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Abstract

In this paper, we consider the global existence and decay rates of strong solutions
to the three-dimensional compressible quantum Hall-magneto-hydrodynamics
equations. By combing the -7 estimates for the linearized equations and a
standard energy method, the global existence and its convergence rates are
obtained in various norms for the solution to the equilibrium state in the
whole space when the initial perturbation of the stationary solution is small in
some Sobolev norms. More precisely, the decay rates in time of the solution
and its first order derivatives in Z*-norm are obtained when the I'-norm of
the perturbation is bounded.
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1. Introduction

In this paper, we consider the following compressible Hall-MHD equations for

quantum plasmas in three dimensional whole space R’:

p, +div(pu)=0,

(pu), +div(pu ®u)+VP(p)—§pV[£J

Jr (L.1)
= B-VB+ phu+(A+u)VV-u,
Bt+u~VB+V><((V><B)><B)—AB=B~Vu, V-B=0,

for (z,x)e[0,400)xR* with the initial conditions:
(p,u,B)L:O:(po(x),uo(x),Bo(x)), xeR*, (1.2)
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Here p>0, uz(ul,MQ,Lf) and Bz(Bl,BQ,B3) denote the density, the
velocity and magnetic field, respectively. The pressure P=P(p) is a smooth
function with P'(p)>0 for p>0, x and A are referred to as the shear
viscosity and the bulk viscosity coefficients of the fluid, which satisfy the usual
condition

u>0, 2u+31>0.

where 7 >0 is the Planck constant. The #”-term is referred to as the quantum
potential or Bohm potential term [1], which is strongly nonlinearly degenerate
and leads to the system non-diagonal and should be regarded as a consequence
from dispersive properties of the quantum fluid.

The quantum terms date back to Wigner [2], where quantum corrections were
considered for the thermodynamic equilibrium. The quantum correction to the
stress tensor was proposed in [3] [4]. One may see Hass [5] for many physics
backgrounds and mathematical derivation of many interesting models. Pu and
Guo [6] established the global existence of strong solutions and the semiclassical
limit for the full compressible quantum Navier-Stokes. Later, they [7] obtained

the following decay rates

"Vk(n—l)(t)

with &k =0,1. Recently, Pu and Xu [8] showed the decay rates for smooth solu-

3+2k

<C(1+1) + .

gN-k —

+||Vku(t)

+"vk(T—4)0)

N2k NIk

tions of the magnetohydrodynamic model for quantum plasmas as follows:

5
[V* (p-1.u,B)(z) L SC(1+1),

H+Mv“wp—00)

where k=1,2,3,4. The interested reader can refer to [9] [10] and references
therein for more results of the quantum term.

Without the quantum effects, the above system (1.1) is usual compressible
Hall-MHD equations, which represent the momentum conservation equation
for the plasma fluid. Compared with the classical MHD equations, there exists
the Hall term Vx((VxB)xB) in (1.1);, which makes Hall-MHD equations
entirely different from MHD equations for understanding the problem of mag-
netic reconnection, due to the froze-field effect. Thus, we note that the
Hall-MHD equations are useful in describing many phenomena such as mag-
netic reconnection in space plasmas, star formation, neutron stars and
geo-dynamo (see [11] [12] [13] and references therein).

The compressible Hall-MHD equations have received some results in recent
years. In particular, Fan ef al. [14] proved the local existence of strong solutions
with positive initial density and global small classical solutions with small initial
perturbation belongs to H 3(R3)ﬂL1(R3). They also obtained optimal time
decay rate for strong solutions as follows:

l(o-10.8)(0)

Motivated by Fan ef al, Gao and Yao [15] improved the optimal time decay

3
<C(1+1) 4.

2

rates for higher order spatial derivatives of classical solutions under the condition
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that the initial data belongs to H’ (R3 )ﬂ L (R3 ) . For the case of initial data be-
longing to some negative Sobolev space, Xu et al showed the fast time decay
rates for the higher-order spatial derivatives of solutions in [16]. Recently, they
[17] established the unique global solvability and the optimal time decay rates of
strong solutions in Besov spaces. On the other hand, there are also many works
of incompressible Hall-MHD equations, see [18]-[26].

