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Abstract 
In this paper, we consider the global existence and decay rates of strong solutions 
to the three-dimensional compressible quantum Hall-magneto-hydrodynamics 
equations. By combing the Lp-Lq estimates for the linearized equations and a 
standard energy method, the global existence and its convergence rates are 
obtained in various norms for the solution to the equilibrium state in the 
whole space when the initial perturbation of the stationary solution is small in 
some Sobolev norms. More precisely, the decay rates in time of the solution 
and its first order derivatives in L2-norm are obtained when the L1-norm of 
the perturbation is bounded. 
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1. Introduction 

In this paper, we consider the following compressible Hall-MHD equations for 
quantum plasmas in three dimensional whole space 3 : 
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       (1.1) 

for ( ) [ ) 3, 0,t x ∈ +∞ ×  with the initial conditions: 
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, , , , , .
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u B x u x B x xρ ρ
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= ∈           (1.2) 
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Here 0ρ > , ( )1 2 3, ,u u u u=  and ( )1 2 3, ,B B B B=  denote the density, the 
velocity and magnetic field, respectively. The pressure ( )P P ρ=  is a smooth 
function with ( ) 0P ρ′ >  for 0ρ > , µ  and λ  are referred to as the shear 
viscosity and the bulk viscosity coefficients of the fluid, which satisfy the usual 
condition 

0, 2 3 0.µ µ λ> + ≥  

where 0>  is the Planck constant. The 2
 -term is referred to as the quantum 

potential or Bohm potential term [1], which is strongly nonlinearly degenerate 
and leads to the system non-diagonal and should be regarded as a consequence 
from dispersive properties of the quantum fluid. 

The quantum terms date back to Wigner [2], where quantum corrections were 
considered for the thermodynamic equilibrium. The quantum correction to the 
stress tensor was proposed in [3] [4]. One may see Hass [5] for many physics 
backgrounds and mathematical derivation of many interesting models. Pu and 
Guo [6] established the global existence of strong solutions and the semiclassical 
limit for the full compressible quantum Navier-Stokes. Later, they [7] obtained 
the following decay rates 

( )( ) ( ) ( )( ) ( )2 1

3 2
41 1 1 .N k N k N k

k
k k k

H H H
n t u t T t C t+ − + − −

+
−∇ − + ∇ + ∇ − ≤ +  

with 0,1k = . Recently, Pu and Xu [8] showed the decay rates for smooth solu-
tions of the magnetohydrodynamic model for quantum plasmas as follows: 

( )( ) ( )( ) ( )2 2

5
1 41, , 1 1 ,k k

L L
u B t t C tρ ρ −+∇ − + ∇ − ≤ +  

where 1,2,3,4k = . The interested reader can refer to [9] [10] and references 
therein for more results of the quantum term. 

Without the quantum effects, the above system (1.1) is usual compressible 
Hall-MHD equations, which represent the momentum conservation equation 
for the plasma fluid. Compared with the classical MHD equations, there exists 
the Hall term ( )( )B B∇× ∇× ×  in (1.1)3, which makes Hall-MHD equations 
entirely different from MHD equations for understanding the problem of mag-
netic reconnection, due to the froze-field effect. Thus, we note that the 
Hall-MHD equations are useful in describing many phenomena such as mag-
netic reconnection in space plasmas, star formation, neutron stars and 
geo-dynamo (see [11] [12] [13] and references therein). 

The compressible Hall-MHD equations have received some results in recent 
years. In particular, Fan et al. [14] proved the local existence of strong solutions 
with positive initial density and global small classical solutions with small initial 
perturbation belongs to ( ) ( )3 3 1 3H L  . They also obtained optimal time 
decay rate for strong solutions as follows: 

( )( ) ( )2

3
41, , 1 .

L
u B t C tρ −− ≤ +  

Motivated by Fan et al., Gao and Yao [15] improved the optimal time decay 
rates for higher order spatial derivatives of classical solutions under the condition 
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that the initial data belongs to ( ) ( )2 3 1 3H L  . For the case of initial data be-
longing to some negative Sobolev space, Xu et al. showed the fast time decay 
rates for the higher-order spatial derivatives of solutions in [16]. Recently, they 
[17] established the unique global solvability and the optimal time decay rates of 
strong solutions in Besov spaces. On the other hand, there are also many works 
of incompressible Hall-MHD equations, see [18]-[26]. 

To our knowledge, so far there is no result on the large-time behaviors of the 
Cauchy problem (1.1)-(1.2). Therefore, the main purpose of this paper is to in-
vestigate global existence and decay rate in time of smooth solutions in 
H4-framework. The decay rate of solutions towards the steady state has been an 
important problem in the PDE theory, which has been investigated extensively, 
see for instance [27]-[34] and the references therein. Compared with the general 
compressible H-MHD equations [14] [15] [35], the quantum term (higher order) 
appears in (1.1)2, which leads to new difficulties in decay analysis than those re-
sults. The major method is to make a hypothesis (3.1) to cooperate with the spe-
cial structure of (1.1). We first construct the global existence of strong solutions 
by the standard energy method under the condition that the initial data are close 
to the equilibrium state ( )1,0,0  in H4-norm. Furthermore, by assuming that 
the initial data in L1-norm are finite additionally, we establish the optimal time 
decay rates of strong solutions by the method of spectral analysis and energy es-
timates. More precisely, we obtain the following time decay rates 

( )( ) ( ) ( ) ( ) ( )3 3 3 3

5
2 41, , 1 1 ,

H H
u B t C tρ ρ −∇ − + ∇ − ≤ +

 
 

for all 0t ≥ . 
Our main results of this paper are stated as the following theorem. 
Theorem 1.1 Assume that the initial condition  

( ) ( ) ( ) ( )5 3 4 3 4 3
0 0 01, ,u B H H Hρ − ∈ × ×    satisfies the constraints (1.2), 

there exists a constant 0δ >  such that if 

( ) ( ) ( )5 3 4 3 4 30 0 01 ,H H Hu Bρ δ− + + ≤                  (1.3) 

then there exists a unique global solution ( ), ,u Bρ  of the Cauchy problem 
(1.1)-(1.2) satisfying 

( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

4 3 4 3 4 3

5 3 4 3 4 3
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2 2 2
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1, , , , d
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H H H

H H H

u B t t u B

C u B

ρ ρ ρ τ τ

ρ

− + ∇ + ∇

 ≤ − + + 
 

∫ 

  

  

  (1.4) 

Furthermore, if ( ) ( )1 3
0 0 01, ,u B Lρ − ∈  , the solution ( ), ,u Bρ  enjoys the fol-

lowing decay properties 

( )( ) ( ) ( )3

3 11
201, , 1 , 2 6,p

p
L

u B t C t pρ
 

− − 
 − ≤ + ≤ ≤


         (1.5) 

( )( ) ( ) ( )3

5
401, , 1 ,

L
u B t C tρ ∞

−− ≤ +


               (1.6) 
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( )( ) ( ) ( ) ( ) ( )3 3 3 3

5
401, , 1 1 ,

H H
u B t C tρ ρ −∇ − + ∇ − ≤ +

 
       (1.7) 

( )( ) ( ) ( )2 3

5
401, , 1 ,t L

u B t C tρ −∂ − ≤ +


             (1.8) 

for some positive constant 0C .  
Notation. Throughout this paper, we denote the norms in Sobolev spaces 

( )3mH   and ( ), 3m pW   by mH⋅  and ,m pW⋅  for 0m ≥  and 1p ≥  respec-
tively. In particular, for 0m = , we shall simply use 2L⋅  and pL⋅ . Moreover, 

( )1 2 3, ,∇ = ∂ ∂ ∂ , 
ii x∂ = ∂  ( )1,2,3i =  and for any integer 0≥ , f∇  denotes 

all derivatives of order   of the function f. In addition, C denotes the generic 
positive constant which may vary in different places and the integration domain 

3  will be always omitted without any ambiguity. Finally, ,⋅ ⋅  denotes the 
inner product in ( )2 3L  . 

