginal density at time t is ( )t yδ − . 
Moreover, ( ) ( ) ( ) dt y s x s x t y xδ δ δ

∞

−∞
− = − − − −  ∫  at all s t< . This, due to 

Proposition 1, means that the process under consideration is a Markovian one 
with transition probability density    

( ) ( ), , ,s x t y s x t yρ δ= − − −                    (3) 

and is an invariant process. Its invariant probability density is ( ) ( ),inv t y t yρ δ= − . 
Also note that the transition density in (3) satisfies property (1).             

One of the most important classes of continuous Markov stochastic processes 
is diffusion stochastic processes (DSPs). A survey of invariant processes of this 
type can be found in [2] (Chapter 3). However, no criterion for determination of 
invariant probability densities for non-homogeneous DSPs was known until 
recently [5]. Here is a brief summary. 

We need the notations below. 
• Dρ  is the set of all processes in M ρ , each of which 1) is a DSP with drift 

n-vector ( ),g t y  and diffusion n n× -matrix ( ),H t y  where functions g 
and H are sufficiently smooth in the entire space 1n+  and 2) corresponds 
to the transition probability density under consideration, i.e. ( ), , ,s x t yρ , 
for instance, by means of the related Kolmogorov-forward/Fokker-Planck 
equation.  

(All vectors used in the present work are assumed to be column vectors if not 
otherwise explicitly stated). 

https://doi.org/10.4236/jamp.2019.71006


E. Mamontov, Z. Taib 
 

 

DOI: 10.4236/jamp.2019.71006 58 Journal of Applied Mathematics and Physics 
 

• ( )T
1 , , ny y∇ = ∂ ∂ ∂ ∂  and T∇  are the gradient and divergence differential 

operations with respect to the entries of vector x.   
• ( ),f t y  is the so-called Fichera drift. Its entries are  

( ) ( ) ( ) ( )1, , 1 2 ,n
k k kl llf t y g t y H t y y

=
= − × ∂ ∂∑ , 1, ,k n=  . 

We also note that, as is well known (e.g. the paragraph above [2], Section 9.4), 
any process in Dρ  is a solution of an Itô stochastic ordinary differential 
equation (ISODE) of the form    

( ) ( ) ( )d , d , d ,y g t y t G t y w tξ= +                    (4) 

where ( ),w tξ  is the m-vector of the mutually stochastically independent 
Wiener stochastic processes ( 1m ≥ ) and ( ),G t y  is the n m× -matrix coupled 
with diffusion matrix ( ),H t y , 

( ) ( ) ( ) T
, , ,H t y G t y G t y=    .                   (5) 

The above notations allow to summarize the aforementioned criterion of [5] 
as follows. 

An invariant probability density of the processes in Dρ , is the solution 
( )inv ,t xρ  of the partial-differential-equation system 

( ) ( ) ( ) ( ){ }T , 1 2 , , 0f t y H t y t yµ∇ − ∇ = ,            (6) 

( ) ( ) ( ) ( ) ( ){ } ( )T
, , 1 2 , , , 0t y t f t y H t y t y t yµ µ µ∂ ∂ + − ∇ ∇ =    (7) 

under the condition 

( )exp , d 1n t y yµ =  ∫                      (8) 

where ( ) ( ), ln ,invt y t yµ ρ=    . 
Example 2. A simple example of application of the above criterion deals with 

the particular case where 1n = , ( ),g t y y≡ − , and ( ), 2H t y ≡ . In this case, 
the system described by (6)-(7) reduces to 

( )2 2ln , 1inv t y yρ∂ ∂ = −   ,                  (9) 

( ) ( ){ }{ } ( ), ln , , 0inv inv invt y t y t y y t y yρ ρ ρ∂ ∂ + − − ∂ ∂ ∂ ∂ =   .  (10) 

Equation (9) has under condition (8) the solution 

( ) ( ) ( ){ }21 2, 2π exp 2inv t y y e tρ −= − −              (11) 

where the function ( )e t  is to be determined. In order to do that, one substitutes 
(11) into (10) resulting in the equation ( ) ( )d d 0e t t e t+ =  having the 
one-dimensional manifold of trajectories 

( ) ( )( )o oexpe t e t t= − −                     (12) 

parameterized with two scalars, ot  and oe . Application of (12) to (11) leads to 
the corresponding one-dimensional differentiable manifold of invariant probability 
densities 