To our knowledge, so far there is no result on the large-time behaviors of the
Cauchy problem (1.1)-(1.2). Therefore, the main purpose of this paper is to in-
vestigate global existence and decay rate in time of smooth solutions in
H'-framework. The decay rate of solutions towards the steady state has been an
important problem in the PDE theory, which has been investigated extensively,
see for instance [27]-[34] and the references therein. Compared with the general
compressible H-MHD equations [14] [15] [35], the quantum term (higher order)
appears in (1.1),, which leads to new difficulties in decay analysis than those re-
sults. The major method is to make a hypothesis (3.1) to cooperate with the spe-
cial structure of (1.1). We first construct the global existence of strong solutions
by the standard energy method under the condition that the initial data are close
to the equilibrium state (1,0,0) in A*-norm. Furthermore, by assuming that
the initial data in Z'-norm are finite additionally, we establish the optimal time
decay rates of strong solutions by the method of spectral analysis and energy es-

timates. More precisely, we obtain the following time decay rates

5
<C(1+1) 4,

[V (o=t B) (1) oy #[7°V (=D ey
forall +>0.
Our main results of this paper are stated as the following theorem.
Theorem 1.1 Assume that the initial condition
5 3 4 3 4 3 . .
(po—1,uy,B,) e H (R )>< H (R )xH (R ) satisfies the constraints (1.2),

there exists a constant &6 >0 such that if
oo = ) # 0 s ) 1Bl ) < 0 (1.3)

then there exists a unique global solution (p,u,B) of the Cauchy problem
(1.1)-(1.2) satisfying

(=1 BY Oy HAV PO ) L1 (B0 ) 0 07
(1.4)

< (1o =Wyl B )

Furthermore, if (p, —1,u,,B,) €L (R3> , the solution (p,u,B) enjoys the fol-

lowing decay properties

3(01
||(p—1,u,B)(t)||Lp(R3) <G, (1+t)’5(17], 2<p<6, (1.5)
3
|(p~1.u.B)(¢) ) <Cy(1+2) 4, (1.6)
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5

[V(p—1.u.B)(2) (e S L (1+1) 4, (1.7)

() + "hV(p—l)

Jo, (=1 B) ()] < C,(1+1) 4, (1.8)

for some positive constant C,.

Notation. Throughout this paper, we denote the norms in Sobolev spaces
H" (R3) and W™’ (R3) by |,» and |-, for m>0 and p=>1 respec-
tively. In particular, for m =0, we shall simply use |||| » and |||| ,» - Moreover,
V=(8,,0,,0;), 6,=0, (i=1,2,3) and for any integer />0, V'f denotes
all derivatives of order ¢ of the function £ In addition, C denotes the generic
positive constant which may vary in different places and the integration domain
R’ will be always omitted without any ambiguity. Finally, (,) denotes the
inner product in LZ(R3).

The rest of this paper is organized as follows. In Section 2 we reformulate the
system (1.1)-(1.2) into a more convenient form. In Section 3, we make some
crucial energy estimates for the solution that will play an essential role for us to
construct the global existence of strong solutions. In Section 4, we use the energy
estimates derived in Section 3 to build the global existence of the solution, which
combine with the linear decay estimates imply Theorem 1.1. In Appendix, we

list some useful inequalities.

2. Reformations

To make it more convenient to prove Theorem 1.1, in this section, we will re-

formulate the problem (1.1) and (1.2). More precisely, we set

n=p-1, v==, B=B,

I
then the system (1.1) and (1.2) can be rewritten as

n, +7V'V =F1’
hZ

v, +;/Vn——VAn—,uAv—(l+,u)VV-v =F,
4y (2.1)

B-AB=F, V-B=0,
(n,v,B)| . = (19,9, B,)(x) > (0,0,0), as |x|—>00,

1=

where )/Z\/m and the source terms (Fl’anFg) are
E:—W~(nv),
2 2 .
F, = —yv-Vyv—h(n)Vn+ 1 Vil V3n_ Vndn _Vn-¥'n_
4y (n+1) (n+1) (n+l)
B-VB
y(n+1)’

F, ==yv-VB+yB-Vv=Vx((VxB)xB).

g(n)VAn

—g(n)(,uAv+(/1+,u)VV-v)+

We defined the two nonlinear function of n by
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B P'(n+1)
~y(n+1)
In the following, we will establish the global existence and time decay rates of

the solution (n,v,B) to the stead state (0,6,6). We first define the solution
space of the initial value problem (2.1) by

g(n)—i h(n) (2.2)

n+1’

X(0,7)= {(n,v,B) |n,BeC’ (O,T;H“ (R3))m C' (o,T;H3 (]R3)),
nvneC(0.7:H (R))NC (07317 (R?)),
vec (0.7 (R))NC' (0.7:1° (R))},
and

N(O,T)2 = OS<I?ET||(H’V’B)(ZL)"24 + sup

0<¢<T

hVn(t)"Z4 + j()T||V(n,v, B)(z’)"j{4 dr,

for any 0<T <. By the standard continuity argument, the global existence of
solutions to (2.1) will be obtained by combining the local existence result to-
gether with a priori estimates.