The rest of this paper is organized as follows. In Section 2 we reformulate the 
system (1.1)-(1.2) into a more convenient form. In Section 3, we make some 
crucial energy estimates for the solution that will play an essential role for us to 
construct the global existence of strong solutions. In Section 4, we use the energy 
estimates derived in Section 3 to build the global existence of the solution, which 
combine with the linear decay estimates imply Theorem 1.1. In Appendix, we 
list some useful inequalities. 

2. Reformations 

To make it more convenient to prove Theorem 1.1, in this section, we will re-
formulate the problem (1.1) and (1.2). More precisely, we set 

1, , ,un v B Bρ
γ

= − = =  

then the system (1.1) and (1.2) can be rewritten as 

( )

( ) ( )( ) ( )

1
2

2

3

0 0 00

,

,
4

, 0,

, , , , 0,0,0 , as ,

t

t

t

t

n v F

v n n v v F

B B F B

n v B n v B x x

γ

γ µ λ µ
γ

=

+ ∇ ⋅ =

 + ∇ − ∇∆ − ∆ − + ∇∇⋅ =

 −∆ = ∇⋅ =

 = → →∞



       (2.1) 

where ( )1Pγ ′=  and the source terms ( )1 2 3, ,F F F  are 

( )1 ,F nvγ= − ∇⋅  

( )
( ) ( ) ( )

( )

( ) ( )( ) ( )

22 2

2 3 2 24 1 1 1

,
1

n n n n n nF v v h n n g n n
n n n

B Bg n v v
n

γ
γ

µ λ µ
γ

 ∇ ∇ ∇ ∆ ∇ ⋅∇ = − ⋅∇ − ∇ + − − − ∇∆
 + + + 

⋅∇
− ∆ + + ∇∇⋅ +

+



 

( )( )2 .F v B B v B Bγ γ= − ⋅∇ + ⋅∇ −∇× ∇× ×  

We defined the two nonlinear function of n by 
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( ) ( ) ( )
( )

1
, .

1 1
P nng n h n

n n
γ

γ
′ +

= = −
+ +

              (2.2) 

In the following, we will establish the global existence and time decay rates of 
the solution ( ), ,n v B  to the stead state ( )0,0,0

 

. We first define the solution 
space of the initial value problem (2.1) by 

( ) ( ) ( )( ) ( )( ){
( )( ) ( )( )

( )( ) ( )( )}

0 4 3 1 3 3
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v C T H C T H

= ∈

∇ ∈

∈



 



 

 

 

 

and 

( ) ( )( ) ( ) ( )( )4 4 4

2 2 22

00 0
0, sup , , sup , , d ,

T

H H Ht T t T
N T n v B t n t n v B τ τ

≤ ≤ ≤ ≤
= + ∇ + ∇∫

 

for any 0 T≤ ≤ ∞ . By the standard continuity argument, the global existence of 
solutions to (2.1) will be obtained by combining the local existence result to-
gether with a priori estimates. 

Proposition 2.1 (Local existence). Assume that ( ) ( )4 3
0 0 0 0, , ,n v B n H∇ ∈   

and 

{ }
3 0inf 1 0.

x
n

∈
+ >


 

Then there exists a positive constant 0 0T >  depending on ( )0,0N  such that 
the initial value problem (2.1) has a unique solution ( ) ( )0, , , 0,n v B n X T∇ ∈  
satisfying ( ) ( )00, 2 0,0N T N≤  and 

( ){ }
3 ,0
inf , 1 0.

x t T
n x t

∈ ≤ ≤
+ >


 

Proposition 2.2 (A priori estimate). Let ( ) ( )4 3
0 0 0 0, , ,n v B n H∇ ∈  . Suppose 

that the initial value problem (2.1) has a solution ( ) ( ), , , 0,n v B n X T∇ ∈  for 
some 0T > . Then there exist a small constant 0δ >  and a constant 1C , which 
are independent of T, such that if 

( )( ) 4
0

, , , ,sup
Ht T

n v B n t δ
≤ ≤

∇ ≤  

then for any [ ]0,t T∈ , it holds that 

( )( ) ( ) ( )( )

( )
4 4 4

5 4 4

2 2 2

0

2 2 2
1 0 0 0

, , , , d

1 .

t

H H H

H H H

n v B t n t v B n

C n v B

τ τ+ ∇ + ∇

≤ − + +

∫ 



        (2.3) 

Furthermore, there is a constant 1C′  such that for any [ ]0,t T∈ , the global 
solution ( )( ), , , ,n v B n x t∇  has the decay properties 

( )( ) ( )
3 11
21, , 1 , 2 6,p

p
L

n v B t C t p
 

− − 
 ′≤ + ≤ ≤            (2.4) 

( )( ) ( )
5
41, , 1 ,

L
n v B t C t∞

−′≤ +                   (2.5) 

( )( ) ( )33

5
41, , 1 ,HH

n v B t n C t −′∇ + ∇ ≤ +              (2.6) 
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( )( ) ( )2

5
41, , 1 .t L

n v B t C t −′∂ ≤ +                   (2.7) 

The proof of Theorem 1.1 is followed from Proposition 2.1 and Proposition 
2.2 by the standard iteration arguments. The proof of Proposition 2.1 is standard 
and thus omitted. Proposition 2.2 will be proved in Section 3 and Section 4. 

3. Energy Estimates 

In this section we will drive some a priori energy estimates for the solutions to 
the system (2.1). We assume a priori that for sufficiently small 0δ > , 

( )( ) ( )4 4

2 2
, , .

H H
n v B t n t δ+ ∇ ≤                 (3.1) 

By (2.1) and Sobolev’s inequality, we then obtain  

1 1 2.
2

n≤ + ≤  

Therefore, for 0C > , we have 

( ) ( ) ( ) ( ) ( ) ( ), and , , for any 1.k kg n h n C n g n h n C k≤ ≤ ≥     (3.2) 

In the first place, we will obtain the dissipation estimate for v. 
Lemma 3.1 Let ( ), ,n v B  be a smooth solution to (2.1), then it holds that 

( )

( )
2 2 22

2 2

2
2 2 2 2

2 22

1 d , ,
2 d 4

.