( ) ( ) ( )( ){ }21 2
o o, 2π exp exp 2inv t y y e t tρ −  = − − − −  .      (13) 
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The members of manifold (13) at two values of oe , o 0e =  and o 1e = , and 
one value of ot , o 0t = , are 

( ) ( ) ( )1 2 2
.0 , 2π exp 2inv t y yρ −= − ,              (14) 

( ) ( ) ( ){ }21 2
.1 , 2π exp exp 2inv t y y tρ −= − − −   .         (15) 

These are indicated in [4] without derivation (see also [5], (15). In contrast, 
expression (13) is derived and, thus, generalizes results (14) and (15) of [4]. 

Paper [4] also draws attention to the non-uniqueness of the invariant density. 
Indeed, the one-dimensional manifold (13) of such densities shows that there 
can be a continuum of invariant processes that correspond to the same transition 
probability density. In other words, uniqueness is, in general, not fulfilled. More 
specifically, M ρ  can contain a continuum of invariant processes, each of which 
corresponds to its individual invariant probability density.                  

Remark 1. If process M ρχ ∈  is invariant with one or another invariant 
density, say, ( ),inv t yρ , then the process is completely described with this 
density. Consequently, there is no need to involve transition density ρ  in the 
analysis of the process. This fact consistently and substantially simplifies the re-
lated theoretical and practical studies.                                   

It is also worth to notice that, at any t∈ , the random variable ( ), tχ ⋅  in 
Remark 1 is described with probability density ( ),inv tρ ⋅ . This density depends 
on time t as a parameter. It can also depend on other parameters. If these do not 
depend on t (e.g. are similar parameters ot  and oe  in (13)), then temporal 
samples of the process χ  can be treated by means of common statistical 
methods (e.g. the maximum-likelihood technique). If the parameters depend on t, 
then applicable statistical methods need to be indicated or, if necessary, developed. 

A discussion on non-homogeneous invariant DSPs can be found in [5]. To 
our knowledge, in the general case of these processes, there is no method for 
derivation of exact invariant probability densities. One of the techniques that can 
provide approximate densities is based on the so-called detailed balance (DB) 
conditions (e.g. [2], (1.12.13) as well as Sections 3.5.2 and 3.5.3). If a DSP is 
stationary and the DB conditions are met, then the DB solution presents the 
exact invariant density. Otherwise, the DB solution does not exist but the DB 
approximation can be regarded as a quasi-stationary one for the corresponding 
solution. The aforementioned method is presented in ([2], Section 3.5.5; see also 
Section 3.5.4). It provides a simplified DB approximation for the invariant 
probability density. Theorem 3.2 in ([2], Section 3.5.5) proves the two-sided 
estimation for this density when both sides are Gaussian densities. 

Apparently, the most important example of the invariant processes is the 
dynamic-equilibrium (DE) ones [1]. The DE probability density corresponding 
to transition density ( ), , ,s x t yρ  is the one determined with limit relation (see 
[1], (10))   

( ) ( ), lim , , ,DE st y s x t yρ ρ→−∞=                    (16) 

https://doi.org/10.4236/jamp.2019.71006


E. Mamontov, Z. Taib 
 

 

DOI: 10.4236/jamp.2019.71006 60 Journal of Applied Mathematics and Physics 
 

where the limit is uniform in ( ),t y . Relation (16) presumes that the limit 
function on the right-hand side does not depend on x. This is the very property 
that enables one to associate this function with an equilibrium. Since the 
function generally depends on t, the equilibrium is generally dynamic. Relation 
(16) is inspired by the well-known similar limit relation of R.Z. Has’minskii ([6], 
(9.12) on p. 139) in the case where the equilibrium is time-independent. One can 
easily see that the DE density determined with (16) is an invariant density. In 
order to realize that, it is sufficient to apply the Chapman—Kolmogorov 
equation ( ) ( ) ( ), , , , , , , , , dnu z t y u z s x s x t y xρ ρ ρ= ∫ , u s t< < , and pass in it to 
the limit as u → −∞ . The invariant process M ρχ ∈  determined with the 
invariant density, which is the DE one, is  termed the DE process.   

Remark 2. According to definition (16) of the DE density, M ρ  can contain 
at most one DE process. Since it (if exists) is invariant, the advantage indicated 
in Remark 1, is equally applicable to it.                                  