Proposition 2.1 (Local existence). Assume that (n,,v,,B,,hVn,)e H" (R3)

and

inf {n, +1} > 0.

xeR3

Then there exists a positive constant 7) >0 depending on N(0,0) such that
the initial value problem (2.1) has a unique solution (n,v,B,7Vn)e X(0,T,)
satisfying N (0,7,)<2N(0,0) and

inf ,t)+1¢ > 0.
XER3,OSIST{n(x ) }

Proposition 2.2 (A priori estimate). Let (ny,v,,B,,hVn,)e H* (R3) . Suppose
that the initial value problem (2.1) has a solution (n,v,B,hVn)e X (0,T) for
some T >0. Then there exist a small constant & >0 and a constant C,, which
are independent of T, such that if

(n,v,B,hVn)(t)

sup

4 S §a
0<t<T H

then for any t €[0,T|, it holds that

[(n.v.8)(0)

<G (I =15 +holls +IBL )

"+ (o) dr

IV (v.Bn)(o)|]

w4

(2.3)

Furthermore, there is a constant C| such that for any t €[0,T|, the global
solution (n,v,B,hVn)(x,t) has the decay properties

|(n.v. B)(2)],, <ci(1 +t)’%(l’ﬂ, 2<p<6, (2.4)

(.. B)()],. <C(1+1)%, (2.5)

[V (n.v, B)(2)|, . +]7Vn], < C(1+1) %, (2.6)
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<C/(1+0) s 27)

"8, (n,v,B)(t)

The proof of Theorem 1.1 is followed from Proposition 2.1 and Proposition

L2

2.2 by the standard iteration arguments. The proof of Proposition 2.1 is standard
and thus omitted. Proposition 2.2 will be proved in Section 3 and Section 4.

3. Energy Estimates

In this section we will drive some a priori energy estimates for the solutions to

the system (2.1). We assume a priori that for sufficiently small & >0,
[(nv.B) ). +[avn (o) . <6. (3.1)
By (2.1) and Sobolev’s inequality, we then obtain

lSn+1£2.
2

Therefore, for C >0, we have

|g(n)|,|h(n)| < C|n| and ‘g(k) (n)‘,‘h(k) (n)‘ <C, forany k>1. (3.2)

In the first place, we will obtain the dissipation estimate for v.
Lemma 3.1 Let (n,v,B) be a smooth solution to (2.1), then it holds that

1d K
sl B g e
< c5(||w||; + 12|V, ).

Proof. Multiplying (2.1),, (2.1), and (2.1), by n, vand B respectively, and then

integrating them over R’, we have

1d
31 B + Vol + (ot )V s + VB
(3.4)

2
:<Z_w,v>+<Fl,n>+<F2,v>+<F3,B>
V4

We will estimate the three terms on the right-hand side.
Firstly, for the first term, by the continuity equation and integration by parts

twice, we have

2 2 2
<h—VAn,v> = <h—Vn,Av> = <h—Vn,lVF{ —ant>
4y 4y vy 7

" "
= —<4—2Vn,Vnt>+<4—An,(Vn-v+nV~v)>

r (3.5)

hZ
< Al s Lol (9 Wl #1991 bl

hZ
<3t Jrowalient, v+ )

Secondly, for the second term, it follows from Lemma 5.1, the assumption
(3.1), the Holder inequality and the Young inequality that
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<Fl,n> = —(ynV-v,n}—(yv-Vn,n)
<7l 1Vl llls + 7ML V7] N1l (3.6)
< (vl +[v: )
Next, for the third term, we have
<Fz,v> = —<7V-Vv, v> —<h(n)Vn,v>

+<h_2[|Vn|2Vn_ VnAn _Vn-Vzn

47( (n+1) (41 (n+1) _g(n)mn}v> (3.7)
"<g(”)(#AV+(/1+#)VV'V)’V>+<ﬂ >

;/(n+1)’

=L+L+L+1,+1.

For the term /, and I,, using (3.1), (3.2), Holder’s inequality, Young’s in-

equality and Lemma 5.1, we obtain

1+ 1, < C Y [V s + )]s 1Vl e < €Ol + 19 ).

For the term [, we have by Holder’s inequality, Lemma 5.1 and (3.1) that

],v>+<g'(n)-v,An>+<g(n)V-v,An>

I _<h2 [|Vn|2Vn VnAn Vn-Vin
L ={— _ _

4y (n-i—l)3 (n+1)2 (n+1)2
Vn 1
< Chz[ el I P Y P et A P L RY P
(n+1) . (n+1) »
Vn
+ W ) Va2 [V27] s V]
L

ol G Wl bl )] e 9, |
< con’ (vl [ ).

Let [, =1, +1, .Forthe term [, , by (3.1), (3.2), the Hélder inequality and
integration by parts, we have
1, < C<Vv,g(n)V~v>+C<Vv,g'(n)Vn-v>
g(n) g () 1Vl V1.

< Cs(|vl vl )

< C"Vv

€IV

2
LZ

In a similar way, we have
1o 2 Co{|vall + 9ol ).

For the term /., we similarly obtain

I < c5(||vg||; |z ).

