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Abstract

In this paper, we prove a uniqueness theorem of meromorphic functions
whose some nonlinear differential shares 1 IM with powers of the meromor-
phic functions, where the degrees of the powers are equal to those of the non-
linear differential polynomials. This result improves the corresponding one
given by Zhang and Yang, and other authors.
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1. Introduction

The meromorphic function mentioned in this paper refers to the meromorphic
function over the entire complex plane. Let fand g be two non-constant mero-
morphic functions. E <(0,0) means Linear measure finite set. S(r,f)
means S(r,f) = o{T(r,f)},(r —>o0,r ¢ E) CM 1is the abbreviation of com-
mon multiplicities. And /M is the abbreviation of ignored multiplicities. These
concepts can be found in the literature [1]. Let a be a finite complex number, if
f—a and g-—a have the same zero point and the same number of weights,
then fand g CMshare a. If f—a and g-a have the same zero point without
counting the number, then fand g /M share a [2]. In addition, the following de-

finitions are required: let p be a positive integer, and aeCu{oo}. Next

N, [r,f;j means fhas a weight less than p count function of the weight of
-a

the value point a within |Z| <r. ]\_lp) (r, J means corresponding reduced

f-a

count function; N, [r, j means the weight of fis not less than p count

1
f—a
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function of the weight of the value point a within |Z| <r. ]V(p [r, 7 ! j means
—a

corresponding reduced count function. Suppose & is a non-negative number.

Mark N, (r, j defined as follows. See the literature [3] for details.

—a

N, |7, ! =N v, ! +N, r, ! +-+N, v, !
f-a f-a) U f-a “\f-a

Before, Xiaomin Li and Zhitao Wen expanded Jilong Zhang’s theorem, where
( f ") changes to f"'f ®) so when k=1, that is Zhang’s theorem. Similarly,
in this paper, we continuously change f" f ) to (f-1)r ) which con-

tained f —1.So we expended Xiaomin Li and Zhitao Wen’s theorem.

In 2008, Lianzhong Yang and Jilong Zhang proved the following theorems:

Theorem A [4] Suppose fis a non-constant entire function, »>7 is a posi-
tive integer, if f" and (f" )' CM share 1, then [ z(f” )’.

Theorem B [4] Suppose fis a non-constant meromorphic function, n>12
is a positive integer, if f" and (f" )l CMshare 1, then f"= (f" )’.

Recently Zhang Jilong improved the above theorem. Get the following result:

Theorem C [5] Suppose fis a non-constant entire function, n>3 is a posi-
tive integer, if /" and (f" )' CM share 1, then f" = (f" )'.

Theorem D [5] Suppose fis a non-constant meromorphic function, n>4 is
a positive integer, if f" and (f” ), CM share 1, then f" = (f" )'.

Li Xiaomin and Wen Zhitao have improved on the basis of Zhang Jilong’s
theorem, as follows.

Theorem E [5] Suppose fis a non-constant meromorphic function, kis a pos-
itive integer, nis a positive integer and satisfies 2n>k+3+k*>+2k+9 ,if f”
and (f")' CM share 1, then f” :(f")l.

Theorem F [5] Suppose fis a non-constant meromorphic function, kis a pos-
itive integer, 1 is a positive integer and satisfies 21 >3k +8++/9k” + 40k + 64 , if
f" and (f")' IMshare 1, then f” z(f")’.

Now we mainly improve the theorem of Li Xiaomin. Which that changes f”
and "W o £ (f-1) and /™ (f—l)f(k). We get the following theo-
rem:

Theorem 1 Suppose fis a non-constant meromorphic function, kis a positive
integer, n is a positive integer and satisfies 21 >3k +13+~/9k” + 62k +129, if
f" (f—l) and /™" (f—l)f(k) IM share 1, and the zeros of f—1 with mul-
tiplicity 2 at least., then f = f )

2. Some Lemmas

Lemma 1 [6] Suppose Fand G are non-constant meromorphic functions, let

g, (6, 6
F' F-1 G G-1

and suppose H # 0, if Fand G IM share 1, then
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1
N}E) (r, G

J < N(r.H)+S(r F)+S(rG)
Lemma 2 [7] Let fbe a non-constant meromorphic function, and
P(f) = anfn -'—an—l.fni1 +.”+a1f
where a,,a,,---,a,_;,a,(#0) are constants, then
T(r,P(f)) = nT(r,f)+O(l).

Lemma 3 Let f be a non-constant meromorphic function, k(Z l) and
n(>2) are two positive integers. Let F = f"(f~-1) and G=s""(f-1)s".
If Fand G IM share 1, then S(r,F) = S(r,G) = S(r,f).

