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Abstract 

This paper investigates the approach of presenting groups by generators and 
relations from an original angle. It starts by interpreting this familiar concept 
with the novel notion of “formal words” created by juxtaposing letters in a 
set. Taking that as basis, several fundamental results related to free groups, 
such as Dyck’s Theorem, are proven. Then, the paper highlights three creative 
applications of the concept in classifying finite groups of a fixed order, 
representing all dihedral groups geometrically, and analyzing knots topologi-
cally. All three applications are of considerable significance in their respective 
topic areas and serve to illustrate the advantages and certain limitations of the 
approach flexibly and comprehensively. 
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1. Introduction 

Ever since its establishment, the concept of groups has been central to the sub-
ject of abstract algebra. Groups are most commonly described by Cayley tables 
and Cayley graphs, both displaying all of their elements and most of the results 
of the group operation. After studying those two methods and a number of other 
related topics in group theory in detail at Stanford University Mathematics 
Camp (SUMaC) in summer 2017, my understanding invited me to think about 
groups in other ways and enabled me to explore related theories and applica-
tions independently. This paper sums up most of my original work on the third 
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way of presenting groups: using generators and relations. 
The main reason why I chose to delve into this topic is that generators and re-

lations turned out to be a quintessential tool in capturing group structures. They 
proved able to fit flexibly into various situations and reveal insightful properties 
of groups that are hardly conceivable otherwise. Deeply fascinated by such 
adaptability and simplifying power, I aimed to show a bigger picture than merely 
their formal definitions and basic theorems through a wide array of their appli-
cations, from the presentations of dihedral groups and the quaternion group to 
the algebraic classification of finite groups, geometric representation of dihedral 
groups, and construction of knot groups. 

One of the earliest presentations of a group by generators and relations was 
given by the Irish mathematician William Rowan Hamilton in 1856, in his ico-
sian calculus—a presentation of the icosahedral group [1]. Starting from there, 
the first systematic study was given by Walther von Dyck (who later gave name 
to the prestigious Dyck’s Theorem), student of Felix Klein, in the early 1880s [2]. 
In his paper, Dyck defined (without giving it a name) the free group generated 
by a finite number of generators and described an interpretation of a group with 
a given presentation, where each generator is represented by a product of two 
inversions with respect to tangent circles or secants. His study laid the founda-
tion for combinatorial group theory, but it was not until 1924 when a topologist 
Jakob Nielsen introduced the terminology free group in the first deep study of its 
properties [3]. 

Since then, the topic of group presentation and free group has been widely 
studied by mathematicians: Standard notions and methods are systematically 
described in many teaching materials and notes in abstract algebra, such as Jo-
seph Gallian’s comprehensive introductory book Contemporary Abstract Alge-
bra [4] and Florian Bouyer’s notes titled Presentation of Groups [5], which starts 
from the preliminaries of group presentation and free groups and investigates 
topics such as coset enumeration, presentation of subgroups, Baumslaq-Solitar 
Groups, and the Burnside problem. 

As of pure research, most current and recent works are focused on determin-
ing the presentation of advanced-level group structures or interpreting complex 
group presentations. For example, Birman et al. [6] studied how generators and 
relations could be used in the presentation of the n-strong braid group. Karim 
Belabas and Herbert Gangl [7] investigated the methods to compute the group 
presentation of K2OF, the Milnor K-group of the ring of integers OF in a number 
field F, and obtained tame kernels of non-Galois fields on that basis. Nadim 
Rustom [8] described computational conjectures as well as evidences concerning 
the number of generators and relations for an array of graded algebras of mod-
ular forms. 

The fact that there exists little work resembling this study illustrates its uni-
queness in angle as well as findings: This paper examines the applications of 
group presentation from its very basics so that the notion is accessible for ele-
mentary math-learners. By incorporating creative devices such as “formal words” 
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defined from a set, free groups defined with homophones, as well as generators 
defined in terms of mirror reflections, it offers vivid constructive examples while 
linking the ideas to higher-level areas—All three applications discussed in this 
paper can be examined in greater depths. Based on the findings of this paper, 
one is encouraged to further explore the classification of higher-order finite 
groups, geometric presentation of quaternion groups and dihedral and quater-
nion groups in higher dimensions, as well as methods to compute the group 
presentation for complicated knots or to construct knots from their groups 
written in terms of generators and relations. In this sense, this paper serves as a 
valuable reference and source of inspiration for future work. 

As famous scientist Heinrich Hertz stated, “One cannot escape the feeling that 
these mathematical formulae have an independent existence and an intelligence 
of their own, that they are wiser than we are, wiser even than their discoverers, 
that we get more out of them than we originally put into them.”, presenting 
groups by generators and relations has been crucial in yielding innovative find-
ings and shedding light on various topics in abstract algebra. Indeed, this paper 
is part of the contemporary research that shows renewed interest in unlocking its 
full potential. 

2. Preliminary Knowledge 

The following definitions build the foundation for the definition and the proper-
ties of the free group: 

For a set { }, , ,S a b c=   whose elements are “formal” symbols, construct a 
set { }1 1 1 1, , ,S a b c− − − −=   by replacing each x S∈  with the symbol 1x− . The 
“formal” here means that the elements of S and 1S −  are only symbols with no 
implied mathematical properties or relations with each other (refer to 2.3). 

By placing (juxtaposing) the symbols in S and 1S −  next to one another, we 
obtain strings such as 1, , ,ab acb abc aba−  and so on. All finite strings of the 
form 1 2 3 kx x x x  where 1

ix S S −∈   are called words from S, including the 
empty word e which is the string of no symbol ix . Define the set of all words 
from S as ( )W S . 