Example 3. Passing in (3) to the limit as s → −∞  and taking into account 
(16), one obtains the density ( ) ( ),DE t y t yρ δ= − , which, as follows from 
Example 1, coincides with the invariant density. Thus, time is the DE process. 

Notably, since the expectation corresponding to DE density ( )t yδ − , is t, the 
expectation of a DE process does not need be uniformly bounded in t. 

Example 4. Due to the well-known result (e.g. [3], (9.4.8) and limit relation 
(16), stationary density (14) is a DE density. It corresponds to the DSPs 
considered in Example 2.                                             

If in M ρ  there exists the DE process, it is of special importance in 
connection with convergence of processes that belong to M ρ . Convergence of 
stochastic processes in distribution is the most basic concept of stochastic 
convergence because it follows from other concepts of stochastic convergence. The 
well-known summary (e.g. [3], Point d) on p. 13)  

convergence in the jth mean ⇒  convergence in             
the ith mean where i j≤  ⇒  almost certain convergence ⇒        

stochastic convergence ⇒  convergence in distribution      (17) 

outlines the relationships between different concepts of stochastic convergence. 
One can show, under rather mild conditions, that if the above DE process exists, 
then processes that belong to M ρ  converge in distribution, i.e. the marginal 
probability density of any of them at time t converges to the DE density 

( ),DE tρ ⋅  as t →∞ . The t-dependent relation (16) and the above mentioned 
property are in line with the idea, which is formulated by R.Z. Has’minskii ([6], 
Remark 2 on pp. 140-141) and goes back to the result of A.M. Il’in and R.Z. 
Has’minskii ([4], Theorem 5). 

In connection with the concept of dynamic equilibrium, one can note the 
following. 

A physical equilibrium is independent of t, i.e. static. A DE need not be static. 
Thus, it need not be a physical equilibrium. 

A non-living system may have physical equilibrium(s). It may also have modes, 
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which can be interpreted as DEs. These modes are known as the steady-state ones. 
A living system cannot have static, t-independent equilibrium(s) but, as rule, 

has a DE. 

3. Application of Dynamic-Equilibrium Processes to the  
Survival Analyses Based on the Stochastic  
Quadratic-Hazard-Rate Model  

The remaining of the present work discusses a new application of the notion of 
DE DSP. 

In statistics, there are different quantitative approaches to survival analysis 
(e.g. [7]). Recently, interest has been in joint modeling, i.e. modeling longitudin-
al independent variables, or covariates, on top of time to event, whereas the co-
variates are modeled using a mixed-effects-model approach. The main idea of 
joint modeling is to complement conditional probability distributions, which are 
common in evolutions of multi-component populations and are conditioned 
with fixed values of deterministic parameters of the populations, with probabili-
ty distributions of the component-individual parameters, thereby generalizing 
the deterministic parameters to their stochastic versions and taking into account 
their stochastic variability. Parameters that are not component-individual, re-
main deterministic. 

Joint modeling attracts growing attention in statistics. However, its main idea 
was developed in mathematical physics rather long ago (e.g. [8] [9]). It was mo-
tivated by needs in analysis of multi-component populations with a large num-
ber of components. This development treats the multi-componentness of the 
population as multi-modality of the probability density of stochastic parameters. 
It describes the parameters with the McKean—ISODE ([8], Section 6.2), which is 
even more general than ISODE (4) (not to mention linear Equation (18) below). 
Another example is a mean-field generalization [10] of the classical, Bogolyu-
bov—Born—Green—Kirkwood—Yvon statistical mechanics. This generaliza-
tion is free from the thermodynamic-limit assumption, and is more compact and 
flexible than the classical counterpart. 

One of the aforementioned approaches is proposed in [11]. It, in particular, 
presumes that the hazard-rate-driving independent (HRDI) variables (also 
known as “risk factors”‘ or “covariates”; e.g. see [12]) are the entries of some 
vector ny∈  described with a particular case of ISODE (4) where  
( ) ( ) ( ),g t y A t y a t≡ +  and ( ) ( ),G t y B t≡ , i.e. (see [11], (1)), namely  

( ) ( ) ( ) ( )d d d ,y A t y a t t B t w tξ= + +   .                 (18) 

