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Abstract

Quantum field theory can be understood through gauge theories. It is al-
ready established that the gauge theories can be studied either perturbative-
ly or non-perturbatively. Perturbative means using Feynman diagrams and
non-perturbative means using Path-integral method. Operator regularization
(OR) is one of the exceptional methods to study gauge theories because of its
two-fold prescriptions. That means in OR two types of prescriptions have
been introduced, which gives us the opportunity to check the result in self
consistent way. In an earlier paper, we have evaluated basic QED loop dia-
grams in (3 + 1) dimensions using the both methods of OR and Dimensional
regularization (DR). Then all three results have been compared. It is seen that
the finite part of the result is almost same. In this paper, we are interested to
evaluate the same basic loop diagrams in (2 + 1) space-time dimensions, be-
cause of two reasons: the main reason in (2 + 1) space-time dimensions, these
loops diagrams are finite, on other hand, there are divergences in (3 + 1)
space-time dimensions and the other reason is to see validity of using OR to
evaluate Feynman loop diagrams in all dimensions. Here we have used both
prescriptions of OR and DR to evaluate the basic loop diagrams and com-
pared the results. Interestingly the results are almost same in all cases.

Keywords

Operator Regularization, Dimensional Regularization, Feynman Diagrams in
QED, Path-Integral Method, Background Field Quantization and Generating
Functional

1. Introduction

Gauge theories [1]-[7] describe the interactions of all known forces such as elec-
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tromagnetic, week and strong interations. To get a clear picture of different
features from these theories, renormalization is a must. These can be done in
two ways. That means one can study these theories either perturbatively or
non-perturbatively. In the perturbative method, we mainly get some Feynman
diagrams from the theory. When we evaluate loop diagrams in some cases, the
loop integrals are divergent. So we need to regularize the integrals. That is why
perturbative method needs regularization prescription. There are many regula-
rization methods available in the literature. However, the most popular and ap-
propriately applicable methods are Dimensional regularization (DR) [8] [9],
Pauli-Villars regularization [10], Pre-regularization [11] [12] [13] [14] and some
others. In non-perturbative method, we expand the generating function in terms
of path integrals, then using different techniques we try to renormalize the
theory to find the different features of the particles involved in the interactions.
Operator regularization (OR) method is one of the best non-perturbative me-
thods to study gauge theories. The remarkable feature of this method is that
it gives us the opportunity to study the theory both perturbatively and
non-perturbatively. That means although OR is mainly a path integral method
but at one stage there is an option to consider the term as a factor for operator
for loop diagrams. Then we can evaluate Feynman diagrams using these operators.
Operator regularization method was prescribed by D.G.C. McKeon et al. [15] [16]
[17] to study gauge theories non-perturbatively. However, they mentioned there
that at one stage one can also use this prescription perturbatively. That means at
that point one can also draw Feynman diagrams. A.Y. Sheiek [18] [19] has showed
how one can use Feynman diagrammatic technique in OR method.

In an earlier paper [20] we have described OR method in both ways and eva-
luated one-loop Feynman diagrams in QED in (3 + 1) space-time dimensions.
Also we have used DR method in evaluating these diagrams and compared the
results with the results obtained in OR in both ways. We have seen all the results
are exactly same, except a finite constant term which will not affect the renorma-
lization of the theory. In this paper, we have used the same method to evaluate
the basic QED one-loop Feynman diagrams in (2 + 1) space-time dimensions to
see the basic difference between finite and infinite loop integrals. Because in (3 +
1) dimensions, the loop integrals are divergent, on the other hand, in (2 + 1) di-

mensions, the loop integrals are finite.

2. Operator Regularization Prescription

Operator regularization is a convenient method of computing quantum correc-
tions in quantum field theory in the context of background-field quantization
and using path integral method [21] [22] [23], which were given by D.G.C.
McKeon et al In this method the Feynman diagrams of the usual perturbation
series can be avoided. But at one stage there is an option to consider the factor
used for operators and inverse operators for Feynman diagrams. That is from

this prescription one can choose either path integral method or Feynman dia-
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grammatic approach.