In order to construct a group out of ( )W S , we define a binary operation 
juxtaposition on the set as: 

For any 1 2 3 mx x x x  and ( )1 2 3 Wny y y y S∈ , 1 2 3 mx x x x  juxtapose  

1 2 3 1 2 3 1 2 3n m ny y y y x x x x y y y y=   . 
We know from ( )1 2 Wmx x x S∈  and ( )1 2 Wny y y S∈  that  

1
1 2 1 2, , , , , , ,m nx x x y y y S S −∈   ; thus ( )1 2 3 1 2 3 Wm nx x x x y y y y S∈  , i.e. 
( )W S  is closed under juxtaposition. Then, it is straightforward to show that 

this operation is associative and the identity element (left and right) is the empty 
word. The commutative law doesn’t necessarily hold in ( )W S  because 

1 2 3 1 2 3m nx x x x y y y y   and 1 2 3 1 2 3n my y y y x x x x   are distinct formal symbols. 
Also, notice that a word of such form as 1aa−  doesn’t cancel out to equal 𝑒𝑒, be-
cause as specified in 2.1, the elements of 1S −  (and subsequently, ( )W S ) do 
not have implied mathematical properties (such as inverses). 
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At this point, “group” ( )W S  with operation juxtaposition still lacks a defi-
nition of inverses. As stated before, the juxtaposition of a given element a and its 
intuitive inverse 1a−  doesn’t equal e. Defined as formal symbols, the individual 
elements in ( )W S  do not have direct arithmetic inverses. Fortunately, this 
problem can be solved using the idea of equivalence classes, an approach in-
spired by a similar limitation in constructing the field of quotients of an integral 
domain1 [9]. 

Theorem 1 (Equivalence Classes of Words): For any pair of elements u and 
v of ( )W S , we say that u is related to v if v can be obtained from u by a finite 
sequence of insertions or deletions of words of the form 1xx−  or 1x x− , where 
x S∈ . This relation is an equivalence relation on ( )W S  and related elements 

form equivalence classes that partition ( )W S . 
Proof: It suffices to prove that this relation is an equivalence relation on
( )W S  and the partition by equivalence classes follows from Lagrange’s Theo-

rem. 
Reflexivity: ( )u W S∈  can be obtained directly from u with no insertions or 

deletions. 
Symmetry: If u is related to v, i.e. v can be obtained from u by some finite se-

quence Q of insertions or deletions of 1xx−  or 1x x− ; then, a corresponding 
sequence Q’ can be created by replacing every insertion in Q with a deletion and 
every deletion with an insertion. It’s easy to verify that u can be obtained from v 
by Q’. Also, same as Q, Q’ is a finite sequence of insertions or deletions of 1xx−  
or 1x x− . Hence, v is related to u. 

Transitivity: If u is related to v and v is related to w, i.e. v can be obtained 
from u by some finite sequence Q1 of insertions or deletions of 1xx−  or 1x x−  
and w can be obtained from v by some finite sequence Q2 of insertions or dele-
tions of 1xx−  or 1x x− ; then w can be obtained from u by sequence Q3 where Q3 
is the composition of Q1 and Q2, i.e. applying Q3 is equivalent to applying Q1 
(which gives v from u) followed by Q2 (which subsequently gives w from v). 
Clearly, Q3 is still a finite sequence of insertions or deletions of 1xx−  or 1x x− . 
Hence, u is related to w.                                             □ 

We now proceed to introduce the formal definition of the free groups and 
subsequent discussions. 

3. Free Groups 

3.1. Definition 

A free group F of S is defined by the following theorem: 
Equivalence Classes Form a Group: Let S be a set of distinct symbols. For 

any word u in ( )W S , let u  denote the set of all words in ( )W S  equivalent 

 

 

1In constructing the field of quotients of an integral domain, the similar problem arises where the 

inverse of formal symbols x
y

 cannot be 
y
x

 because their product, xy
yx

, was also a formal symbol 

that does not cancel into the identity. The main material that shed light on solving the problem is [9] 
Christoph Schwartzweller’s work The Field of Quotients over an integral domain. 
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to u, i.e. u  is the equivalence class containing u. Then the set of all equivalence 
classes of elements of ( )W S  forms a group under the operation u v uv⋅ = . 

Proof: Denote the set of all equivalence classes of elements of ( )W S  as F. 
Closure: For any u  and Fv ∈ , Fu v uv⋅ = ∈  because ( )uv W S∈  for 

any ( )u W S∈  and ( )v W S∈ . 
Associativity: For any ,u v  and Fw∈ ,  

( ) ( )u v w uv w uvw u vw u v w⋅ ⋅ ⋅⋅ = = ⋅= ⋅= . 
Identity element e : Since e is the identity element in ( )W S , for any Fu ∈ ,

u e e u ue u⋅ = ⋅ = = . Therefore, e  is the identity element in F. 
Every element in F has an inverse: For any Fu ∈ , 1 Fu− ∈  because 

( )1u W S− ∈  for any ( )u W S∈ . Also, 1 1u u uu e− −⋅ = =  (the identity element) 
and 1 1u u u u e− −⋅ = =  because 1uu−  and 1u u−  are equivalently related to e by 
a deletion. Thus, the inverse of any Fu ∈  is 1 Fu− ∈ .                    □ 

3.2. Key Properties 

Observation based on the previous definition of a free group of S as the set of all 
equivalence classes of elements of ( )W S  under the operation u v uv⋅ =  al-
lows us to arrive at the following two properties. These properties show the sig-
nificance of free groups in group theory and supports discussions later on in the 
paper. 