In this equation, the functions a, A, and B are defined on the entire axis  , 
and t is interpreted as the age of a person whose survival is described with the 
HRDI vector y. Notice that ISODE (18) is linear in the narrow sense ([3], Section 
8.2) and that it was suggested in [11] four years later the above McKean-ISODE 
of [8]. According to [11], the corresponding hazard rate is (see [11], (2)) 
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( ) ( ) ( ) ( ) ( ) ( )T
0, 1 2t y t y t F t y tλ λ ζ ζ= + − −              (19) 

where ( )0 0tλ ≥  is the baseline hazard rate and ( )tζ  is described as follows  

( )tζ  is the so-called “optimal” trajectory of solutions of (18)       
(which is, however, not endowed with any modeling representation). (20) 

( )F t  being a n n× -matrix is symmetric and positive-definite uniformly in t. 
The advantages of model (19) under condition (18) compared to the well-known 
Cox proportional hazard-rate model are discussed in detail in ([11], p. 539).   

Remark 3. Reference [11] emphasizes that ( )tζ  need not coincide with 
( ) ( )1

A t a t
−

−    , which is in fact the zero-drift approximation for y. (It is 
denoted with “ ( )1f t ” in [11]). Thus, in general, these vectors are different. 
Moreover ([11], the text below (2)), any stochastic solution y of (18) can follow a 
deterministic trajectory ( )tζ . In more precise terms, this behavior means that 
any solution y converges to ( )tζ  as time tends to infinity.                 

The discussion in ([11], p. 539) stresses that typical dependences of hazard 
rates on the HRDI variables are J- or U-shaped. A particular, exponential case of 
the J-shaped dependences can be exemplified with the Cox hazard model. Along 
with this, the U-shaped dependences are meaningful for many HRDI variables, for 
instance, human body temperature, weight, volume, and surface, blood pressure, 
serum potassium concentration, serum calcidiol (or calcifediol) concentration 
and other characteristics. Each of them is in a system-relevant bounded interval. 
Values in the middle part of the interval correspond to the lowest hazard rates. 
However, if a value approaches any of the two bounds, the hazard rate rapidly 
increases. The simplest version of U-shaped hazard rates is quadratic. Also note 
that both J- and U-shaped dependences are convex. 

Still, it may seem that the quadratic expression (19) is nothing but a modeling 
assumption. However, it has a consistent ground. Indeed, it follows from the 
exact representation, which is valid under rather mild conditions ([13], Section 
3.3.11), that 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )T

, , ,

1 2 , ,

t y t t t t

y t G t t y t y t

λ λ ζ λ ζ

ζ ζ ζ ζ

= +∇

+ − − −      
      (21) 

where the term ∇  is described in the second bullet above Equation (4) and 

( ) ( )( ) ( ) ( ) ( )( )1 T
0

, , 2 1 , dG t t y t u t t u y t uζ ζ λ ζ ζ − = − ∇∇ + − ∫ .   (22) 

Notice that the second multiplier in the integrand in (22) is the Hesse matrix. 
Comparing (19) and (21), one obtains the relations  

( ) ( )( )0 ,t t tλ λ ζ= ,                      (23) 

( )( ), 0t tλ ζ∇ = ,                        (24) 

( ) ( ) ( )( )
( )

( )( )T, , ,
y t

F t G t t y t t t
ζ

ζ ζ λ ζ
=

= − = ∇∇ .        (25) 

These elucidate a number of topics. 
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First, equalities (23) and (25) express the vector ( )0 tλ  and matrix ( )F t  in 
the model described by (19) in terms of the hazard-rate function ( ),t yλ . 
Moreover, since ( )0 tλ  is the baseline hazard rate, relation (23) shows that the 
function ( )tζ  (cp., (20)) can be interpreted as the baseline value of the variable 
y. Thus, it appeared that the “optimal” trajectory of solutions of Equation (18) in 
the SQHR model is nothing but the baseline value of the variable of this 
equation.  