We have clearly explained how this OR can be applied for evaluating Feyn-
man diagrams in ref. [18]. For self consistence let us write a few main steps of
this prescription which has to be used in evaluating the one-loop Feynman dia-
grams in (2 + 1)-dimensions.

In gauge theories we mainly deal with the generating functions. Then after
some simplification we end up with some types operator and inverse operators.
Then how one can take care of these operators has been explained in this OR.

If we have an operator Q then according to OR we can write

detQ =exp(irInQ) (2.1)

Let us regularize InQ in the following way:

n n-1
InQ=—lim d |z o (n=1,2,3,--) (2.2)
e0dg" | n!

In facing no divergences we can always choose 11 to be greater than or equal to

the number of “loop momentum integrals” or in other words orderin 7.

Hence,
. dn gnfl ;
detQ=exp| tri—lim—| —Q (2.3a)
=0 de" | n!
and
_1 m—1 m
Q"= ()" d (InQ)
(m—l)! dQ”
(2.3b)
n n-1
=—lim d [;‘_ F(€+m) Qfsfm
s>0de” | n! T(m)T (&)
If we now rewrite Q% as
) 1 7, .
Q°F=—|der exp(—Qt). (2.4)
ran & e
in Equation (2.9) we arrive at the result
detQ =exp[-&'(0)] (2.52)
where we have defined the &function
| -
E(e)= det*'trexp (—Qt (2.5b)
(€)= g e rexn(-e)

This is the usual &function regularization of the determinant of an operator
[24] [25].

Equations (2.2) and (2.3) are the main steps of the Operator regularization
which has to be used in evaluating the Green’s function of any problem. From
this point we can divide the prescription in two fold way. That means if we want
to follow the path integral method we have to use Schwinger expansion [26] for

the operator like
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>0 de| I(¢)

31 1
_%J‘duuj'dve—(]—u)QOtQIe—u(l—v)QOtQIefquO!QI 4. \J:I}
0 0

© 21

detQ =exp {— limi{ ! I det*'tr (e"QO’ —1e™'Q, t—Jdu e N ey
2 0

’ (2.6)

where, Q=Q +Q, with €, isindependent of the background field f, and
Q, isatleastlinearin f;.

Then following the steps described in ref. [15] we can find the result of the
problems in consideration.

On the other hand if we want to use perturbatuve method then we have to
take n = 1 for one -loop, take n = 2 for two-loops in Equations (2.2) and (2.3)
and so on.

From Equation (2.3b) we can write the general prescription of Operator regu-

larization for the Feynman diagrams following [18]:

d” &
Q™" =lim l+ae+a,e’ ++a e ) =—Q ™ (2.7)
0 dg” [( ! : ! ) n! }

where the ¢, s are arbitrary. For one-loop diagrams it is enough to use n = 1.

When m = 2 and n = 1, then Equation (2.7) taken the form
d
Q7 =lim—| ¢(1+ae)Q .

lim g[a( ag) J (2.8)

In one loop calculations we can use (2.8) for operators. In the following sec-

tions we will use this prescription for evaluating the three basic one loop dia-

grams.

2.1. One Loop Fermions Correction in (2 + 1) Dim. Using
Dimensional and Operator Regularizations [18] [27] [28] [29]

1) Dimensional Regularization Method:

Starting with the Feynman diagram for the one loop correction to the fer-
mions line shown in Figure 1 which is represented by (Z( P)):

Using the standard Feynman rules one can write (Z( p)) as,

4t (p—1-m)
(Z(P)) J(Zn)3 Vi [(p—lf _szlz Vu

Using the Feynman identity for combining the denominators, we can write

!