Proposition 1: Universal Mapping Property 
Every group is a homomorphic image of a free group. 
Proof: Let G be a group and let S be a set of generators of G (S may be taken 

as G itself, so such an S always exists). Now, let F be the free group on S. Here, 
since any word ( )1 2 3 W Skx x x x ∈  is also an element of G, we need to distin-
guish between the two cases by notations ( )1 2 3 k F

x x x x  and ( )1 2 3 k G
x x x x  

(The two elements are different from each other as the operations on F and G 
are different.) Still, 1 2 3 kx x x x  denotes the equivalence class in F to which 

1 2 3 kx x x x  belongs. 
Now consider the mapping : F Gf →  given by  

( ) ( )1 2 3 1 2 3k k G
f x x x x x x x x=  . 

Clearly, f is well defined, because insertions or deletions of words of the form 
1xx−  or 1x x−  corresponds to insertions or deletions of the identity in G (since 

x and 1x−  represent inverses of each other in G), so that all the elements in the 
same equivalence class in F correspond to a same element in G. Also, f is onto G 
because G is generated by S. 

Then, we check that f is homomorphic (operation-preserving) by 

( )( )
( )

( )
( ) ( )

( ) ( )

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

m n

m n

m n G

m nG G

m n

f x x x x y y y y

f x x x x y y y y

x x x x y y y y

x x x x y y y y

f x x x x f y y y y

=

=

=

=

 

 

 

 

 

                   □ 
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Proposition 2: Universal Factor Group Property 
Every group is isomorphic to a factor group of a free group. 
Proof: In fact, this proposition follows as a consequence of Proposition 1 and 

the First Isomorphism Theorem for Groups2 [10]. 
Still, as defined in Proposition 1, let G by a group and let S be a set of genera-

tors of G. Now, let F be the free group on S. The mapping : F Gf → given by 

( ) ( )1 2 3 1 2 3k k G
f x x x x x x x x=   is a surjective homomorphism. From there, the 

First Isomorphism Theorem for Groups gives 1) the kernel of f is a normal sub-
group of F and 2) ( )G F ker f≅  by surjectivity.                        □ 

4. Generators and Relations 

4.1. Formal Definition [3] 

Let G be a group generated by some set { }1 2 3, , nA a a a a=   and let F be the 
free group on A. Let { }1 2 3, , , , tW w w w w=   be a subset of F and let N be the 
smallest normal subgroup of F containing W. We say that G is given by the ge-
nerators 1 2 3, , , , na a a a  and the relations 1 2 3 tw w w w e= = = = =  if there is 
an isomorphism from F/N onto G that carries ia N  to ia . 

The notation for such G is: 

1 2 3 1 2 3,, , ., |n tG a a a a w w w w e= = = = = =   

*For the sake of convenience in the discussions in this paper, the number of 
generators and relations in the definition is finite. However, this arbitration is 
not necessary. 

Following the formal definition, free groups can be understood as groups “free” 
of relations, i.e. 1 2 3, , , |,Free nG a a a a=   (there is no additional rela-
tions apart from the identity element and pairs of inverses). Hence, it is easy to 
show that any subgroup of a free group is still a free group because the set of ge-
nerators of a subgroup is a subset of the original set of generators, and the fact 
that these generators have no extra relations remains true for the subgroup. 

4.2. Exemplification 

All definitions established, several problems closely related to the usage of gene-
rators and relations will be presented in this section. The course of solving these 
problems and proving related theorems shows exactly how generators and rela-
tions simplify problems and offer interesting, intuitive insights. 

4.2.1. D8 (Dihedral Group of Order 16) 
By definition, the dihedral group D8 is the group of all symmetries of a regular 

 

 

2The First Isomorphism Theorem for Groups states the following:  
Let G and H be groups, and let φ: G → H be a homomorphism. Then: 
 The kernel of φ is a normal subgroup of G, 
 The image of φ is a subgroup of H, and 
 The image of φ is isomorphic to the quotient group G/ker(φ). 
In particular, if φ is surjective then H is isomorphic to G/ker(φ). 
A rigorous proof of the theorem can be found in [10]. 
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octagon, i.e. D8 consists of the eight isometric rotations and the eight reflections 
of a regular octagon. The following work describes a method to obtain its stan-
dard algebraic presentation ( )28 2

8 , |D a b a b ab e= = = =  from this geome-
tric definition. One side note for the reason of choosing D8 instead of D4 is that 
proof for deriving D4’s algebraic presentation can readily be found in a number 
of papers and teaching materials. Also, the work on D8 can be readily generalized 
to obtain the algebraic presentation of any ( )22, | x

xD a b a b ab e= = = = . 
Let F be the free group on the set { }S ,a b= , and let N be the smallest normal 

subgroup of F containing the set ( ){ }28 2, ,a b ab . In order to derive the algebraic 
presentation of D8, our goal here is to show that 8D F N≅ . 