Proof According to Lemma 2, we obtain

T(r,F)=(n+1)T(r,f)+0(1) (1)
It can be seen from the above formula,
S(r,F)=S8(r,f) )
dueto G=/""(f~1)f", wehave
T(r.G)<(n=1)T(r, f)+T(r.f ~1)+T(r. /")
n=1)T(r,f)+T(r.f)+kN(r,f)+S(r. f) (3)
<(n+k)T(r,f)+S(r. f)

According to the second basic theorem and (2)
1)+N(r,%j+]\_](r,F)+S(r,F)
_ ]V(r,%}+ﬁ(r,%j+]\_f(r,f)+S(r,f)

<(
<(

(1
T(r,F)<N|r,
(F)<

<ST(r,G)+2T(r, f)+S(r.f)

The above formula is combined with (1) to get

T(r,G)Z(n—l)T(r,f)—i-S(r,f) (4)
According to (3) and (4), we have
S(r,G):S(r,f) (5

According to (2) and (5), we can get the conclusion of Lemma 3.
Lemma 4 [8] Let fbe a non-constant meromorphic function, k,p are two

positive integers. The zero point of f —1 is at least 2, then

Np[r,ﬁ]skﬁ(r,f)+Np+k (r,%j+$(r,f)

zv[r,fl_ljgzv(r,%js zv<r,,f)+ﬁ(r,§j+8(r,f)

Lemma 5 Let fbe a non-constant meromorphic function, n(Z 2) , p are two
positive integers. The zero point of f —1 is at least 2. Let F = f" ( f —1) and
G=f"" (f—l)f(k) ,if Fand G IM share 1, then
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— 1
) NL(r,G_
Proof According to Lemma 4, we have
_ 1 — 1 — 1 1
N(I”,EJSN[l’,7J+N[7‘,ﬁj+Nl(l’,fmj-l-s(r,f)
S]V(r,%)+ﬁ(r,f)+]\_/(r,%j+Nk+1(r,%]+kﬁ(r,f)+S(r,f)

s(k+3)N[r,ﬂ+(k+1)ﬁ(r,f)+s(r,f)

This leads to the conclusion (a), obtained from the definition of the

N, |, ! and Lemma 3:
F-1

N, (r,Lj < N[r,ij < T(r,£J+ O(l) = m(r,£j+ N[r,ij + O(l)
F-1 F' F F F
_ ]\_/(r,F)+]V(r,%J+S(r,F) - 2]V(r,f)+21\7(r,%j+S(r,f)
This leads to conclusions (b), the same reason

Combine G = f"" (f - l)f(k) and the q form in Lemma 5, we can get (c).
Lemma 6 Suppose Fand G are non-constant meromorphic functions, and sa-

tisfy ]V(r,F)Jrﬁ(r,%)zS(r,F) and ]V(r,G)—H\_/(r,éj ~S(r.G).If Fand
G IM share a non-zero constant a,then =G or FG=1.

Proof
Suppose F=f"(f-1), G=f”’1(f—1)f(k). (6)

Let Hbe defined by Lemma 1. The following two discussions,
Case 1 Suppose H #0,then F =G, let

V:[L_ij_(i_ij 7)
F-1 F G-1 G
If V=0,
1 B
|-—— =B~ 8
7 e (8)

where B#0 isaconstant,if N(r,f)=S(r,f).
By (6) and (8), we get B=1.
So F =G, contradictory with the assumption of case 1.
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Therefore, ]\_/(r,f) = S(r,f).
So B=#1,by(8), we get

BF BF 1
C(B-D)F+1 _IEB—IJ ©)
1-B
N|r, 11 =S(r. f) (10)
F———
B-1

According to the second basic theorem and (6) (8) (9) (10) we get

T(r,F)<N(r %}N r— . +N(r,F)+S(r,F)
B-
sﬁ(r DN - J av
AN(r, f)+S(r. f)
By lemma 2, we have
T(r,F)=(n+1)T(r,f)+0(1) (12)
Then
(n+ )T (r, f)=3T(r, f)=S(r, f) (13)

If B=1,then F =G, contradiction.

If V'was not always equal to 0, (7) can be rewritten into
_F G
CF(F-1) G(G-)

(14)

Suppose z, is a pole of fwith multiplicity p, then z, is pole of Fwith mul-

’

tiplicity (n + 1) p.and z, iszero of with multiplicity (n + l) p-—1

’

G
G(G-1)

So z, isazeroof Vwith multiplicity >n atleast.

atleast. z, iszero of with multiplicity (n + 1) p+k—1 atleast.

nN(r, f)< N(r,%j+S(r,f)S N(r,V)+S(r. f)

<N( lj ]V( Fl 1)+NL(r,ﬁj+S(r,f)

<(k+3)N [%) +(k+1)N(r,f)+2N(r,f)
+2]V(r,%]+(k+3)ﬁ(r,%j+(k+2)ﬁ(r, £)+5(rf)

<(2k+8)N [ ] 2h+5)N(r.f)+S(r. f)
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Then
(n—2k—5)1\_/(r,f)S(2k+8)ﬁ(r,%}+$(r,f) (15)