In light of the estimates [, ~ I, we can get
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(7o) < €|Vl 4|V + VB ). (3.8)

Finally, for the last term, we have
(Fy,BY=—(yv-VB,B)+(yB-Vv,B)~(Vx((VxB)xB),B). (3.9)
Similarly, we bound the first and second terms on the right hand side of (3.9)
by
~(yv-VB,B)+(yB-Vv,B) < (VB[ +|[V: ). (3.10)
For the last term on the right hand side of (3.9), by integration by part, we

have

~(Vx((VxB)xB),B)=((VxB)xB,VxB)=0. (3.11)

Combined with (3.10) and (3.11), we get
(F.B) < Cs (W +[vE[: ) (3.12)
Substituting (3.5), (3.6), (3.8) and (3.12) yields into (3.4), by the smallness of
J, we get (3.3). O

In the following lemma, we derive the higher-order dissipative estimates.
Lemma 3.2 Let (n,v B) be a smooth solution to (2.1), then

d V(nv,B)| ,+h|V’n +va
Vv,

(3.13)

< C5( [Vl + 12 [, +||Vv||L2 |V )

Proof. For 0<k <3, applying V! to (2.1),-(2.1), and then taking Z>-inner
product with (V’”ln vy, V"”B) , we have

||Vk+1 Vk+2 ,U+/1 ”VkHV N +||
<:1; V“l(nilVAn],Vk“v>—<7Vk“V'(n,v),Vk”n>

Vkﬂ(]/\/ VV) Vk+1 > <Vk+1(h(n)vn),vk+lv>
H _Vn V2 VnAn |Vn| Vn vy
n+1 (n+1) (n+1)
k+1 k+1 k+1 B-VB k+1
<v n)(uAv+(A+ ) VV v)).V v>+<V [y(nﬂ)j,v v>
—(V**! (yv-VB), V"' BY+ (V! (yB-Vv),V*"'B) (3.14)

_<Vk+] (VX((VXB)XB)),V]H]B>
=Ji+L,+ L+, S+ I+ S+ T+ T+ .

We will estimate each term on the right-hand side. At first, we split J, as

2
h < 1 VAHVAn Vk+1 > z CI ( jvk 1+IVA vk+l
4;/ n+l 4}/|<l<k+l n+l (3.15)

=J,+J,.
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By the continuity equation and integration by parts, the first term J,, canbe

rewritten as

2 2
Jy, __nr V(L)vk%n,vk”v _ Lv"“An,v’”‘vv
4y n+l1 4y \n+1

2 2
:h_ VZ LJVIHZ”’VIHIV +h_ V(Lj Vk+2n’vk+2v
4y n+l 4y n+l

2
_h_ kaHAn’vlﬁ-lv.v ,
4y \n+1

where the first two terms can be estimated as

2 2
1 1
_h_ V(_jvkﬂAn,vkﬂv _h_ —VkHAn,VkHV'V
4y n+1 4y \n+1
2
LZ)'

Note that the last term in J;;, is much more complicated, so we can further

<Csn (||v"*2n||; vy

decompose it into

2 . 1 2 1 ’
h_ vy L ’Vkﬂv_v +h_ —V“zn,V“zV-v
4y n+1 4y \n+1

2 2
=h_<vk+2nv( 1 j,vk+1V'V>—h—2 1 - Vk+2n’vk+2nl
4y n+l1 4y (n+l)
hZ

1 1
_n c! Vip vk V2,
4y’ ogéﬂ k+2<n+1 ' n+1

_ﬁ Lv“zn \vARe (Mj
4y \n+1 ’ n+l

=W AW, + W, +W,.

The first two terms ¥, and W, canbe bounded by

1 #
Wi+W, S__'_zi
2 4y~ dt

Lvlﬁzn

2 +||vk+2v
n+l 2

2
)

For the term W, , by the continuity equation and the Holder inequality, we

2 + COH> (||v’”2n
LZ

have

W, < CH|[V**n

Vip ke 1 j
! n+1

Vlv X vvk+27l (Lj
n+l1

)

0</<k+1 12

<CH ||v’”2n

0</<k+1 12

2z

1

V! (Vnv) Vit (—j

1

+ +|V! (nV -v) V2 (—j

n+l n+l

)

For the second term of W,, separating the case of /=0,1 and k+1 from

LZ

the order cases, we bound the summation by
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o8 A N R (Lj +[V(Va-v)vE! (Lj
L n+l 2 n+l 2
1 1
Vk+l \R vV — Vl V- Vk+2—l -