Consider a regular octagon centered at the origin. Let’s begin by constructing 
the mapping 8: Ff D→  so that a is taken to 45ρ  (a counterclockwise rotation 
about the center through angle 45˚) and b is taken to 0r  (a reflection about the 
axis through the center that makes an angle 0˚ counterclockwise with the x-axis, 
i.e. a horizontal reflection). It is straightforward to verify that this mapping is a 
well-defined homomorphism (D8 is generated by { }45 0, rρ  and its operation is 
composition of plane isometries; refer to 3.2/Proposition 1). Furthermore, 

( )N ker f∈  because ( ) ( ) ( )8 2 2
45 0 45 0r r eρ ρ= = = . Thus, ( )8 F kerD f≅  by 

3.2/Proposition 2. 
Now the only work left is to show ( )F ker F Nf = . Since we know by 

( )F ker f isomorphic to D8 that ( )F ker f  has sixteen elements, it suffices for 
us to show that F/N also has sixteen elements because ( )N ker f∈ . With ob-
servation, we claim that the set 

{
}

2 3 4 5 6 7 2

3 4 5 6 7

, , , , , , , , , , ,

, , , ,

Q N aN a N a N a N a N a N a N bN abN a bN

a bN a bN a bN a bN a bN

=
 

of left cosets of N is F/N itself. 
To validate this claim, first note that every element of F/N can be generated by 

successive left multiplications on N with various combinations of a’s and b’s. 
Hence, it suffices to verify that Q is closed under left multiplication by a’s and b’s. 
The case of left multiplying with a’s is trivial as 8a e= . For b, we complete the 
following formulae (note that N Na a=  and N Nb b=  by the fact that N is a 
normal subgroup of G): 

( )b N bN=  

( ) 2b bN b N=  

( ) ( )
( )
2 1

1 1 8 7 7

b aN baN baNb babNb a abab Nb

a Nb a a Nb a Nb a bN

−

− −

= = = =

= = = =
 

( ) ( )( ) ( )( )1 9 9 7 8k k k k kb a N ba Na a b aN a a bN a bN− − − −= = = =

( ) ( )( ) ( )( )8 8k k k kb a bN ba Nb a b bN a N− −= = =  

where 1 9k kba a b− −=  because  
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( ) ( )1 1 1 1 1 1k k k k kba b a abab b a abaa a ba− − − − − −= = = =  and applying this process 
recursively to xba  a total of ( )9 k−  times gives 1 9k kba a b− −= . 

The fact that Q is closed under left multiplication by a’s and b’s gives us that 
F/N has at most sixteen elements. Meanwhile, since  

( ) ( ) ( )( )F ker F N ker Nf f≅ , i.e. ( )F ker f  is a factor group of F/N, it holds 
that F/N has at least sixteen elements. Therefore, F/N has the same sixteen ele-
ments as ( )F ker f  and ( )8 F ker F ND f≅ = .                      □ 

In fact, the reasoning argument developed above to prove that the group F/N 
has sixteen elements is further formalized and generalized by Dyck’s Theorem 
and its corollary, which can also be proven using the idea of the free group. 

Dyck’s Theorem (1882): Let 1 2 3 1 2, , |, , n tG a a a a w w w e= = = = =    
and let 1 2 3 1 2 1, ,, , |n t t t kG a a a a w w w w w e+ +′ = = = = = = = =   , then G′  
is a homomorphic image of G. 

In other words, Dyck’s Theorem states that if we start with a group G defined 
in terms of generators and relations and create a group G’ by introducing addi-
tional relations on the same set of generators, then G’ is a homomorphic image 
of G. 

Proof: Let F be the free group of the set { }1 2 3S , , , , na a a a=  . Let N be the 
smallest normal subgroup of F containing { }1 2 3, , , , tw w w w  and let M be the 
smallest normal subgroup of F containing { }1 2 3 1, , , , , , ,t t t kw w w w w w+ +  . Then, 
by the definition of generators and relations, G F N≅  and G F M′ ≅ . 

Consider the mapping : F N F Mf →  that sends aN to aM for Fa∈ . It is 
trivial that f is onto F/M due to Fa∈ . Also, f is a homomorphism because 
( )( ) ( ) ( )( ) ( ) ( )1 2 1 2 1 2 1 2 1 2N N N M M M N Nf a a f a a a a a a f a f a= = = = . With  

G F N≅  and G F M′ ≅ , the surjective homomorphism from F/N to F/M in-
duces a surjective homomorphism between G and G’. Hence, G’ is a homomor-
phic image of G.                                                   □ 

Corollary: If K is a group satisfying the defining relations of a finite group G 
and ( ) ( )ord K ord G≥ , then K G≅ . 

Proof: By Dyck’s Theorem, we know that K is a homomorphic image of G, 
which gives ( ) ( )ord K ord G≤ . With the condition of ( ) ( )ord K ord G≥ , we 
obtain ( ) ( )ord K ord G= . Given that K is a homomorphic image of G, we have 
K G≅ .                                                          □ 

4.2.2. The Quaternion Group Q4 
The quaternion group is defined by the presentation  

( )22 2
4 , |Q a b a b ab= = = . This section seeks to unveil the concrete structure 

of Q4 given its generators and relations, and the arguments here build on some 
of the conclusions and theorems presented in 4.2.1. 

Again by definition, Q4 is isomorphic to F/N, where F is the free group on the 
set { },a b  and N is the smallest normal subgroup of F containing 2 2b a−  and 
( ) 2 2ab a− . Now, if we let H b=  and S H, Ha= , then it follows from the 
same argument in 4.2.1 that S is closed under left multiplication by combina-
tions of a’s and b’s. Then, as in 4.2.1, we have 4 H HQ a=  . 
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From there, we can understand the structure of Q4 once we know the struc-
ture of the elements in H. The only and very useful information we are left with 
at this point is the three relations of the generators which define Q4. 

First of all, observe that ( )22b ab abab= =  gives b aba= . Then 
( )( )2 2 2 4a b aba aba aba ba ab a= = = =  gives 4b e= . Hence, there are at most 

four elements in H and therefore, at most eight in Q4—namely,  

{ }2 3 2 3, , , , , , ,e b b b a ab ab ab . 
This seemingly crowning conclusion actually poses a larger uncertainty, as 

there is one more piece of essential work left—determining whether Q4 has ex-
actly eight elements; in other words, determining whether the eight “elements” 
of Q4 as listed above are distinct. Clearly, there are examples that satisfy the de-
fining relations but have less than eight elements, such as 2 2Z Z⊕  whose order 
is only 4. 