L L LL

L L

n v B n C v C B
t

C n n

γ

δ

 
+ ∇ + ∇ + ∇ 

 

≤ ∇ + ∇





        (3.3) 

Proof. Multiplying (2.1)1, (2.1)2 and (2.1)3 by n, v and B respectively, and then 
integrating them over 3 , we have 

( ) ( )2 2 22

2 2 2 2

2

1 2 3

1 d , ,
2 d

, , , , .
4

L L LL
n v B v v B

t

n v F n F v F B

µ µ λ

γ

+ ∇ + + ∇⋅ + ∇

= ∇∆ + + +


       (3.4) 

We will estimate the three terms on the right-hand side. 
Firstly, for the first term, by the continuity equation and integration by parts 

twice, we have 

( )

( )

( )

2 3 2 6 2 6

2 2 2

2 2 2

1

2 2

2

2
2 2

2

2
2 2 22

2

1 1, , ,
4 4 4

, ,
4 4

1 d
2 d 4

1 d .
2 d 4

t

t

L L L L L L

L L L

n v n v n F n

n n n n v n v

n C n n v v n
t

n C n v
t

γ γ γ γ γ

γ γ

γ

δ
γ

∇∆ = ∇ ∆ = ∇ ∇ − ∇

= − ∇ ∇ + ∆ ∇ ⋅ + ∇⋅

 
≤ − ∇ + ∆ ∇ + ∇ 

 
 

≤ − ∇ + ∇ + ∇ 
 

  

 









(3.5) 

Secondly, for the second term, it follows from Lemma 5.1, the assumption 
(3.1), the Hölder inequality and the Young inequality that 
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( )
3 2 6 6 2 3

2 2

1

2 2

, , ,

.
L L L L L L

L L

F n n v n v n n

n v n v n n

C n v

γ γ

γ γ

δ

= − ∇⋅ − ⋅∇

≤ ∇⋅ + ∇

≤ ∇ + ∇

            (3.6) 

Next, for the third term, we have 

( )

( ) ( ) ( )
( )

( ) ( )( ) ( )

2

22 2

3 2 2

1 2 3 4 5

, , ,

,
4 1 1 1

, ,
1

: .

F v v v v h n n v

n n n n n n g n n v
n n n

B Bg n v v v v
n

I I I I I

γ

γ

µ λ µ
γ

= − ⋅∇ − ∇

 ∇ ∇ ∇ ∆ ∇ ⋅∇ + − − − ∇∆
 + + + 

⋅∇
− ∆ + + ∇∇⋅ +

+

= + + + +



     (3.7) 

For the term 1I  and 2I , using (3.1), (3.2), Hölder’s inequality, Young’s in-
equality and Lemma 5.1, we obtain 

( ) ( )3 2 6 2 6 2 23
2 2

1 2 .L L L L L L LL
I I C v v v C h n n v C n vδ+ ≤ ∇ + ∇ ≤ ∇ + ∇  

For the term 3I , we have by Hölder’s inequality, Lemma 5.1 and (3.1) that 

( ) ( ) ( )
( ) ( )

( ) ( )

( )

( ) ( )

( )

2 3 6 2 3 6

2 63

6 3 6 32 3

2 2

22 2

3 3 2 2

2
3 2

2
2

2 22

, , ,
4 1 1 1

1
1 1

1

.

L L L L L L

L L

L LL
L

L L L LL L

L L

n n n n n nI v g n v n g n v n
n n n

nC n n v n n v
n n

n n n v
n

g n v n g n n v

C n v

γ

δ

∞ ∞

∞

 ∇ ∇ ∇ ∆ ∇ ⋅∇ ′ = − − + ⋅ ∆ + ∇⋅ ∆
 + + + 

 ∇≤ ∇ ∆ + ∇ ∆
 + +

∇
+ ∇ ∇

+

′+ ∆ + ∆ ∇⋅ 


≤ ∇ + ∇







 

Let 4 41 42I I I= + . For the term 41I , by (3.1), (3.2), the Hölder inequality and 
integration by parts, we have 

( ) ( )
( ) ( )

( )
2 2 2

2 2

41

2

2 2

, ,

.

L L L LL L

L L

I C v g n v C v g n n v

C v g n C v g n n v

C n vδ

∞∞ ∞

′≤ ∇ ∇⋅ + ∇ ∇ ⋅

′≤ ∇ + ∇ ∇

≤ ∇ + ∇

 

In a similar way, we have 

( )2 2
2 2

42 .L LI C n vδ≤ ∇ + ∇  

For the term 5I , we similarly obtain 

( )2 2
2 2

5 .L LI C B vδ≤ ∇ + ∇  

In light of the estimates 1 5~I I , we can get 
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( )2 2 2
2 2 2

2 , .L L LF v C n v Bδ≤ ∇ + ∇ + ∇                (3.8) 

Finally, for the last term, we have 

( )( )3, , , , .F B v B B B v B B B Bγ γ= − ⋅∇ + ⋅∇ − ∇× ∇× ×       (3.9) 

Similarly, we bound the first and second terms on the right hand side of (3.9) 
by 

( )2 2
2 2, , .L Lv B B B v B C B vγ γ δ− ⋅∇ + ⋅∇ ≤ ∇ + ∇          (3.10) 

For the last term on the right hand side of (3.9), by integration by part, we 
have 

( )( ) ( ), , 0.B B B B B B− ∇× ∇× × = ∇× × ∇× =          (3.11) 

Combined with (3.10) and (3.11), we get 

( )2 2
2 2

3, .L LF B C v Bδ≤ ∇ + ∇                  (3.12) 

Substituting (3.5), (3.6), (3.8) and (3.12) yields into (3.4), by the smallness of 
δ , we get (3.3).                                                   □ 

In the following lemma, we derive the higher-order dissipative estimates.  
Lemma 3.2 Let ( ), ,n v B  be a smooth solution to (2.1), then 

( )( )
( )

3 3 3 3

3 2 23

2 2 22 2 2 2 2

22 2 22 2

d , ,
d

.

H H H H

H L LH

n v B n C v C B
t

C n n v Bδ

∇ + ∇ + ∇ + ∇

≤ ∇ + ∇ + ∇ + ∇





        (3.13) 

Proof. For 0 3k≤ ≤ , applying 1k +∇  to (2.1)1-(2.1)3 and then taking L2-inner 
product with ( )1 1 1, ,k k kn v B+ + +∇ ∇ ∇ , we have 

( ) ( )

( )

( ) ( )( )

( ) ( ) ( )

2 2 2 2

2 2 2 21 2 1 2

2
1 1 1 1

1 1 1 1

22 2
1 1

2 2 3

1 d , ,
2 d

1 , , ,
4 1

, ,

,
4 1 1 1

k k k k
L L L L

k k k k

k k k k

k k

n v B v v B
t

n v n v n
n

v v v h n n v

n nn n n n v
n n n

µ µ λ

γ
γ

γ

γ

+ + + +

+ + + +

+ + + +

+ +

∇ + ∇ + + ∇ ∇⋅ + ∇

 = ∇ ∇∆ ∇ − ∇ ∇⋅ ∇ + 

− ∇ ⋅∇ ∇ − ∇ ∇ ∇

 ∇ ∇∇ ⋅∇ ∇ ∆ + ∇ − − + ∇
 + + + 





 

( ) ( )( )( ) ( )
( ) ( )

( )( )( )

1 1 1 1

1 1 1 1

1 1

1 2 3 4 5 6 7 8 9 10

, ,
1

, ,

,

.

k k k k

k k k k

k k

B Bg n v v v v
n

v B B B v B

B B B

J J J J J J J J J J

µ λ µ
γ

γ γ

+ + + +

+ + + +

+ +

 ⋅∇
− ∇ ∆ + + ∇∇⋅ ∇ + ∇ ∇  + 

− ∇ ⋅∇ ∇ + ∇ ⋅∇ ∇

− ∇ ∇× ∇× × ∇

= + + + + + + + + +

(3.14) 