" ( " v) (n+1j Lz+2§§:k ( " v) (n+1) LzJ
<Cr |V, (c5| Vi, + €|V, + Co|VE T (V)
1

Vl V- Vk+2—1 -
+Zg§:k" ( ! V) e (n"‘l)ﬁ)
<Con* V4 LZ[ VA [V (V) +2;k||v’(vn.v) sz
<Csn’ (|V’”2v 22 +|v2| \ ),
L H
where
|Vk”(Vn-v) L= z \vZaa i vZEs R .
g 0</<k+1 g
= "Vnd”v ot VnVty ot > "V’”nV“Hv P
2</<k+1
< C["Vn"Lx v, + Vi [V, +2<;+1"an SV ij
<cs([v v, )
and
SV V), =2 T |veaviy|, <cs|va|
2<I<k L 2<I<k0<m<l] L "

Similarly, we bound the first and the last term in W, by

Vzn"; )

2
wk |

ca(|v“2v L+

Collecting these terms, we get

W, < CSh? (|v"*2v Vin

2
+
L2

For the term W, we have

2
VV4 =_h_ vk+2nvk+3n’ 4 R
4y (n+1)

_h_z z C]£+2<V1+1nvk+2—l( v J 1 Vk+2n>'

2
4y o<z n+l) n+1

For the first term of W, , we have by integration by parts and (3.1) that
2
LR L)
2 4y (n+1)

2
LI vl v — )< com|
2 4y (n+1)

k+2

k+2 Vk+2n

2
I
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For the second term of W, similarly, we separate the case of /=0,1 and

k+1 from the order cases and bound the summation by

. Z Vl+lnvk+2—l( v )

0<I<k+1 n+l
+

. an"”[—v j
L n+1 12

V“znV[ v j n Z VMnV“z[( v )
n+l)|. <95 n+l

. Y
2 (c& V¥ 2(—)
n+l
Vk+2/( v j
n+l 16

2 5 I
L2+||VnH" ’

<C 3

CH? ||vk+2n

2

- CH? ||vk+2n

+

+Cs ||v"+2n

< CSH ||v’”2n

2

+CS Z

1<I<k-1

< CSH (||v’”2v

Vk+2 v
n+1

where

antviaes] 1
n+l

2 0<I<k+2 2
k+2 1 k+2 1
=[vWV —_— +[V7TYWV| ——
n+l)|.z n+1)|
. VMN( s j + 3 o ( e ]
n+l)|: 52 n+1)| .z
k+2 2
< C5(||V V2 +||V n| )
Collecting these term, we get
17 1 ’
SRTNLIN IS NRE RN RPCPI (||v’”2v "+
2 4y dt||n+1 2 £

For the second term of (3.15), we have by the assumption (3.1), Holder’s in-

equality, Lemma 5.1, (3.2) and integration by parts that
2
le — _h_C}H] VZ (Ljvk“n,vk“v
4y n+l
2
—h—c,;] V(Ljvk*zn,v’f“v v
4y n+l1
hz 2 2 1 k k+1
-——C (V| — |V AR, V"V .y
4y n+l1

n 1
A Z C][H] Vl (_1] vk—l+1VAn’vk+lv
n+

4y sizin
<or| e[| e+ v = ||v“2v ||vk*2n
n+1)|| 0 n+1)||« z
+Ch2 VZ L Vk+2n V/f+1v
n+1 3 22 8
+Ch2 Z vl L vk*l+2An \ VkHv .
3<I<k+1 n+l)||, g £
2 2|12 k2 |
< con [Vl +[v )
H L

\vZaaim Ve v
n+l1

|

2

2

2
w*

2
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Summingup J;; and J,,, we have

2
1 Vk+2n

2 2
2+||V n
n+l1 2 L

L CSH (||vk+2v

2
2 4y% dr it )
For the term J, , we can rewrite it as

J,=- <Vk+| (Vn.v),vk+ln>_}/<vk+1 (n-VV),Vk”n> —J, 4,

The first term J,, can be bounded by
Jy = _7<Vk+2n -v,Vk+1n> —y Z <C£+lvl+1nvk+14v,vk+1n>

0<I<k
2 (

B " z ||Vl+lnvk+1—lv
2<i<k

ViVl

1 j
vl )

For the second term J,,, similarly, separating the case of /=0,1 from the

< %}/<|V“ln

2,V~v>+C||Vk+]n

LZ
(3.16)
+ "Vznvkv

< C5(||Vk+1v

order cases, we bound the summation by

Iy < C5(||v“'n " +[vy]

e ) (3.17)

In light of (3.16) and (3.17), we obtain

J, <C8(|Vnfl, +[v¥]

2
H/c+1 .

Recalling from the estimates of J,, we have

J; SCS|VY|

2
Hk+l ’

T = Co(|Vall 7

2
)

Let J, =J, +J,, +Js;. For the first term J,,, we have by (3.1), Lemma 5.1,
Holder’s inequality and integration by parts that

2 2
Js, :h_ vk Vn Vf ,Vk+2v
4y (n+1)

+ - \ +

SChzogg:k Vvt /[(n:i)zJ ) " k+2 ’