However, by the Corollary to Dyck’s Theorem proven in 4.2.1, we know that 
despite negative examples, it suffices to find one specific group G that satisfies 
the defining generators and relations of Q4 and ( )ord G 8=  in order to obtain 

4 GQ ≅  and therefore ( )4ord 8Q = . It turned out that there exists such an 
“example” G generated by the matrices 

0 1 0
and where 1

1 0 0
i

A B i
i

   
= = = −   −   

 

Calculating all the elements in G directly can prove that its eight elements

{ }2 3 2 3, , , , , , ,e B B B A AB AB AB  are all distinct. Therefore, the quaternion group 
Q4 given by ( )22 2

4 , |Q a b a b ab= = =  is of order 8, and its elements are of 
forms{ }2 3 2 3, , , , , , ,e b b b a ab ab ab . One immediate consequence of this conclusion 
is that Q4 is not isomorphic to D4 as groups both of order 8. 

In fact, the process of understanding Q4 reveals a fundamental shortcoming of 
defining groups in terms of generators and relations: from there, it is often quite 
difficult—impossible in certain cases—to come up with the structure of the 
group in the concrete sense—Cayley tables, Cayley graphs, or even only a list of 
elements. In fact, even when the “candidate” elements are listed, we must still 
verify that it is possible for the group to cover the entire magnitude of the list, i.e. 
there is no duplication of elements in the list. The typical way to do so is by 
mentioning a specific “example” group that satisfies the defining generators and 
relations and that is of the same size as the list of elements, so that the result can 
be affirmed with the help of the Corollary to Dyck’s Theorem. 

The approaches and conclusions in 4.2.1 and 4.2.2 will come into play again 
later in the paper, where these ideas are referred to in further analyzing group 
structures. 

4.2.3. Fun Example: Homophonic Quotients of Free Groups 
The following is a fun real-life scenario partly inspired by Mestre et al.’s work 
Quotient homophones des groupes libres [11]. By applying the mathematical 
concept to concrete words around us, it offers a relaxing perspective to flow with 
the idea of generators and relations. 
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Let G  be a group whose generators are the twenty-six distinct alphabets. Its 
relations are derived by cancellation from equations A = B for every pair of dif-
ferent words A and B that share the same pronunciation (such words are called 
homophones). For example, we can easily obtain a = e = i = n = ∅ (the string of 
no alphabet which is the identity) and so on from equations such as steal = steel, 
brows = browse, their = there, hour = our, inn = in. By going through all such 
equations, it turned out that G is exactly the infinite cyclic group generated by 
letter v, because multiple sources including The Dictionary of American Ho-
mophones and Homographs offer us knowledge that no two homophones have a 
different number of v’s. 

5. Applications 

5.1. Classification of Finite Groups 

The first major application of defining groups in terms of generators and rela-
tions we will look at is how it serves as a handy tool in classifying finite groups of 
a certain order. As a first step, we will show how this definition can be used to 
prove Cayley’s classification theorem of groups of order 8. The primary reason 
for choosing order 8 among other orders is that the classification process of 
these is sufficiently instructional in approaching similar topics without the proof 
becoming overly complicated; meanwhile, the extensive discussion on quater-
nion group Q4 whose order is also eight offers support in developing the proof. 
Then, the work will be extended to groups of higher orders considered workable 
by hand, and we will arrive at a brief classification table of finite groups of orders 
up to 15. 

Classification of Groups of Order 8 (Cayley, 1859): Up to isomorphism, 
there are only five groups of order 8: 8Z , 4 2Z Z⊕ , 2 2 2Z Z Z⊕ ⊕ , D4, and the 
quaternion group Q4. 

Proof: By the Fundamental Theorem of Finite Abelian Groups, we know that 
any abelian group of order 8 is isomorphic to 8Z , 4 2Z Z⊕ , 2 2 2Z Z Z⊕ ⊕ . 

Prior to dealing with the non-Abelian cases, we prove the following lemma: 
Lemma 1: If every element of a group except its identity has order 2, then the 

group is Abelian. 
Proof: If ( )ord 2a =  for every ( ) Ga e≠ ∈ , i.e. 2a e= , then 1a a−=  for 

every Ga∈ . Hence, for any , Ga b∈ , ( ) 1 1 1ab ab b a ba− − −= = = , which im-
plies that the group G is Abelian. 

Now, consider a non-Abelian group G whose order is 8. Meanwhile, let 
( )24 2

1G , |a b a b ab e= = = =  and ( )22 2
2G , |a b a b ab e= = = = .. From 

previous discussions, we know that 1 4G D≅  and 2 4G Q≅ . Therefore, we are 
left with showing that G must be isomorphic (i.e. satisfy the defining relations of) 
either G1 or G2. 

By Lagrange’s Theorem, the order of some element (not the identity) Ga∈
must divide 8, which is the order of the group itself. This gives that ( )ord 2a =  
or 4 or 8. By Lemma 1, we know that not all elements of G have order 2. Hence, 
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Ga∃ ∈  whose order is 4 or 8. If ( )ord 8a = , then ( )2ord 4a = . Therefore, 
Ga∃ ∈  such that ( )ord 4a = . Then, Gb∀ ∈  such that b a∉  (the group 

generated by a). Such an element b exists because 

( ) ( ) ( )ord ord 4 ord Ga a= = < . By Lagrange’s Theorem, we know that 

{ }2 3 2 3G , , , , , , ,a a b e a a a b ab a b a b= = . 
Consider the element 2 Gb ∈  by closure. By cancellation, 2b b≠ , ab, a2b, or 

a3b. What’s more, 2b  cannot equal any powers of a, because b2 commutes with 
b while some power of a doesn’t. Hence, we are left with only two cases: 2b e=  
or 2 2b a= . 