We will estimate each term on the right-hand side. At first, we split 1J  as 
2 2

1 1 1 1
1 1

1 1

11 12

1 1, ,
4 1 4 1

.

k k l l k l k
k

l k
J n v C n v

n n
J J
γ γ

+ + − + +
+

≤ ≤ +

 = ∇ ∇∆ ∇ + ∇ ∇ ∇∆ ∇ + + 
= +

∑ 

(3.15) 
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By the continuity equation and integration by parts, the first term 11J  can be 
rewritten as 

2 2
1 1 1 1

11

2 2
2 2 1 2 2

2
1 1

1 1, ,
4 1 4 1

1 1, ,
4 1 4 1

1 , ,
4 1

k k k k

k k k k

k k

J n v n v
n n

n v n v
n n

n v
n

γ γ

γ γ

γ

+ + + +

+ + + +

+ +

 = − ∇ ∇ ∆ ∇ − ∇ ∆ ∇ ∇⋅ + + 

   = ∇ ∇ ∇ + ∇ ∇ ∇   + +   

− ∇ ∆ ∇ ∇⋅
+

 

 



 

where the first two terms can be estimated as 

( )2 2

2 2
1 1 1 1

2 22 2 2

1 1, ,
4 1 4 1

.

k k k k

k k
L L

n v n v
n n

C n v

γ γ

δ

+ + + +

+ +

 − ∇ ∇ ∆ ∇ − ∇ ∆ ∇ ∇⋅ + + 

≤ ∇ + ∇

 



 

Note that the last term in 11J  is much more complicated, so we can further 
decompose it into 

( )

2 2
2 1 2 2

2 2
2 1 2 2

2 2

2
2 2

22
0 1

2
2 2

1 2 3 4

1 1, ,
4 1 4 1

1 1, ,
4 1 4 1

1 1 ,
1 14

1 ,
4 1 1

: .

k k k k

k k k k
t

l l k l k
k t

l k

k k

n v n v
n n

n v n n
n n

C n n
n n

n vn
n n

W W W W

γ γ

γ γ

γ

γ

+ + + +

+ + + +

+ − +
+

≤ ≤ +

+ +

 ∇ ∇ ∇ ∇⋅ + ∇ ∇ ∇⋅ + + 

 = ∇ ∇ ∇ ∇⋅ − ∇ ∇ +  +

 − ∇ ∇ ∇ + + 

∇ ⋅ − ∇ ∇  + + 

= + + +

∑

 

 





 

The first two terms 1W  and 2W  can be bounded by 

( )2 2
2

22 2 22 2 2 2
1 2 2

1 d 1 .
2 4 d 1

k k k
L L

L

W W n C n v
t n

δ
γ

+ + ++ ≤ − ⋅ ∇ + ∇ + ∇
+



  

For the term 3W , by the continuity equation and the Hölder inequality, we 
have 

( ) ( )

2
2

2
2

2 2

2 2 2
3

0 1

2 2 2

0 1

2 2

1
1

1
1

1 1 .
1 1

k l k l
tL

l k L

k l k l
L

l k L

l k l l k l

L L

W C n n
n

C n v
n

n v n v
n n

+ + −

≤ ≤ +

+ + −

≤ ≤ +

+ − + −

 ≤ ∇ ∇ ∇  + 

  ≤ ∇ ∇ ∇⋅ ∇   + 

   + ∇ ∇ ⋅ ∇ + ∇ ∇⋅ ∇     + +    

∑

∑



  

For the second term of 3W , separating the case of 0,1l =  and 1k +  from 
the order cases, we bound the summation by 
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( )

( ) ( )

( )

( )

2
2 2

2 2

2 2 2 2

2

2 2 2 1

1 2

2

2 2 2 2 1

2

2

1 1
1 1

1 1
1 1

1
1

k k k
L

L L

k l k l

l kL L

k k k k
L L L L

l k l
L

l k L

C n n v n v
n n

n v n v
n n

C n C n C n C n v

n v
n

C

δ δ δ

δ

∞

+ + +

+ + −

≤ ≤

+ + + +

+ −

≤ ≤

    ∇ ∇ ⋅ ∇ + ∇ ∇ ⋅ ∇     + +   
   + ∇ ∇ ⋅ ∇ + ∇ ∇ ⋅ ∇     + +    


≤ ∇ ∇ + ∇ + ∇ ∇ ⋅


 + ∇ ∇ ⋅ ∇   +  

≤

∑

∑





 ( ) ( )

( )
2 2 2 2

2

2 2 2 1

2

2 22 2 2 ,k

k k k l
L L L L

l k

k
L H

n n n v n v

C v nδ

+ + +

≤ ≤

+

 
∇ ∇ + ∇ ∇ ⋅ + ∇ ∇ ⋅ 

 

≤ ∇ + ∇

∑



 

where 

( )

( )

2 2

2 2 2

2 3 6 2

2

1 1 1

0 1

1 2 1 1

2 1

1 2 1 1

2 1

2 2 ,k

k l k l
L L

l k

k k l k l
L L L

l k

k k l k l
L L L L L L

l k

k
L H

n v n v

n v n v n v

C n v n v n v

C v nδ

∞ ∞

+ + + −

≤ ≤ +

+ + + −

≤ ≤ +

+ + + −

≤ ≤ +

+

∇ ∇ ⋅ = ∇ ∇

= ∇ ∇ + ∇ ∇ + ∇ ∇

 
≤ ∇ ∇ + ∇ ∇ + ∇ ∇ 

 

≤ ∇ + ∇

∑

∑

∑
 

and 

( ) 2 2
1 2

2 2 0

.k
l m m l m

lL L H
l k l k m l

n v C n v C nδ+ −

≤ ≤ ≤ ≤ ≤ ≤

∇ ∇ ⋅ = ∇ ∇ ≤ ∇∑ ∑ ∑  

Similarly, we bound the first and the last term in 3W  by 

( )2

2 22 2 .k
k

L H
C v nδ +∇ + ∇  

Collecting these terms, we get 

( )2

2 22 2 2
3 .k

k
L H

W C v nδ +≤ ∇ + ∇  

For the term 4W , we have 

( )

2
2 3

4 2

2
1 2 2

2
0 1

,
4 1

1, .
4 1 1

k k

l l k l k
k

l k

vW n n
n

vC n n
n n

γ

γ

+ +

+ + − +
+

≤ ≤ +

= − ∇ ∇
+

 − ∇ ∇ ∇ + + 
∑





 

For the first term of 4W , we have by integration by parts and (3.1) that 

( ) ( )

( ) 2

2 22
2

2 2 22 2 2
2

1 ,
2 4 1

1 , .
2 4 1

k

k k
L

vn
n

vn C n
n

γ

δ
γ

+

+ +

− ⋅ ∇ ∇
+

 
 = ⋅ ∇ ∇⋅ ≤ ∇
 + 
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For the second term of 4W , similarly, we separate the case of 0,1l =  and 
1k +  from the order cases and bound the summation by 