2| vl v | 2 v | Y
< Ch ["v |, v [(n+1)2]Lﬁ+||anz \Y [(nﬂ)z}ﬁ
+ - Y +
e ’[wﬁfJ LJ"Vk e

< c5h2(||v2n I LA )

H L

The same estimates hold for J,, and J;. Combining all the estimates for

Js, we get
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J, < Con? (||v2n L+

k+2
|V+v

2
2 )
Let J,=J,+Js, . We have by integration by parts and Holder’s inequality
that
Jo = y<Vk (g(n)Av),Vk+2v>
<Cy "V[g(n)V]HAv
0</<2

2
H

vk+2V vk+2v

! k142
2 2 +C Z "Vg(n)v iz 2
3<i<k+1

Vk+2v V/Hlv Vkv

V2g(n)

< c[||g(n)

1 +

¢’ (n)

Lf’+

Vil Vg LZ

L3
k=t k+2
VAV AVARESY

LOO ]
2
) )
The same estimate holds for J,,. Combining all the estimates for J,, we
2
r )

; VB[ + [y

1 2

+ 3 [V'a(n)
3<I<k+1

< co([vl;, +

k+2
|V+v

obtain

Jg < C5(||Vn||2k +[ v

For the term J,, we have

J, < C5(||vk“n

2
)

Similarly, for the terms J; and J,, recalling from the estimate of J,, we

2
LZ)’
2
2 )

(VxB)xB:(B~V)B—%V(|B|2), (3.18)

have

J, = C3(|VB[ o + |7y

Jy = CO([ol} +|v*'B

Indeed, computing directly, it is easy to deduce

then for the term J,,, we have by integration by parts and (3.18) that
i ==(V'B VI [Vx(VxB)xB])

- <vk+l (VxB), v+ [(B.V)B—%V“BF)D (3.19)
<(VH(VxB), v ((B-V)B)>+<Vk” (Vx B),V**? (|B|2)>.

To estimate the first factor on the right-hand side of (3.19), using Lemma 5.1,

5.2 and Holder’s inequality, we obtain
(V¥ (VxB), V" ((B-V)B))
_ Z C/in <Vk+zB’sz_vk+27zB>

0</<k+1

_ <Vk+zB,B . vk+2le> +<Vk+zB,VB . Vk+2sz>
+(V*?B, VB VB)+ ¥ (VPB VBV B)

2<i<k
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<clval,
Y v 3 |vaval, |
<cs| )

The similar estimate holds for the second factor on the right-hand side of
(3.19). Thus, for the term J,,, we have

S0 < Co{[0s 4198 )

Consequently, summing up J, ~J,,, by the smallness of &, we have

; ]+ c(||v"*2v p p )

A +1VB 0 )

d . S
E("vk l(n,v,B) e +4—7/2

l Vk+2
n+1

n

2

(3.20)
< Co (|l 412 |72,

Summing up above estimates for from k=0 to k=3, by the smallness of
o, we get (3.13). ]

Next, we derive the dissipation estimate for n.

Lemma 3.3 Let (n,v,B) be a smooth solution to (2.1), then we have

d 2
H3)

3
E(,;)<Vkv,vk+zn> |Vl ]+ c(||vn||23 |V

<oy + (Il +IVBI;, )

(3.21)

Proof For 0<k<3, applying V* to (2.1),, multiplying them by V*'n
and then integrating them over R, we have

2
2 h 2
Vk+1 k+2
}/" n 1 + "

I’lL2

== (Vv V) (VE A, VA ) = (w4 ) VAV 0,V )
—<;/Vk (v-Vv),Vk”n>—<Vk (h(n)Vn),Vk”n>
+<h_zvk [—g(n)VAn B Vn-Vn B VnAn . |Vn|2 Vn],vk+ln> (3.22)

4y (n-i—l)2 (n+1)2 (n-i—l)3

_<Vk (g(n)(ﬂAV+(/1+,U)VV ~v)),Vk+ln>+<V" ( 5-VB J’Vk+ln>

7(n+1)

=L +L,+L,+L,+L +L,+L +L.

Next, we will estimate each term on the right-hand side. First, for the term L,

by integration by parts twice, (3.1) and the continuity equation, we have

L :——<Vkv V) 4y [VEV L + 7 (VY. VE (Ve))
+7/<VkV v, V¥ (n )>

<——<v" Viin >+]/||V V. v

+C(|[v* (vn-v)|

”Vk nV v)

y
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< —%<Vkv,vk+'n>+ 7|V v ;
+C(||Vn||L3 A" P +]§<:k V' - AR -
[V [V +l<lz<k||v1v-v N LwJ v,

o+ CO([v vl )

2

< —%<Vkv,vk”n> + 7||VkV -y

For the terms L, and L,, similarly as the estimate of .J,,, we obtain

d + +
L< —%awk [, +C5(||Vn||i[,: v, )
L < —'HTM%|VI‘”n i Cé‘(”Vn"Zk v, )