Case 1: 2b e= . 
Note that 1bab a− ∈  because a  is a normal subgroup of G and there are 

only two cosets of a  in ( )1 1G ab a b b a bab b b a a− −⇒ ∈ = ⇒ ∈ = . 
Adding the fact that 1bab a− =  as they are conjugates of each other, we can 
obtain 1bab a− =  or 1 1bab a− −= . The former relation gives ba ab=  and thus 
G Abelian, so 1 1bab a− −=  must be the case. This gives  

( ) 11 1 1ab b a ab ab −− − −= ⇒ =  by ( ) ( )22 1b e b b ab e−= = ⇒ = . Therefore, G in 
Case 1 satisfies the defining relations for 1G . 

Case 2: 2 2b a= . 
Same reasoning as in Case 1 gives us the conclusion 1 1bab a− −= . Then,

( ) ( ) ( )2 1 1 2 1 2 2 2ab aba b b b a bab b aa b b a− − −= = = = = . 
Therefore, G in Case 2 satisfies the defining relations for G2, and the entire 

classification is complete.                                            □ 
Extension: Classification of Finite Groups Up to Order 15 
This convenient way of classifying groups of order 8 using generators and re-

lations presentation is fundamental to understanding more complicated group 
structures. Used in combination with other theorems that teach us about the or-
der of elements in groups of orders p2, 2p, or pq where p and q are primes, ana-
lyzing generators and their relations allows us to classify groups of orders up to 
15. The complete process will not be elaborated in this paper. There is one more 
note when it comes to groups of order 12: There are also 5 groups up to iso-
morphism of order 12; apart from 12Z , 6 2Z Z⊕ , 6D  and 4A  familiar to us, 
the additional group Q6 called the dicyclic group of order 12, has presentation 

6 3 2 1
6 , |Q a b a a b ab ab e− −= = = = . Indeed, the dicyclic groups are the genera-

lization of the quaternion group in higher orders, a property that can also be ex-
plored and developed favorably using generators and relations. 

Table 1 lists the classification of groups of every order up to 15; with further 
knowledge of group structures including Sylow’s Theorems, this classification 
table can be further extended to explore groups of higher orders. 

5.2. Geometric Realization of Dihedral Groups with Mirrors 

Indeed, defining groups by generators and their relations has a highly intuitive 
nature; particularly when it comes to dihedral groups, as is evidenced by their 
general structure of presentation already well-studied. On that basis, this section  
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Table 1. Classification of finite groups of every order up to 15. 

Order Abelian Groups Non-Abelian Groups 

1 1Z   

2 2Z   

3 3Z   

4 4 2 2Z ,Z Z⊕   

5 5Z   

6 6Z  3D  

7 7Z   

8 8 4 2 2 2 2Z ,Z Z ,Z Z Z⊕ ⊕ ⊕  4 4,D Q  

9 9 3 3Z ,Z Z⊕   

10 10Z  5D  

11 11Z   

12 12 6 2Z ,Z Z⊕  6 4 6, ,D A Q  

13 13Z   

14 14Z  7D  

15 15Z   

 
will be presenting a special way of realizing the dihedral groups—using reflec-
tions visualized by mirrors; and reflections in only one single pair of mirrors on 
the plane can realize any finite or infinite dihedral group. 

Consider finite dihedral groups first. Taking D4 as an example, we first place a 
pair of mirrors A and B facing each other such that they make a 45˚ angle coun-
terclockwise in between. Let a denote a reflection in mirror A and b a reflection 
in mirror B. If we adjust mirror A to be horizontal in direction, we can then eas-
ily verify that 0a r=  (a reflection about the axis through the center that makes 
an angle 0˚ counterclockwise with the x-axis, i.e. a horizontal reflection; refer to 
4.2.1) and b a  (the combined effect of first applying a followed by b; written 
conveniently as ba) = 90ρ  (a counterclockwise rotation about the center 
through angle 90˚; refer to 4.2.1). Hence, ba and a correspond to the two gene-
rators of D4. Because the defining relations of a dihedral group follows directly 
from the geometric meanings (i.e. rotation and reflection about a certain axis or 
angle) of its generators, it is straightforward to show that  
( ) ( )4 22ba a baa e= = = . Added the fact that the set of the eight distinct posi-
tions in the figure is closed under reflections a and b, we have D4 represented in 
Figure 1. 

From this example, we see that the key in constructing the two mirrors is 
finding the two generators of Dn (the single reflection and the smallest rotation  

along a 360
n



 angle) and verifying the three relations. The reflection is given  

right away; and it can be shown that the effect of b a  is always a rotation 
along twice the angle in between the two mirrors. 
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Figure 1. The Group D4 represented as reflections in mirrors 
at a 45˚ angle. 

 
This piece of insight allows us to generalize the case to all finite dihedral 

groups Dn and eventually, to D∞ in the limiting case. By the previous argument, 
any given group Dn corresponds to all the reflections in a pair of mirrors set at  

an angle of 180 1 360
2n n

= ⋅
 

. Figure 2 illustrates a portion of D180 thus produced 

by two mirrors that make a 1˚ angle. 
As n approaches infinity, the angle between mirrors approaches zero, i.e. the 

mirrors become parallel to each other in the case of D∞, illustrated in Figure 3. 