2
2

2
2 2

2 2

2 2
2

2 2 1 2

0 1

2 2 2 1 2

2 1 2

1 1

2 2 2 2

1

1

1 1

1 1

1

k l k l
L

l k L

k k k
L

L L

k l k l

l kL L

k k k
L L

L

l

vC n n
n

v vC n n n
n n

v vn n
n n

vC n C C n
n

C

δ δ δ

δ

+ + + −

≤ ≤ +

+ + +

+ + + −

≤ ≤ −

+ + +

≤ ≤

 ∇ ∇ ∇  + 
    = ∇ ∇ ∇ + ∇ ∇     + +   

   + ∇ ∇ + ∇ ∇     + +    
  ≤ ∇ ∇ + ∇   + 

+

∑

∑







( )
6

2

2

1
2 22 2 2

1

,k

k l

k L

k
L H

v
n

C v nδ

+ −

−

+

 ∇   +  

≤ ∇ + ∇

∑



 

where 

( )

2 2

2 2

2 2

2

2 2

0 2

2 2

1 2

1
2 2

1
1 1

1 1
1 1

1 1
1 1

.k

k l k l

l kL L

k k

L L

k l k l

l kL L
k

L H

v C v
n n

v v
n n

v v
n n

C v nδ

+ + −

≤ ≤ +

+ +

+ + −

≤ ≤

+

   ∇ ≤ ∇ ∇   + +   
   = ∇ + ∇ ∇   + +   

   + ∇ ∇ + ∇ ∇   + +   
≤ ∇ + ∇

∑

∑

 

Collecting these term, we get 

( )2
2

22 2 22 2 2 2
11 2

1 d 1 .
2 4 d 1 k

k k
L H

L

J n C v n
t n

δ
γ

+ +≤ − ⋅ ∇ + ∇ + ∇
+



  

For the second term of (3.15), we have by the assumption (3.1), Hölder’s in-
equality, Lemma 5.1, (3.2) and integration by parts that 

2
1 2 2 1

12 1

2
1 2 1

1

2
2 2 1

1

2
1 1

1
3 1

1 ,
4 1

1 ,
4 1

1 ,
4 1

1 ,
4 1

k k
k

k k
k

k k
k

l l k l k
k

l k

J C n v
n

C n v
n

C n v
n

C n v
n

γ

γ

γ

γ

+ +
+

+ +
+

+
+

− + +
+

≤ ≤ +

 = − ∇ ∇ ∇ + 
 − ∇ ∇ ∇ ∇⋅ + 
 − ∇ ∇ ∆ ∇ ∇⋅ + 

 − ∇ ∇ ∇∆ ∇ + 
∑









 

( )

6 2 2
3

2 6
3

3 6
2

2

2 2 1 2 2

2 2 2 1

2 2 1

3 1
2 22 2 2

1 1
1 1

1
1

1
1

.k

k k k
L L L

L L

k k
L L

L

l k l k
L L

l k L

k
H L

C v v n
n n

C n v
n

C n v
n

C n vδ

∞

+ + +

+ +

− + +

≤ ≤ +

+

    ≤ ∇ ∇ + ∇ ∇ ∇     + +    
 + ∇ ∇ ∇ + 

 + ∇ ∇ ∆ ∇ + 

≤ ∇ + ∇

∑
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Summing up 11J  and 12J , we have 

( )2
2

22 2 22 2 2 2
1 2

1 d 1 .
2 4 d 1 k

k k
L H

L

J n C v n
t n

δ
γ

+ +≤ − ⋅ ∇ + ∇ + ∇
+



  

For the term 2J , we can rewrite it as 

( ) ( )1 1 1 1
2 21 22, , .k k k kJ n v n n v n J Jγ γ+ + + += − ∇ ∇ ⋅ ∇ − ∇ ⋅∇ ∇ = +  

The first term 21J  can be bounded by 

( )

2 2

2 2

2

2 1 1 1 1
21 1

0

21 1 1

2 1 1

2

2 21

, ,

1 ,
2

.k

k k l l k l k
k

l k

k k k
L L

k l k l
L L

l k

k
HL

J n v n C n v n

n v C n n v

n v n v

C v n

γ γ

γ

δ

+ + + + − +
+

≤ ≤

+ + +

+ + −

≤ ≤

+

= − ∇ ⋅ ∇ − ∇ ∇ ∇


≤ ∇ ∇⋅ + ∇ ∇ ∇




+ ∇ ∇ + ∇ ∇ 


≤ ∇ + ∇

∑

∑
      (3.16) 

For the second term 22J , similarly, separating the case of 0,1l =  from the 
order cases, we bound the summation by 

( )12

2 21
22 .k

k
HL

J C n vδ +
+≤ ∇ + ∇                (3.17) 

In light of (3.16) and (3.17), we obtain 

( )1
2 2

2 .k kH HJ C n vδ +≤ ∇ + ∇  

Recalling from the estimates of 2J , we have 

1
2

3 ,kHJ C vδ +≤ ∇  

( )2

22 1
4 .k

k
H L

J C n vδ +≤ ∇ + ∇  

Let 5 51 52 53J J J J= + + . For the first term 51J , we have by (3.1), Lemma 5.1, 
Hölder’s inequality and integration by parts that 

( )

( )

( ) ( )

( )

( )

2

2

3 2

6

2 2

2

2 2
2

51 2

2 2 2
2

0

2 2 3 1
2 2

2 2
2

2

2 22 2 2

,
4 1

1

1 1

1

.k

k k

l k l k
L

l k
L

k k
L L

L L

l k l k
L L

l k
L

k
H L

n nJ v
n

nC n v
n

n nC n n
n n

nn v
n

C n v

γ

δ

∞

∞

+

+ − +

≤ ≤

−

+ − +

≤ ≤

+

 ∇ ⋅∇ = ∇ ∇
 + 

 ∇ ≤ ∇ ∇ ∇
 + 

    ∇ ∇    ≤ ∇ ∇ + ∇ ∇
    + +   

 ∇  + ∇ ∇ ∇
  +  

≤ ∇ + ∇

∑

∑









 

The same estimates hold for 52J  and 53J . Combining all the estimates for 

5J , we get 
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( )2

2 22 2 2
5 .k

k
H L

J C n vδ +≤ ∇ + ∇  

Let 6 61 62J J J= + . We have by integration by parts and Hölder’s inequality 
that 

( )( )
( ) ( )

( ) ( ) ( )

( )

( )

2 2 2 2

32 6 2

2 2

2

2
61

2 2 2

0 2 3 1

2 1 2

2

3 1

22 2

,

.k

k k

l k l k l k l k
L L L L

l l k

k k k
L LL L L L

l k l k
L L L

l k

k
H L

J g n v v

C g n v v C g n v v

C g n v g n v g n v

g n v v

C n v

µ

δ

∞ ∞

∞

+

− + − + +

≤ ≤ ≤ ≤ +

+ +

− +

≤ ≤ +

+

= ∇ ∆ ∇

≤ ∇ ∇ ∆ ∇ + ∇ ∇ ∇

 ′≤ ∇ + ∇ + ∇ ∇



+ ∇ ∇ ∆ ∇



≤ ∇ + ∇

∑ ∑

∑

 

The same estimate holds for 62J . Combining all the estimates for 6J , we 
obtain 

( )2

22 2
6 .k

k
H L

J C n vδ +≤ ∇ + ∇  

For the term 7J , we have 

( )12 2

2 221 1
7 .k

k k
HL L

J C n B vδ +
+ +≤ ∇ + ∇ + ∇  

Similarly, for the terms 8J  and 9J , recalling from the estimate of 2J , we 
have 