Similarly for the terms L, and L., we recall from the estimate of J, to
2
2 )’

Let L, =L, +L,+L,+L,. For the terms L, , we have by integration by

have

L < C&("Vv"; +[ v

Ly <CS|V .

parts and Holder’s inequality that

h2 ’ k+ + h2 + +
L, =4—7/<g (n)V’ n,V* 1n>+;<g(n)vk n,V* 2n>

_:l_z Z C/i <Vlg(n)Vk’MAn,Vk“n>
V 1<izk

<CH (|
+(||g'(n>

<CSH ||V2n

2
k+2
V&,

i)

The same estimates hold for the other three terms of L,. Combing all the es-

k+2 k+1
V| L IV a

g'(n)

) +

g(n)

r° ? r° I

V¥ An Vi

) ||V1g(n)v"-“‘An
2<i<k

P

2
uk

timates for L, we have

Ly <Con*|vn

2
H*

Finally, Combing with J, and J,, we get

L, = C([vaf +|v*

2
Lz)’
2
Lz)'

L < C5(||VB||Zk +[[v*n

Inlight of L, ~ L, we have
d

A (/g gkl K+ |12 k1|7 2|[k+2, |
dt((v v,V2 n)+(2u+2)|[V*'n L2)2+C(|V nl, + 72|V 20 LZ) .
<y|vi, +C5(||Vn||2k + 12 |V2n|, + [V + VB e )
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Summing up above estimates for from k=0 to k=3, by the smallness of

8, we conclude Lemma 3.3. O

4. Convergence Rates

In this section, we will combine all the energy estimates that we have derived in
the previous section to prove Proposition 2.2.

The linearized equations corresponding to (2.2),-(2.2), read

n+WN-v=0,
hZ
vt+;/Vn—4—VAn—,uAv—(ﬂ+,u)VV-v:0, (4.1)
4
B —AB=0.

Thus, at the level of the linearization, Bis decoupled with (n,v). If we set
U(t)=(n(r).v(7)),
then the solution to (4.1),-(4.1), can be written as
U(t)=E(t)U(0)=e"U(0),
where A is a matrix-valued differential operator given by

0 w

A= K2
}/V—TQ/VA —pA—(p+A)VV

The solution semigroup E(¢) has the following property on the decay in
time, cf. [36].

Lemma 4.1 Let s>0 be an integer. Assume that (n,v) Is the solution of
the linearized system for the first two equations in (2.1) with the initial data
n,e H'"'"NL', vye H'NL, then

[0} = € Qee) = (oo ) #1000 )-

"Vk”n(t)

w

< C(l—i—t)_i_% (”(no,vo ), +H(Vk”n0,vkv0)

LZ)’

), (4.2)

2

o (ol = e el =7 o)

for 0<k<s.
We need the following elementary inequality [36]:
Lemma 4.2 Let #,r, >0, then it holds that

J.Ot(l+t—s)fr' (l+s)7r2 < C(rl,rz)(1+1)7mi"{n’rz’yI wraloe) , (4.3)

for an arbitrarily small &>0.
If we denote the nonlinear terms for the first two equations in (2.1) as
M =(F,,F,), then (2.1) becomes
U(t)=E(t)Uy+ [ E(t-7)M (U (z),B(z))dr,
(4.4)
B(1)=5()B, +I;S(t—r)173 (U(z).B(r))dr.
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where §(r)=e¢™". Note that for S(¢), we have
,i[i,i],k
IS(£) By, <C1+2) 2l ) 2|B,,, »
and then there exists a constant Csuch that

[veB(2)],, <c(i+)> 0 p]2||B | +Cl(1+2-7)2 s 2||F ()

forany >0 and 1< p,g<co.
Lemma 4.3 Let (U,B) be a smooth solution to (2.1), then

[V(U.B)(1)|, < CEy(1+) s +C8[. (1+1~2) 4|V (U, B)(7)]| . d7.  (46)

where EO =||n0||H4ﬂL' +||(V0’BO)||H30LI .

Proof. From Duhamel’s principle, it holds that
(n3)0) =€ (rgy )+ [ie 0 (L) () ar

Thus from Lemma 3.1 and (4.4), we have

[on(o)s < 007 ([ ||L|+||V o)l )
e B, V) e
[vv (o)), <c(i+e) (|| (w0 ) V0,70 ) (4.8)

+cj0(1+t—r)’2 (||(F1,F2)(r)||ﬁ +|V2F.VE (7)., )dr.

By (3.1), Holder’s inequality and Lemma 5.1, the nonlinear source terms can

be estimated as follows:

(B E)E, < Co(1vnl, + 199l 49, ). 9)

||VF|| lsw(uwn A9l (410

(5. £)(O),» <o (nv.B)

(4.11)
Put these estimates into (4.7) and (4.8), we have
5 5
VU ()], <CK,(1+0) s+ C8[ (1+1-7) s |[V(U,B)(z)| . dz,  (4.12)

where K, = ""0”H“m‘ +"V0"H3ml .