Next, as follows from (24), the baseline value ( )tζ  of y can be determined as 
a solution of the equation  

( ), 0t yλ∇ = .                         (26) 

Finally, in view of ([13], Section 3.4.4) and equality (21), the scalar ( ),t yλ , as 
a function of y, is strictly convex if and only if the matrix ( ) ( )( ), ,G t t y tζ ζ−  
is positive definite. In that case, Equation (26) has as unique solution, namely the 
baseline value ( )tζ  of y, which corresponds to the only local minimum of 
( ),t yλ  in y. This minimum is also the global one. 
The above properties present the modeling settings for the function ( )tζ  

and clarify its role. 
Hazard rate (19) and the HRDI variables (i.e. entries of vector y in (18)) are 

key ingredients of the survival function (e.g. [7]) and, thus, important elements 
of survival analysis. Relations (18) and (19) constitute the stochastic quadratic- 
hazard-rate (SQHR) model of [11] [14] [15]. The entire approach of [11] is 
developed for aging-related changes in a human organism. The subsequent work 
[14] generalizes the approach of [11] to a joint-modeling paradigm (e.g. see ([14], 
(3) and the text on “Z” below it)) in connection with human aging, health, and 
longevity. In these settings, the population and its components correspond to a 
group of persons and the persons in this group, respectively. Also, the 
component-individual parameters are represented with parameters that are 
individual to the persons, whereas the group parameters are the same for all 
persons. This approach is discussed in-depth in connection with predicting health 
and survival in [15].   

Remark 4. In connection with clinical-trial applications, one should note an 
important advantage of ISODE models. The form of the probability densities of 
solutions of ISODE (18) is well known (e.g. [3], (8.2.9), (8.2.10), (9.2.12), and 
(9.4.8)). In statistical problems, ISODEs with known distributions enable 
consistent and systematic reconstruction of missing data by means of the Gibbs 
sampling (e.g. [16]). Missing data are common in many areas, in particular, in 
clinical trials due to attrition, participants drop out, and various types of cen-
soring.                                                            

No matter what the area of application of the SQHR model is, the key prin-
ciples remain valid. In particular, the approach emphasizes the role of the 
property associated with a special solution of ISODE (18). This property is known 
as the “mean-reverting” one (mentioned in [15], pp. 228/3-228/4). Strictly speaking, 
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it is only applicable to Equation (18) in the case where functions a, A, and B are 
independent of t, i.e. solutions of this equation are the Ornstein—Uhlenbeck 
processes (e.g. [3], Section 8.3). However, it is possible to generalize the 
“mean-reverting” property to the present settings where a, A, and B are 
t-dependent with the help of well-known results and the above concept of a DE 
solution. This can be accomplished in the following way. 

Let there exist numbers 0γ >  and 0Γ >  such that  

( ) ( ), expC t s t sγ≤ Γ − −    

for all s t<  where ( ),C t s  is the Cauchy matrix of the ordinary differential 
equation (ODE) ( )d dy t A t y= . Then one can, on the basis of ([3], Point c) in 
Section 1.4, (11.2.19), and (8.2.4)), show that the “mean-revering” property of 
equation (18) is the property that any solution of this equation converges to its 
DE solution, DEy , in quadratic mean as t →∞ . This solution presents the DSP 
with transition probability density ( ), , ,s x t yρ  and marginal probability density 

( ),DE t yρ . In view of ([3], (8.2.9)), the density ( ),DE t yρ  is Gaussian, with 
expectation vector 

( ) ( ) ( ) ( ), d , dn

t
DE DEe t C t s a s s y t y yρ

−∞
= =∫ ∫            (27) 

and variance matrix   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T

T

, , d

, dn

t
DE

DE DE DE

V t C t s B s B s C t s s

y e t y e t t y yρ

−∞
=           

= − −      

∫
∫

       (28) 

Notably, according to (17), the above mentioned convergence in quadratic mean 
(see the text above (27)) implies convergence in distribution. One of the 
outcomes of the latter convergence is density ( ),DE t yρ . 

Model (18), (19) is not sufficiently complete. For example, the lack of modeling 
representations for the “optimal” trajectory ( )tζ  (see the parentheses in (20)), is 
not resolved in [11] [14] [15]. This gap is partly filled with the results discussed in 
the text on (21)-(26). In addition to that, comparison of the aforementioned 
convergence in quadratic mean and the convergence noted in Remark 3 shows 
that    

( ) ( )DEt e tζ = ,                        (29) 

i.e., the baseline value ( )tζ , or the “optimal” trajectory, of solutions of ISODE 
(18) is provided by the expectation ( )DEe t  of the DE solution (see (27)). Relation 
(29) agrees with the difference of ( )tζ  from the zero-drift approximation for y as 
is emphasized in Remark 3. One can also show that the expectation of the second 
term on the right-hand side of (19) under condition (29) is, in the infinite-time 
limit, ( ) ( ) ( )1 2 tr DEF t V t    (or, equivalently, ( ) ( ) ( )1 2 tr DEV t F t   ) where 
( )tr ⋅  is the trace of a (square) matrix. 