5.3. Knot Groups3 

The last application of presenting groups by generators and relations to be dis-
cussed in this paper is its role in the branch of knot theory. The strict mathe-
matical definition of knots is a one-dimensional curve situated in ordinary 
three-dimensional space such that it begins and ends at the same point and does 
not intersect itself. One way to picture the concept a little more concretely is by 
thinking of the curve as a looped string—and indeed, hand-tied knots, its dia-
grams, and even characteristics such as minimum number of crossing points 
bear a great deal of physical intuition (Figure 4). 

However, the fundamental problem of whether certain knots are equivalent is 
extremely hard to solve with geometry alone, because there is always an infinite 
number of possible ways to deform a given knot into different physical “appear-
ances”. Therefore, it is necessary to identify some property that distinguishes 
between knots that are not equivalent. In knot theory, such a property of knots is 
called invariant. While physical invariants such as minimum number of crossing 
points are sometimes hard to determine, according to Lee Neuwirth [12], the al-
gebraic invariant—knot group—“comes incredibly close to giving a complete 
classification.” 

In the following section, we will study the construction of the knot group of 
one of the most basic knots—the trefoil knot (illustrated in Figure 5) in detail. 
This process offers new perspectives to understanding 1) how group presentation  

 

 

3Figures in this section except Figure 9 are adapted from [12]. 
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Figure 2. The Group D180 represented as reflections in mirrors at 
a 1˚ angle. 

 

 
Figure 3. The Group D∞ represented as reflections in parallel mirrors. 

 

 
Figure 4. Example of a Knot. 

 

 
Figure 5. The Trefoil Knot (simple line solid tube). 

 
using generators and relations arises naturally in describing special topic areas 
such as knot theory and 2) mathematical manipulations and conclusions based 
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on this system of group presentation. The very origin of such ideas shall be cre-
dited to French mathematician Henri Poincaré. 

An accessible definition of two knots being equivalent requires considering 
each knot thickened slightly into a tube-like, solid figure. The knots are equiva-
lent if and only if the shape of one can be obtained by deforming the oth-
er—pulling, pushing or twisting its tube model without breaking it or crossing it 
through itself. (Side Note: Certain knots known as “wild knots” cannot be 
thickened and modeled in such manner, but as they are not dealt with in general 
knot theory, they are not in the scope of this paper.) In this sense, the property 
of a knot is essentially the way it is embedded in three-dimensional space. 
Therefore, knots can be distinguished by characterizing all the possible ways of 
moving through the three-dimensional space without “running into” a given 
knot solid itself. 

For the convenience in examining such possible pathways, let’s call the 
three-dimensional space outside a given knot tube S. Let Ω be the set of all di-
rected, one-dimensional paths in S (thus avoiding the knot tube) that begin and 
end at a fixed point b in S. Point b can be chosen arbitrarily, since the pathways 
by which a knot group is defined are not altered by the choice of any specific 
points. The one-dimensionality makes sure that there are no knots on the path-
ways because any knot will deform to a single point in one-dimensional space. 
Also, the “trivial” path e that doesn’t leave b is count in Ω as well. Some elements 
of Ω are illustrated in Figure 6. 

Observe that in terms of their relationships with the knot, λ is equivalent to e, 
as the length of λ does not affect its spatial interaction with the knot. Also, β can 
be untwisted into δ, and the knot at the tip of α can deform and the resulting 
path will also be equivalent to δ. On the other hand, λ is clearly not equivalent to 
δ, as δ loops round the knot once while λ doesn’t. With that knowledge, the fol-
lowing equivalence relation can be defined on Ω as 

For ,x y∈Ω , x is equivalent to y if and only if x can be deformed into y. 
where the deforming process can include pulling, pushing, unknotting, or 

even crossing the path over itself, but neither the starting point nor the ending 
point may be moved and the path may not be broken into disjoint segments, 
moved cross the knot tube, or moved outside of S. 

The proof that this above relation is indeed an equivalence relation follows 
quite trivially from the definition. In fact, such deformations are called homoto-
pies in knot theory, and paths that differ only by homotopies are called homo-
topic. Hence, Ω is partitioned into equivalence classes 1 2, , , nx x x  where kx  
denotes the set of all elements in Ω homotopic to path kx . Then, in the same 
manner as free groups were defined in section 3.1, we can define the underlying 
set of the knot group as the set of all equivalence classes kx  in Ω and its group 
operation as m n m nx x x x⋅ =  where m nx x represents the path from point b that 
first follows mx  back to b and then follows nx  back to b. As illustrated in Fig-
ure 7, Ωm nx x ∈  and m nx x  is well-defined. Hence, the set of all equivalence 
classes kx  in Ω is closed under this operation. 
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Figure 6. All black paths are homotopic, while the colored paths are 
not homotopic to the black ones or to one another. 

 

 
Figure 7. The group operation of the knot group. 

 
Similar graphic illustrations easily show that the operation is associative but 

not necessarily commutative. Also, the identity element is the equivalence class 
containing the trivial path e  by m m me x x e x⋅ = ⋅ =  for all mx  in the set, and 
the inverse of mx , ( ) 1

mx
−

, is defined as ( ) 1
mx −  where ( ) 1

mx −  is the path in Ω 
that has the same shape but the opposite direction as mx . As illustrated in Fig-
ure 8, ( ) 1

m mx x e−⋅ = , so ( ) ( ) ( )
1 1 1

m m m m m mx x x x x x e
− − −⋅ ⋅⋅ = = = . 