The following two sub-cases are discussed:

Sub-case 1.1 suppose

F' G’
= (16)
F-1 G-1
If U=0, wehave
F=DG+1-D
where D #0 isa constant. Then
N(r,f)=S(r.f). (17)
Suppose ]V[r,%];tS(r,f), D=1, F=G, contradiction;
Suppose I\_/[r,%j;tb‘(r,f), D=1, F=G, contradiction.
So ]V(r,isz(r,f), ]V(r, ! ]zS(r,f). (18)
S /-1
(1) = 1
If D1, N(r,—ij(r,—j,
G F+D-1
]\_/(r,ij:]v ,i +N F,L +N I",; =S(r,f)
G s e S
So N|r, =S(r,f).
(r F D—J (/)
Then

Obviously impossible.
Suppose Uis not always equal to 0, let z, be a zero of fwith multiplicity g,

’

then z, isa zero Fwith multiplicity ngand z, is zero of FL with multip-

!

G
licity ng—1 atleast. z, iszero of Py with multiplicity (n—1)g—1 atleast.

So z, isazeroof Uwith multiplicity n—2 atleast.

(n—Z)N{r,%J < N[r,%j+S(r,f)S N(r,U)+S(r,f)
< ]V(r,f)+]VL(r,ﬁj+]\_/L[r,%jhg(r,f)

s(k+S)N(r,%}r(k+4)]\7(r,f)+S(r,f)
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So

(r,f)+S(r,f) (19)

N——
IA
—_
bl
+
W
~
2|

Also

T(r,F)< ]V(r,%)+ﬁ(r, j+ﬁ(r,F)+S(r,F)

zv(r,%jmv(r, f)+]\7(r,Fl_1j+S(Vaf)

IA
[\S)

]\7[1” ! )<]\_/ r ! <T[r f(k)J-i-S(i”f)
’F—l = ’fn_1(f_1)f(k)_1 - > f 5

(-1

() (k)
=m r,f—J+IV(r,ff j+S(r,f)

S
< kN (r, f)+kﬁ(r,%j+S(r, 1)
Then

T(r,F)S(k+2)]V(r, ]+(k+2)]\_/(r,f)+S(r,f) (20)

1
S
If n—2k-5>0,and ]V(r,%J:S(r,f), N(r,f)=S(r,f) one of the two

forms is established. Then N (r,%] +N(r,f)=S(r, f), substituting the above

formula is obviously impossible.
Or T(r,F)=S8(r,f), contradiction.

So ﬁ[r,%}+]\_](r,f)¢S(r,f),weget

]\_/(r,%)iS(r,f),]\_](r,f):tS(r,f),then

(n—k—7)ﬁ[r,%jswﬁ(r,ljhg(’%f)

n—-2k—6 f
k+4)(2k+8
PRI
n—-2k—-6
_ 2 2
3k+13 9kz+62k+129§n33k+13+\/9kz+62k+129 (1)

Case 2

Situation 2.1
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If N(r,%j+ﬁ(r,f):S(r,f),weget

N(r,%}r N(r,F)=S(r,F), N(r,éj +N(r,G)=S(r.F)

According to Lemma 6, weget F=G or FG=1.

Firstly, if F=G, f"(f-1)=/""(f-1)f 7%, f=7% conclusion estab-
lished.

Secondly, if FG=1, f"(f-1)-/""(f-1)s/ =1, > (r-1) %=1

Obviously fis entire function.

And

1) < M| 5 1 +_r;+ r
r(r.s )—N[’f(m) N{’(f—l)zJ Str9)
=T(r,f)+2T(r.[)+S(r.[)

=37 (r, f)+S(r. f)
(2n=1)T (r, f) <37 (r.f)+S(r.f)

T(r,f)=S(r,f), contradiction.

Situation 2.2

If N(}’,f)iS(r,f),weget B=0.

So G-1=A(F-1).

If N( f)=S(r,f),weget A=1,then F=G.
Andif N(r,f)=58(r,f),

T(r,F)S]V(r,%}+ﬁ(r,f)+ﬁ(r, ! j+1\7(r,F1
<(k+2)N(r.f)+8(r.f)
(n+1)T(r,f)S(k+2)]\_f(r,f)+S(r,f)

We get n<k+1, that contradict with 2n >3k +13+~v9k” + 62k +129
Suppose ]V(r,f):S(r,f),

If ]\_/(r,%j;tS(r,f) weget B=A-1.

If A4=1,weget B=0,then F=G.
If A#1,weget
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G-——
A-1

g]\_/(r,éj+S(r,f) s(k+3)zv[r,ﬂ+s(r,f)

We get n<k+2,which contradicts with 2n >3k +13++/9k> + 62k +129 .
Therefore, Theorem 1 is proved.
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