4. Specifications of the Stochastic Quadratic-Hazard-Rate  
Model for Problems in Obstructive Lung Diseases  

The SQHR model of [11] [14] [15] can be applied to various areas, whereas we 
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choose to apply it to clinical trials of treatments against obstructive lung diseases 
(OLDs), i.e. diseases that cause lower airway obstruction (e.g. [17]). These 
include asthma, bronchiectasis, bronchitis, and COPD (e.g. [18]). Airway 
obstruction is a blockage of respiration in the airway (e.g. [17]). For example, the 
citation below is outlined in ([19], p. 1342 and Figure 1) and explained in ([20], 
pp. 448-449 and Figure 7) in more detail. 

“Although the measurements of FEV1 and FEV1/FVC (forced expiratory vital 
capacity, or volume of air expired between full inspiration and residual lung 
volume) provide a reliable way of diagnosing airflow limitation and classifying 
COPD severity, they cannot separate the precise contribution of either small-airway 
obstruction or emphysematous destruction to the airflow limitation in individuals 
with COPD. However, direct measurements of pressures and flows within the lung 
indicate that the smaller bronchi and bronchioles less than 2 mm in diameter are 
the major sites of airway obstruction in COPD. Moreover, the reduced expiratory 
flow that defines COPD results from reduction of the lumen by peribronchiolar 
fibrosis, thickening of the small-airway walls, and occlusion of the lumen of the 
small conducting airways by exudate containing mucus [20].”  

The above histopathological results on the major sites enable one to reveal the 
physiological and biological meaning of the hazard rate in the case of OLDs (in 
particular, COPD) in the compact form. This form, following the definition of 
the hazard rate, includes relations   

( ) ( ) ( )d d , 1,2, ,k k kt t t t k mλ = − Φ Φ =                 (30) 

where t is, as in model (18), the age, 1m ≥  is the (integer) number of the 
terminal or respiratory (also known as transitional) bronchioles in the lung (e.g. 
[21], Section II and Figure 3), ( )k tΦ  is the area of the cross-section of the 
lumen (non-occluded or occluded) of the kth bronchiole (e.g. [22], Section 
“Results” and Figure 1), ( )k tλ  is the kth-bronchiole hazard rate (assumed to 
be independent of ( )k tΦ ), and ( ) ( )d k kt tΦ Φ  is the infinitesimal relative 
change of ( )k tΦ . Linear ODEs (30) are complemented with expressions for the 
survival functions of the bronchioles, ( )kS t , and the survival function of the 
entire bronchiole system, ( )S t  (e.g. [7])   

( ) ( ) ( ) ( )
0

0 exp d , 1,2, ,
t

k k k kS t t s s k mλ = Φ Φ = − =  ∫       (31) 

( ) ( )11 1m
kkS t S t

=
= − −  ∏ .                  (32) 

In the particular case where all kλ  are the same and independent of t, one can 
readily check that survival function (32) corresponds to the exponentiated 
exponential distribution with the parameters independent of t. Also note that 
expression (32) is well known in reliability theory where it is associated with the 
so-called parallel systems, and the survival functions are termed the reliability 
functions. One can also show that this expression corresponds to m stochastically 
independent random variables. They are associated with the component-individual 
hazard rates by means of (31). 
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The role of the bronchiole-specific hazard rates (30) is illustrated in the 
following remark.   

Remark 5. In the particular case where, firstly, the inner surface of the kth 
bronchiole is circular cylindrical of the non-occluded radius ( )kR t  and, se-
condly, this surface is covered by the occlusive layer of highly viscous mucus (e.g. 
[21], Figure 10 and p. 543) of the thickness ( )kT t , the relation  

( ) ( ) ( ) 2
k k kt R t T tπΦ = − −    holds and one can readily show that a linear ODE 

in system (30) applied to the above bronchiole reduces to a linear ODE 
( ) ( ) ( ) ( ) ( )d d 2k k k k kR t T t t t R t T tλ− = − −            for ( )kT t . The correspond-

ing initial condition is ( )0 0kT = . The solution of this initial-value problem is 