Because of the limited knowledge of knot theory developed in this paper, the 
rigorous proof that the knot group is indeed an invariant will be omitted. How-
ever, intuition for this conclusion can be partly obtained by considering how the 
knot group changes when the corresponding knot tube is deformed into other 
equivalent ones. Through deformation in three-dimensional space, all pathways 
in S of the first knot tube would change into pathways in S’ of the resulting knot 
tube with their relationship with the knot tube unchanged. That is to say, any 
pair of homotopic pathways stays homotopic through the deformation process 
by the definition. And since such deformation is always reversible, the knot 
groups of the original and the resulting knots are equal. 

The next step is to derive the precise presentation of the trefoil knot 
group—i.e. its generators and relations. To begin with, observe that all pathways 
that loops round the same segment of the trefoil are equivalent, where by seg-
ment I mean the part taken from one crossing (underpass) point to the next. 
Figure 9 illustrates the three segments, and it can be easily verified that the 
products of , ,x y z  (illustrated in Figure 10, where the three segments are  
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Figure 8. The inverse of a path. 

 

 
Figure 9. The three segments of the trefoil. 

 

 
Figure 10. The generators of the trefoil 
knot group. 

 
shaded with different colors) and their inverses cover all equivalence classes in Ω. 
Thus, , ,x y z  are the generators of the knot group. 

Then, to obtain relations, consider the interactions between ,x y  and z . 
Because the three of them are defined in terms of their locations on the segments, 
the only places where they meet one another are at the three crossing (underpass) 
points. Take the upper left crossing point in the trefoil as an example: observe 
that pulling the starting and ending point of path x along path 𝑦𝑦 creates a path 
homotopic to 1y xy−  (as illustrated in the upper row of Figure 11). Then, the 
lower row of the figure shows that the product of 1y xy−  and 1z−  is the trivial 
path. Therefore, the way the generators behave at this crossing point can be ex-
pressed in the equation 1 1y x y z e− − = . Similarly, investigations of the other two 
crossing points yield the other two relations 1 1y x ez z− − =  and 1 1x z x y e− − = , 
so that the presentation of the trefoil knot group is complete as 
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Figure 11. The relations in knot groups. 

 
1 1 1 1 1 1| ,, ,,x y z y x y z z ye ez x z ex x y− − − − − −= = = . Back in 1910, German ma-

thematician Max Dehn proved that the knot group is calculable, which means 
that a group presentation with generators and relations can always be obtained 
for any given knot [13]. And for knots not too “wild”, the method described in 
the paper can be generalized to construct knot groups in other cases. 

Now that physical knots are transformed into pure algebra, some substitution 
and manipulation in the relations can be made. It is evident that z , as a prod-
uct of x  and y , can be eliminated, and that gives another equivalent presen-
tation of the trefoil knot group: |,x y x y x y x y= . From this form of the rela-
tion, we can further develop a third presentation where the relation is written in 
exponent form by letting u x y=  and v x y x= . The presentation 

3 2, |u v u v=  is valid because any product of ,x y  and their inverses can be 
expressed as products of ,u v  and their inverses, verified as  

( ) ( ) ( ) ( )1 1 1 11 1 1 1 1 1 1v u u ux y x x x xu
− − − −− − − − − − −= = = =  and 

( )( ) ( ) ( )
11 1 11 1 1 1 1y x xu v y yu
−− − −− − − − −= = = . 

The above discussion vividly displayed the fascinating flexibility of the knot 
group; however, challenge remains that a given knot group may have several 
different-looking group presentations, and lengthy, complicated relations are 
often quite hard to simplify and reduce. Also, given a group presentation, it is 
not at all evident what the original knot looks like (a problem similar to that in 
section 4.2). Nevertheless, the knot group still offers key insights that are hardly 
attainable through the physical tools. For example, if we look at the trivial 
knot—basically a simple loop as illustrated in Figure 12—its knot group is just 
the group presented with only one generator x  and no relations. On the other 
hand, the process of constructing knot groups tells us that tying more knots 
meant adding more crossing points and thereby, creating a knot group that has 
more generators and more complicated relations than the original group. This  
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Figure 12. The trivial knot. 

 
simple investigation allows us to handily answer one important question in knot 
theory which asks whether tying a second knot can untie an existing one (i.e. 
Can their product be the trivial knot?) By noting that the resulting knot group 
must be more complicated than the one we started with, we can conclude that 
the resulting knot group cannot be equal to the trivial knot group which is the 
simplest in structure. Thus, it’s impossible to untie a knot by tying another. 

Countless mathematical work exists out there that investigates the usage of 
knot groups and the idea of generators and relations as a whole. The main body 
of this paper will end here, and the author hopes that the above discussions illu-
strate a basic understanding of how generators and relations are constructed and 
put into use. 

6. Conclusions 

Since the basic structure of this paper has already been summarized in the ab-
stract and the introduction, I would like to conclude the entirety of my work by 
elaborating a little more on some advantages and disadvantages of presenting 
groups in terms of generators and relations. 

As is briefly touched in this paper, many topics—knot theory and algebraic 
topology in particular—are understood much more naturally through groups 
defined by generators and relations. This is because such definition captures 
more direct and accurate information while allowing great freedom for individ-
ual elements in the given group. Furthermore, within the field of group theory, it 
is routinely easier to construct examples and counterexamples with generators 
and relations by the same reason. 

On the other side of the coin, the main disadvantage of relying too heavily on 
generators and relations is the ambiguity of the precise form of the group—given 
its presentation, it is often extremely hard to determine the size of the group, 
find out its identity element, or even tell whether the group is finite or not (as il-
lustrated in the example of the quaternion group). Meanwhile, a given group has 
infinitely many completely different presentations in terms of generators and 
relations (as illustrated in the case of the knot group). Fortunately, however, 
with today’s rapid advancement of computer technologies, this ambiguity from 
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generators and relations is gradually being removed while their strength can be 
made better use of. 
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