( )1 2

22 1
8 ,k

k
H L

J C B vδ +
+≤ ∇ + ∇  

( )1 2

22 1
9 .k

k
H L

J C v Bδ +
+≤ ∇ + ∇  

Indeed, computing directly, it is easy to deduce 

( ) ( ) ( )21 ,
2

B B B B B∇× × = ⋅∇ − ∇              (3.18) 

then for the term 10J , we have by integration by parts and (3.18) that 

( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )

1 1
10

21 1

21 1 1 2

,

1,
2

, , .

k k

k k

k k k k

J B B B

B B B B

B B B B B

+ +

+ +

+ + + +

 = − ∇ ∇ ∇× ∇× × 

 = ∇ ∇× ∇ ⋅∇ − ∇  

≤ ∇ ∇× ∇ ⋅∇ + ∇ ∇× ∇

    (3.19) 

To estimate the first factor on the right-hand side of (3.19), using Lemma 5.1, 
5.2 and Hölder’s inequality, we obtain 

( ) ( )( )1 1

2 2
1

0 1

2 2 2 2

2 1 2 2

2

,

,

, ,

, ,

k k

l k l k l
k

l k

k k l k k l

k k k l k l

l k

B B B

C B B B

B B B B B B

B B B B B B

+ +

+ + −
+

≤ ≤ +

+ + − + + −

+ + + + −

≤ ≤

∇ ∇× ∇ ⋅∇

= ∇ ∇ ⋅∇

= ∇ ⋅∇ + ∇ ∇ ⋅∇

+ ∇ ∇ ⋅∇ + ∇ ∇ ⋅∇

∑

∑
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( )

2 2 2

2 2

12

2 2 2

1 2

2

2 22 .k

k k l k l
L L L

k l k l
L L

l k

k
HL

C B B B B B

B B B B

C B Bδ +

+ + − + −

+ + −

≤ ≤

+


≤ ∇ ⋅∇ + ∇ ⋅∇




+ ∇ ⋅∇ + ∇ ⋅∇ 


≤ ∇ + ∇

∑  

The similar estimate holds for the second factor on the right-hand side of 
(3.19). Thus, for the term 10J , we have 

( )1 1
2 2

10 .k kH HJ C v Bδ + +≤ ∇ + ∇  

Consequently, summing up 1 10~J J , by the smallness of δ , we have 

( ) ( )
( )

2 2 2
2

1 1

222 2 21 2 2 2
2

22 2 22 2

d 1, ,
d 4 1

.k k kk

k k k k
L L L

L

H H HH

n v B n C v B
t n

C n n v B

γ

δ + +

+ + + +
 
∇ + ∇ + ∇ + ∇  + 

≤ ∇ + ∇ + ∇ + ∇





 (3.20) 

Summing up above estimates for from 0k =  to 3k = , by the smallness of 
δ , we get (3.13).                                                  □ 

Next, we derive the dissipation estimate for n. 
Lemma 3.3 Let ( ), ,n v B  be a smooth solution to (2.1), then we have 

( )
( )

3 3 3

3 4 4

3 22 2 2 2

0

2 2 2

d ,
d

.

k k l
H H H

k

H H H

v n n C n n
t

C v C v Bδ

+

=

 
∇ ∇ + ∇ + ∇ + ∇ 

 

≤ ∇ + ∇ + ∇

∑ 

      (3.21) 

Proof. For 0 3k≤ ≤ , applying k∇  to (2.1)2, multiplying them by 1k n+∇  
and then integrating them over 3 , we have 

( )
( ) ( )( )

( )
( ) ( ) ( )

( ) ( )( )( ) ( )

2 2

22 21 2

1 1 1 1

1 1

22 2
1

2 2 3

1 1

1 2

4
, , ,

, ,

,
4 1 1 1

, ,
1

k k
L L

k k k k k k
t

k k k k

k k

k k k k

n n

v n v n v n

v v n h n n n

n nn n n ng n n n
n n n

B Bg n v v n n
n

L L

γ
γ

µ µ λ

γ

γ

µ λ µ
γ

+ +

+ + + +

+ +

+

+ +

∇ + ∇

= − ∇ ∇ + ∇ ∆ ∇ − + ∇ ∇⋅ ∇

− ∇ ⋅∇ ∇ − ∇ ∇ ∇

 ∇ ∇∇ ⋅∇ ∇ ∆ + ∇ − ∇∆ − − + ∇
 + + + 

 ⋅∇
− ∇ ∆ + + ∇∇⋅ ∇ + ∇ ∇  + 

= +





3 4 5 6 7 8.L L L L L L+ + + + + +

  (3.22) 

Next, we will estimate each term on the right-hand side. First, for the term 1L , 
by integration by parts twice, (3.1) and the continuity equation, we have 

( )

( )

( ) ( )( )

2

2

2 2 2

21
1

21

1

d , ,
d

,

d ,
d

k k k k k
L

k k

k k k
L

k k k
L L L

L v n v v n v
t

v n v

v n v
t

C n v n v v

γ γ

γ

γ

+

+

+

= − ∇ ∇ + ∇ ∇⋅ + ∇ ∇⋅ ∇ ∇ ⋅

+ ∇ ∇⋅ ∇ ∇⋅

≤ − ∇ ∇ + ∇ ∇⋅

+ ∇ ∇ ⋅ + ∇ ∇⋅ ∇
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( )

2

3 6 2

3 6 2 2

2

21

1

1

1

1

2 2 21

d ,
d

d , .
d

k k

k k k
L

k l k l
L L L L

l k

k l k l k
L L L L L

l k

k k k
H HL

v n v
t

C n v n v

v n v n v

v n v C v n
t

γ

γ δ

∞

∞

+

+ −

≤ ≤

− +

≤ ≤

+

≤ − ∇ ∇ + ∇ ∇⋅


+ ∇ ∇ + ∇ ∇




+ ∇ ⋅ ∇ + ∇ ∇⋅ ∇ ∇


≤ − ∇ ∇ + ∇ ∇⋅ + ∇ + ∇

∑

∑
 

For the terms 2L  and 3L , similarly as the estimate of 21J , we obtain 

( )2 2

2 221 1
2

d ,
2 d

k
k k

HL L
L n C n v

t
µ δ+ +≤ − ∇ + ∇ + ∇  

( )2 2

2 221 1
3

d .
2 d

k
k k

HL L
L n C n v

t
µ λ δ+ ++

≤ − ∇ + ∇ + ∇  

Similarly for the terms 4L  and 5L , we recall from the estimate of 2J  to 
have 

( )2

22 1
4 ,k

k
H L

L C v nδ +≤ ∇ + ∇  

2
5 .kHL C nδ≤ ∇  

Let 6 61 62 63 64L L L L L= + + + . For the terms 61L , we have by integration by 
parts and Hölder’s inequality that 

( ) ( )

( )

( ) ( )

( ) ( )

2 2 2

2 2 2

2 2
2 1 2 2

61

2
1 1

1

22 2 1 2

1 1

2

22 2

, ,
4 4

,
4

.k

k k k k

l l k l k
k

l k

k k k
L LL L L

k l k l k
L L L L

l k

H

L g n n n g n n n

C g n n n

C g n n n g n n

g n n g n n n

C n

γ γ

γ

δ

∞ ∞

∞

+ + + +

− + +

≤ ≤

+ + +

− + +

≤ ≤

′= ∇ ∇ + ∇ ∇

− ∇ ∇ ∆ ∇

 ′≤ ∇ ∇ + ∇


 ′+ ∇ ∆ + ∇ ∇ ∆ ∇  
  

≤ ∇

∑

∑

 