( ) ( ) ( ) ( ) ( )
0

0 exp 1 2 d
t

k k k kT t R t R s sλ = − −  ∫ .            (33) 

Expression (33) explicitly shows the following. Firstly, the bronchiole-individual 
hazard is the occlusive-layer thickness. Secondly, this hazard is obstructive because 
it, in the course of the age, grows. And, thirdly, this growth is life-threatening be-
cause the thickness, in the infinite-age limit, tends to the radius ( )kR t  of the 
non-occluded lumen, thereby completely obstructing the lumen with the occlu-
sive-layer mucus. Moreover, relation (33) is one of apparently few results that 
discover informal meaning of the concept of a hazard rate (which is the term 
that can, however, be formally determined for any probability density). Indeed, 
(33) explicitly indicates the informal, geometric meaning inherent in the specific 
biophysical, bronchiole/occlusive-layer system.  

The model described by (30)-(32) and Remark 5 present the biostatistical 
reading of a single component of OLDs, the narrowing of airways. This component 
is a necessary phenomenon in all OLDs including COPD. With respect to COPD, 
the model corresponds to the core measurement results of [23]. The range of the 
related measurement data is contributed with advances in COPD imaging [24]. 
These outcomes can help to better focus research on further modeling of hazard 
rate ( )tλ  (see (30)) for OLDs and interpretation of the results in a less arbitrary 
way. 

The quantity ( )tΦ  is a biophysical characteristic. Along with this, clinical stu-
dies often focus on exacerbations of COPD, which are presumably coupled with 
the occlusion-caused lumen narrowing (e.g. [20], Section “Acute exacerbation”) 
and are usually formulated in terms of patient symptoms and medical signs (e.g. 
test results). In this case, modeling of ( )tλ  can be based on (19) but the 
HRDI-variable vector, say, v, can include not only variables on the entire axis 
  but also variables that are non-negative or represent membership functions 
(MFs) (e.g. [25]). This means that v is in a bounded set nR ⊆   rather than in 
the entire Euclidean space n . However, the latter two types of variables can be 
represented with entries in   of vector y. Examples of these representations, 
which presume that a scalar *v  is an entry of a vector v and a scalar *y  is the 
corresponding entry of a vector y, are the following: 

* *v y= , if *v  is in  ,                      (34) 
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( ) ( ) ( ){ }2
* * * * * * *1 2 1v s y p s y p= + − + −   , if *v  is non-negative,   (35) 

( ) ( ) ( ){ }2
* * * * * * *1 2 1 1v s y p s y p= + − + −   , if *v  is an MF variable (36) 

where * 0s >  and *p  are the scaling and positioning coefficient. In the latter 
case, *v  can also represent a categorical variable (a particular case of an MF 
one) such as any of the following three variables (e.g. [26]): 
• scores 0, 1, ..., 40 on the COPD assessment test;  
• grades 1, 2, 3, and 4 according to the GOLD;  
• grades 1, 2, 3, 4, and 5 on the British Medical Research Council short-

ness-of-breath test;  
after a proper transformation of the actual values into values in interval [ ]0,1 . 
In general, scoring/grading systems should also take into account weight loss 
and muscle weakness, as well as the presence of other diseases. In agreement 
with this, a use of a number of non-negative and MF variables (including the 
GOLD grading) is in the core of clinical studies reported in [27] and other works. 
Also note that Remark 5 draws attention to the question on how specifically each 
entry of the HRDI-variable vector v can affect the bronchiole-individual hazard 
rate in its role indicated in (33).  

Vector nv R∈ ⊆   can formally be described with an equation similar to 
ISODE (4), namely  

( ) ( ) ( )d , d , d ,v q t v t Q t v w tξ= + .                (37) 

Since vector-function ( ),q t v  and matrix-function ( ),Q t v  in (37) allow for 
variables of three different types (see (34)-(36)), Equation (37) can hardly be li-
near in v. In general, models and methods for ISODEs cannot be applied to (37) 
directly because ISODEs are usually considered in the entire Euclidean space 

n  rather than in bounded set nR ⊆   (e.g. [3], Section 6). In order to resolve 
this matter, one can, in Equation (37), pass from vector v to vector ny∈  by 
means of changes of variables (34)-(36) and Itô’s theorem (e.g. [3], (5.3.8)-(5.3.10)). 
The resulting equation is an ISODE for vector y in the form (4).  