Let p=2, ¢g=1 and k=1 in (4.5), we obtain

[VB(1)], < CO+e) 3By + €0+ 1-0) 3| (<), de @13)

<C(1+t) ||B I +C5j0(1+t—r)7||v(U,B)(r) 2 dr.

Putting (4.12) and (4.13) together, then we complete the proof of Lemma
4.3. U]

Now we are in a position to prove Proposition 2.2.

Proof.

Since & >0 is sufficiently small, from Lemma 3.1 and 3.2, we obtain
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(0 PR 7 P RReY v e

(4.14)
< .oVl 4+ [Vl + 9oL+ vl )
In view of Lemma 3.3, we have
d( N 2
E(z<vkv,vk /n> +||Vn":3 ]-l— C3 ("Vn"i]} + K ||V2n " ) s

<ol + Co(Iwol IV )

Multiplying (4.14) by %5, adding it with (4.13) since ¢ >0 is small, then
4
we deduce

%{"(n,v,g)”; 12|+ é(vkv,vkwn)] e |V ). <o
We have by Gronwall’s inequality that
[(n.v. B[ #1159 (v 8.2
<Ol + Il +1Bal5e )

then (4.16) gives (2.3).
We define the temporal energy functional

(4.16)

H(t)=|V(nv.B)[ . +1*|[v*n

o 3
k k+1
s +Z<V v, V** n>,
k=1
where it is noticed that

(1)~ |V (nv.B)[, o + 72|V,

that is, there exists a constant C, >0 such that

(||v nv.B)[ s + 12|V

) (<C(||anB) 412 |V

)

From Lemma 3.2 and 3.3, we have

dH—(t)—i- C"V2 (n,v,B) 23

py < C5||V(n,v,B) ;

L2 to both sides of the inequality above gives
dH (1)

+DH(t <C||V U,B)(t )|| (4.17)
where D, is a positive constant independent of & . We define

M(1)= Os<u[<)t(1+z')§H(t) (4.18)
then M () satisfies :

"V (n, Vv, B)"H3 + "th

H3_C’, 1+z' 4,1M ) 0<7r<t.

From Lemma 4.2 and Lemma 4.3, we have
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< CE,(1+1) ’§+c5j’ 1+t—f)7§(l+r)%dr«/M(t)
C(l+t) (E +0 M )

By Gronwall’s inequality, we have from (4.16) that

v(v.B)(
S S

<H(0)e™ + Cj;(l +i—7)4(l+7)2 dr(K0 +0.M (t))2 (4.20)

< c(1+t)’§ (H(0)+Kg +8°M (t)).

||V(U,B)(t) -

(4.19)

H(t)< H(0)e ™ +C[le ™)

Since M (z) is non-decreasing, we have from (4.20) that
M (1)< C(H(0)+K; +5°M (t)),
which implies that if &> 0 is small enough, then
M ()< C(H(0)+K;)<CK;.
This in turn gives

[V (n.v, B +[nV?n] , < c(1+t)’§. (4.21)

From (4.21), we have

"V(n,v,B) 2 < C(l+t)7§ ,

which also implies from Lemma 5.1 that

Hence (2.5) and (2.6) are proved. By Sobolev’s inequality, we have

(.,

Next, by (4.2) and (4.5), it follows from the Duhamel’s principle that
[(n.v.8)(0)]
<) ([l Dl 1)

w5 () IR,y R R, )or

5
<C(1+1) 4.

(an" <C||V an)

5
L SC(1+1) 4.

C"V n,v. B)

3
< CK, (1+t)‘2 +C8[ (1+1) +|(VU,VB)(z)| - d=
3 3 5 3
<CK,(1+2) 4+ CS[ (1+1) 4 (1+7) sdr < C(1+1) 5.
Hence, for any 2 < ¢ <6, we have by the interpolation that

"(n v, B)(

where 6:2;‘0, this proves (2.4). On the other hand, using the estimates
p

 <[nvB) O [ BY O <10y,

above (2.1), we have
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||8t (n,v,B)(t)”L2

< C{||V.v||L2 +|F +]#2van

2

I
AVV -l 1L +las + 1)

5
<C(1+1) 4.

Then, for any 0<¢<T we get (2.7). Therefore, the proof of Proposition 2.2

is complete. U
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Appendix

In this appendix, we state some useful inequalities in the Sobolev space.
Lemma 5.1 Let f e H’ (R3), Then

1 1 1
1A, <IN VAR < ClvrlE
I71s VA2 »

17, <Cllf],, 2<q<6.

Lemma 5.2 Let m>1 be an integer, then we have
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where p,p,,p,.p;.p, €[1,0) and
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Proof Please refer for instance to [37]. I
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