 

The same estimates hold for the other three terms of 6L . Combing all the es-
timates for 6L , we have 

22 2
6 .kH

L C nδ≤ ∇  

Finally, Combing with 6J  and 7J , we get 

( )2

22 2
7 ,k

k
H L

L C n vδ +≤ ∇ + ∇  

( )2

22 1
8 .k

k
H L

L C B nδ +≤ ∇ + ∇  

In light of 1 8~L L , we have 

( )( ) ( )
( )

2 2 2

1 12

2 2 21 1 1 2 2

2 22 2 21 2 2

d , 2
d

.k k kk

k k k k k
L L L

k
H H HL H

v n n C n n
t

v C n n v B

µ λ

γ δ + +

+ + + +

+

∇ ∇ + + ∇ + ∇ + ∇

≤ ∇ + ∇ + ∇ + ∇ + ∇





  (3.23) 
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Summing up above estimates for from 0k =  to 3k = , by the smallness of 
δ , we conclude Lemma 3.3.                                         □ 

4. Convergence Rates 

In this section, we will combine all the energy estimates that we have derived in 
the previous section to prove Proposition 2.2. 

The linearized equations corresponding to (2.2)1-(2.2)3 read 

( )
2

0,

0,
4
0.

t

t

t

n v

v n n v v

B B

γ

γ µ λ µ
γ

+ ∇⋅ =

 + ∇ − ∇∆ − ∆ − + ∇∇⋅ =

 −∆ =

           (4.1) 

Thus, at the level of the linearization, B is decoupled with ( ),n v . If we set 

( ) ( ) ( )( ), ,U t n t v t=  

then the solution to (4.1)1-(4.1)2 can be written as 

( ) ( ) ( ) ( )0 e 0 ,tU t E t U U−= =   

where   is a matrix-valued differential operator given by 

( )
2

0
.

4

γ

γ γ µ µ λ

∇ 
 =  ∇ − ∇∆ − ∆ − + ∇∇⋅ 
 



  

The solution semigroup ( )E t  has the following property on the decay in 
time, cf. [36]. 

Lemma 4.1 Let 0s ≥  be an integer. Assume that ( ),n v  is the solution of 
the linearized system for the first two equations in (2.1) with the initial data 

1 1
0

sn H L+∈  , 1
0

sv H L∈  , then 

( ) ( ) ( ) ( )( )2 1 2

3
4 0 0 0 01 , , ,

L L L
n t C t n v n v−≤ + +  

( ) ( ) ( ) ( )( )12 2

3 1
1 14 2 0 0 0 01 , , ,

k
k k k

LL L
n t C t n v n v

+
− −+ +∇ ≤ + + ∇ ∇  

( ) ( ) ( ) ( )( )12 2

3
1 14 2 0 0 0 01 , , ,

k
k k k

LL L
v t C t n v n v− −+ +∇ ≤ + + ∇ ∇     (4.2) 

for 0 k s≤ ≤ . 
We need the following elementary inequality [36]: 
Lemma 4.2 Let 1 2, 0r r > , then it holds that 

( ) ( ) ( )( ) { }1 2 1 2 1 2min , , 1
1 20

1 1 , 1 ,
t r r r r r rt s s C r r t ε− − − + − −+ − + ≤ +∫      (4.3) 

for an arbitrarily small 0ε > . 
If we denote the nonlinear terms for the first two equations in (2.1) as 

( )1 2,M F F= , then (2.1) becomes 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 0

0 30

, d ,

, d ,

t

t

U t E t U E t M U B

B t S t B S t F U B

τ τ τ τ

τ τ τ τ

= + −

= + −

∫

∫
         (4.4) 
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where ( ) e tS t − ∆= . Note that for ( )S t , we have 

( ) ( )
3 1 1
2 20 01 ,qp

k
q p

LL
S t B C t B

 
− − − 

 ≤ +  

and then there exists a constant C such that 

( ) ( ) ( ) ( )
3 1 1 3 1 1
2 2 2 20 30

1 1 d ,q qp

k ktk q p q p
L LL

B t C t B C t Fτ τ τ
   

− − − − − −   
   ∇ ≤ + + + −∫  (4.5) 

for any 0t ≥  and 1 ,p q≤ ≤ ∞ . 
Lemma 4.3 Let ( ),U B  be a smooth solution to (2.1), then 

( )( ) ( ) ( ) ( )( )2 2

5 5
4 40 0

, 1 1 , d ,
t

L H
U B t CE t C t U Bδ τ τ τ− −∇ ≤ + + + − ∇∫    (4.6) 

where ( )4 1 3 10 0 0 0,H L H L
E n v B= +





. 
Proof. From Duhamel’s principle, it holds that 

( )( ) ( ) ( ) ( )( )0 0 1 20
, e , e , d .

t ttn v t n v F Fτ τ τ− −−= + ∫   

Thus from Lemma 3.1 and (4.4), we have 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )( )

2 1 2

1 2

5
4 0 0 0 0

5
4 1 2 1 20

1 , ,

1 , , d ,

L L L

t

L L

n t C t n v n v

C t F F F Fτ τ τ τ

−

−

∇ ≤ + + ∇

+ + − + ∇∫
   (4.7) 

( ) ( ) ( )( )
( ) ( )( ) ( )( )

2 1 2

1 2

5
24 0 0 0 0

5
24 1 2 1 20

1 , ,

1 , , d .

L L L

t

L L

v t C t n v n v

C t F F F Fτ τ τ τ

−

−

∇ ≤ + + ∇ ∇

+ + − + ∇ ∇∫
   (4.8) 

By (3.1), Hölder’s inequality and Lemma 5.1, the nonlinear source terms can 
be estimated as follows: 

( )( ) ( )1 1 211 2, ,H H LL
F F C n v Bτ δ≤ ∇ + ∇ + ∇            (4.9) 

( )1 2 21 ,H H HF C n vδ∇ ≤ ∇ + ∇                 (4.10) 

( )( ) ( )1 21 2, , , .
H H

F F t C n v Bδ≤ ∇                (4.11) 

Put these estimates into (4.7) and (4.8), we have 

( ) ( ) ( ) ( )( )2 2

5 5
4 40 0

1 1 , d ,
t

L H
U t CK t C t U Bδ τ τ τ− −∇ ≤ + + + − ∇∫    (4.12) 

where 4 1 3 10 0 0H L H LK n v= +
 

. 
Let 2p = , 1q =  and 1k =  in (4.5), we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

12 1

1 2

5 5
4 40 30
5 5
4 40 0

1 1 d

1 1 , d .

t

LL L

t

L H

B t C t B C t F

C t B C t U B

τ τ τ

δ τ τ τ

− −

− −

∇ ≤ + + + −

≤ + + + − ∇

∫

∫
 (4.13) 

Putting (4.12) and (4.13) together, then we complete the proof of Lemma 
4.3.                                                         □ 

Now we are in a position to prove Proposition 2.2. 
Proof. 
Since 0δ >  is sufficiently small, from Lemma 3.1 and 3.2, we obtain 
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( )( )
( )

4 4 44

3 2 24

2 2 2 22
1 1

22 2 22 2
2

d , ,
d

.