Remark 6. The generalized SQHR model suitable for methods of DSP analysis 
comprises nonlinear ISODE (4) for vector y of the HRDI-variable representatives 
(such as terms *y  in (34)-(36)), expressions (21)-(25) under specification (29) 
and the three properties, which are formulated in the text below (25) and, be-
cause of (23)-(25), admit (19) as a particular case. Nonlinear Equation (4), in 
contrast to its predecessor the linear Equation (18), takes into account not only 
the HRDI variables in the entire axis but also the ones that are non-negative or 
MF/categorical. Note, however, that, in the present case, i.e. the case of nonli-
near ISODE (4), the term ( )DEe t  in (29) is the expectation of the DE solution 
of the mentioned nonlinear ISODE.                                    

As is above in Remark 6, Equation (4) is generally nonlinear in y. It is desira-
ble that Equation (4) inherits the important advantage of linear Equation (18) 
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emphasized in Remark 4. However, in the problems of interest, the number of 
variables (or scalar equations) in system (4), n, is of the order of a few units or 
tens, or greater. How can one efficiently obtain probability distributions of such 
high dimensions from nonlinear ISODE (4)? Work [2] focuses on high-dimensional 
DSPs and ISODEs, and includes a few approaches to the problem. The simplest 
one provides an approximate model that comprises: 
• a non-autonomous nonlinear ODE system of the second order ([2], (2.3.9), 

(2.3.10), and Section 2.3.2) with the initial conditions for entries of the ex-
pectation vector ( )e t  ([2], (A.6) and (2.3.12)); the unique advantage of this 
system is that it includes the influence of diffusion matrix (5) on the expecta-
tion;  

• a non-autonomous linear ODE system of the first order ([2], (2.5.8), (2.5.13), 
(2.5.14), and Section 2.5.2) with the initial conditions for entries of variance 
matrix ( )V t  ([2], (1.6.14), (1.6.8)).  

The DE versions of the expectation and variance are provided by numerical inte-
gration of both systems at time intervals, which is sufficiently far away from the ini-
tial time point. One can use a marginal probability density for y, which is the DE 
density and Gaussian, with the corresponding DE expectation and variance. These 
outcomes are approximate representations. Reference [2] includes other approaches 
that are more precise, such as the ones based on the Schauder bases of function Ba-
nach spaces and differential-quadrature/stochastic-adaptive-interpolation method. 

5. Concluding Remarks  

The above analysis of the SQHR model of [11] [14] [15] generalizes the reading 
of its Itô ISODE for the HRDI variables. Moreover, it specifies key properties of 
the hazard-rate function. In particular, it reveals that the baseline value of the 
HRDI variables is the same as the so-called “optimal” trajectory in the SQHR 
model and is the expectation of the DE solution of the ISODE. The work also 
suggests practical settings for obtaining multi-dimensional probability densities 
necessary for consistent and systematic reconstruction of missing data by the 
Gibbs sampling, and further develops the corresponding line of modeling. The 
resulting advantages are emphasized in connection with general survival analysis 
and the statistical framework for clinical trials of new treatments. The present 
work also proposes a use of endpoints reflecting the narrowing of airways, which 
is a major component of obstructive lung diseases (including COPD). This end-
point is based on a fairly compact geometric model that quantifies the course of 
the obstruction, shows how it is associated with the hazard rate, and clarifies 
why it is life-threatening. 

Directions for Future Research can Include 

• Problem-specific derivations and specifications of the hazard-rate functions 
and ISODEs for the HRDI variables in various applications;  

• Implementation and improvement of the computational scenario formulated 
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at the end of Section 4;   
• Development of a practical statistical framework that would enable an ag-

gregated, fairly compact treatment of the suggested bronchiole-system analy-
sis for clinical trials of new treatments of COPD and other OLDs.  

The resulting outcomes will further enrich the field of continuous stochastic 
approaches to survival analysis. 
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Abbreviations 

COPD: chronic obstructive pulmonary disease   
DB: detailed balance   
DE: dynamic equilibrium   
DSP: diffusion stochastic process   
FEV1: forced expiratory volume in 1 second   
FVC: forced vital capacity   
HRDI: hazard-rate-driving independent   
ISODE: Itô stochastic ordinary differential equation   
MF: membership function   
ODE: ordinary differential equation   
OLD: obstructive lung diseases   
SQHR: stochastic quadratic-hazard-rate 
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