H H HH

H L LH

n v B n C v C B
t

C n n v Bδ

+ ∇ + ∇ + ∇

≤ ∇ + ∇ + ∇ + ∇





       (4.14) 

In view of Lemma 3.3, we have 

( )
( )

3 3 3

3 4 4

3 22 2 2 2
3

0

2 2 2
4 4

d ,
d

.

k k l
H H H

k

H H H

v n n C n n
t

C v C v Bδ

+

=

 
∇ ∇ + ∇ + ∇ + ∇ 

 

≤ ∇ + ∇ + ∇

∑ 

     (4.15) 

Multiplying (4.14) by 1

4

C
C
δ , adding it with (4.13) since 0δ >  is small, then 

we deduce 

( ) ( )44 4

32 222
5

0

d , , , , , 0.
d

k k l
nHH H

k

n v B n v n C v B
t

+

=

 
+ ∇ + ∇ ∇ + ∇ ≤ 

 
∑ 

 

We have by Gronwall’s inequality that 

( ) ( )( )

( )
44 4

5 4 4

2 22

0

2 2 2
0 0 0

, , , ,

,

t

HH H

H H H

n v B n v B n

C n v B

τ+ ∇ + ∇

≤ + +

∫ 

        (4.16) 

then (4.16) gives (2.3). 
We define the temporal energy functional 

( ) ( ) 3 3

322 2 2

1

, , , ,k k l
H H

k

H t n v B n v n+

=

= ∇ + ∇ + ∇ ∇∑
 

where it is noticed that 

( ) ( ) 3 3

22 2 2~ , , ,
H H

H t n v B n∇ + ∇  

that is, there exists a constant 6 0C >  such that 

( )( ) ( ) ( )( )3 33 3

2 22 22 2 2 2
6

6

1 , , , , .
H HH H

n v B n H t C n v B n
C

∇ + ∇ ≤ ≤ ∇ + ∇   

From Lemma 3.2 and 3.3, we have 

( ) ( ) ( ) 23

2 22d
, , , , .

d LH

H t
C n v B C n v B

t
δ+ ∇ ≤ ∇  

Adding ( ) 22

2 2, , LL
n v B n∇ + ∇ to both sides of the inequality above gives 

( ) ( ) ( )( ) 2
21

d
, ,

d L

H t
D H t C U B t

t
+ ≤ ∇               (4.17) 

where 1D  is a positive constant independent of δ . We define 

( ) ( ) ( )
5
2

0
: 1sup

t
M t H t

τ
τ

≤ ≤
= +                     (4.18) 

then ( )M t  satisfies 

( ) ( ) ( ) ( )3 3

5
2 4, , 1 , 0 .

H H
n v B n C H C M tτ τ τ τ−∇ + ∇ ≤ ≤ + ≤ ≤  

From Lemma 4.2 and Lemma 4.3, we have 
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( )( ) ( ) ( ) ( ) ( )

( ) ( )( )
2

5 5 5
4 4 40 0

5
2 0

, 1 1 1 d

1 .

t

L
U B t CE t C t M t

C t E M t

δ τ τ τ

δ

− − −

−

∇ ≤ + + + − +

≤ + +

∫
  (4.19) 

By Gronwall’s inequality, we have from (4.16) that 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

11
2

1

2

0
5 5 2
4 2 00

5
2 22 0

0 e e , d

0 e 1 1 d

1 0 .

t D tD t
L

tD t

H t H C U B

H C t K M t

C t H K M t

τ τ τ

τ τ τ δ

δ

− −−

− −−

−

≤ + ∇

≤ + + − + +

≤ + + +

∫

∫     (4.20) 

Since ( )M t  is non-decreasing, we have from (4.20) that 

( ) ( ) ( )( )2 2
00 ,M t C H K M tδ≤ + +  

which implies that if 0δ >  is small enough, then 

( ) ( )( )2 2
0 00 .M t C H K CK≤ + ≤  

This in turn gives 

( ) ( )3 3

5
2 4, , 1 .

H H
n v B n C t −∇ + ∇ ≤ +              (4.21) 

From (4.21), we have 

( ) ( )2

5
4, , 1 ,

L
n v B C t −∇ ≤ +  

which also implies from Lemma 5.1 that  

( ) ( ) ( )2

5
4, , , , 1 .

L L
n v B C n v B C t∞

−≤ ∇ ≤ +  

Hence (2.5) and (2.6) are proved. By Sobolev’s inequality, we have 

( ) ( ) ( )6 2

5
4, , , , 1 .

L L
n v B C n v B C t −≤ ∇ ≤ +  

Next, by (4.2) and (4.5), it follows from the Duhamel’s principle that 

( )( )

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

2

1 2 11

1 1 2 1

2

3
4 0 0 0 0 0

3
4 1 2 1 2 30

3 3
4 40 0
3 3 5 3
4 4 4 40 0

, ,

1 ,

1 , d

1 1 , d

1 1 1 d 1 .

L

H L LL

t

L H L L

t

H

t

n v B t

C t n v n v B

C t F F F F F

CK t C t U B

CK t C t C t

τ τ τ τ τ

δ τ τ

δ τ τ

−

−

− −

− − − −

≤ + + + +

+ + + + +

≤ + + + ∇ ∇

≤ + + + + ≤ +

∫

∫

∫

 

Hence, for any 2 6q≤ ≤ , we have by the interpolation that 

( )( ) ( )( ) ( )( ) ( )2 6

3 11 1
2, , , , , , 1 ,q

p
L L L

n v B t n v B t n v B t C t
θ θ  − − − 

 ≤ ≤ +  

where 6
2

p
p

θ −
= , this proves (2.4). On the other hand, using the estimates 

above (2.1), we have 
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( )( )

{
}

( )

2

2 2 22

2 2 2 2

2
1

2 3

5
4

, ,

1 .

t L

L L LL

L L L L

n v B t

C v F n v

v F B F

C t −

∂

≤ ∇ ⋅ + + ∇∆ + ∆

+ ∇∇⋅ + + ∆ +

≤ +



 

Then, for any 0 t T≤ ≤  we get (2.7). Therefore, the proof of Proposition 2.2 
is complete.                                                      □ 
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Appendix 

In this appendix, we state some useful inequalities in the Sobolev space. 
Lemma 5.1 Let ( )2 3f H∈  . Then 

2 1 1

1 1 1
2 2 2 ,L L H H

f C f f C f∞ ≤ ∇ ∇ ≤ ∇  

6 2 ,L Lf C f≤ ∇  

1 , 2 6.qL Hf C f q≤ ≤ ≤  

Lemma 5.2 Let 1m ≥  be an integer, then we have 

( ) 1 432
,p pppp

m m m
L LL L L

fg C f g C f g∇ ≤ ∇ + ∇           (A.1) 

and 

( ) 1 432

1 ,p pppp
m m m m

L LL L L
fg f g C f g C f g−∇ − ∇ ≤ ∇ ∇ + ∇     (A.2) 

where [ )1 2 3 4, , , , 1,p p p p p ∈ ∞  and 

1 2 3 4

1 1 1 1 1 .
p p p p p
= + = +                     (A.3) 

Proof. Please refer for instance to [37].                              □ 
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