N N N
7 - 7

p M p—1 vV p

Figure 1. One loop Feynman diagram for external fermions lines.
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:—iezldx d3l3 ]/ﬂ(]l)—l—m)?/y 2
e e [Py

Shifting the variable of integration as /'=/— px and simplifying we get

(Z(P))=—iezj.dxf &y [p(l-x)-m-17y,

3 2
o (2n) [1’2 —m2x+p2x(1—x)]
The term linear in /" integrates to zero because of symmetric integration, so

__l-eZI a4 }/ﬂ[p(l—x)—mjjfﬂ
(Z(p))— '([dx'[ (211)3 [12 —m2X+P2X(1—X):|2 @11

Which is taken as the common starting point for both Dimensional and Op-
erator regularization.

Using Feynman identity and then y-algebra, the above result becomes,
Euln ! p(1-x)+3m
(4r) 0 [m -p x(l—x):|
[p(l - x) + 3mJ

[mz — pzx(l — x)}

Thus according to dimensional regularization, we see that there is no diver-

12

(2.1.2)

2. 21
_CH [dx
(87t)0

2

gent part in (2 + 1)-dimensional space-time, because the integrals are finite in
3-dimensions.

2) Operator Regularization Method:

The same one-loop correction to fermion can be evaluated using OR, follow-
ing the rule cited in Equations (2.5) and (2.6) in ref. [8]. The amplitude of the

self-energy diagram as

(2(»)
d

1
=—ie’ dxlim—.f
e>0dg

&’ g(l+a£)yﬂ[p(l—x)—m]yﬂ
(275)3 [lz —m? +pzx(l—x)]‘9+2

Using the standard integral

| 4> 11 T(4-w) 013
(2n)™ (P +m2)" (4n)'T(4) (1)

we get,

(Z(P))=ﬁidm[zﬂ(l—x)—m]n

F(5+1j
limi e(1+a¢) 2

= ' ol
0 de F(€+2) (_m2x+p2x(l_x)) 3
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where u=-m’x+ p’x(1-x)

u(g+;](€a)(—;+sj u[H;J(Haa)(g—;j!

P (1+e)! i (1+2)!

1+a5)(5—1j'lnu u +1jg(1+ga)l"(8+;)F(g+;j

- +e)! " (1+¢&)!

)!
e(l+ea) (s—lj (e+2)F(e+2) Jr

_NT
(1+¢)! u’?
Therefore,
1
. d|e(l+as) r(8+2) ~ Jr
M ae| T(er2) T @1
(—m2x+p2x(1—x)) 2 [p x(1=x)—m x]
Thus Equation (2.1.4) becomes,
Jr

l;zj‘dx[p(l—x)+3m]

DG [r(i-x)-ns]
_ & ldx [p(1-x)+3m]

(87) 5 [m2 -p’x(1 —x)]l/2

This is the same form as like as obtained by dimensional regularization ap-

proach.
2.2.0ne Loop Photon Correction in (2 + 1) Dim.
Using Dimensional and Operator Regularizations

Let us consider the Feynman diagram for the one loop correction to the photon

line shown in Figure 2 which is represented by I1,, (p):

The QED one loop correction to the photon line in (2 + 1)-dimensions is

1, (p)=¢'f &1 | 7 (It p=m)y, (I-m)

(2n)3‘ [(l+p)2 —mz}(l2 —mz)
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Figure 2. One loop Feynman diagram for external boson lines.

Combining the denominator using the Feynman identity and simplifying, we

get
1dx & Tr[}/”(l+p—m)]/v(l—m)]

. 2.2.1)
o " (2m) [(ler)2 )c—m2)c+(l2 —mz)(l—x)}

2

Now putting /"=/+ px in Equation (2.2.1), then we get,
! &7 Irly,(I'=px+p-m)y, (I'-px—m
Hﬂv(p):ezj‘dxj [ﬂ( ) ( ):|

0 (2n)3 [(Z'+p(1—x))2 x—mzx-i-((l'—px)2 —mz)(l—)c)}2

After simplification Equation (2.2.1) with /" —/ becomes,

top di 21,1,
o (2x) {12 —m’+p’x(1 —x)}
_2x(1—X)(pﬂPV _pzé‘yv)_ é‘yv
{lz . +p2x(1—x)}2 {12 -m’ +p2x(1—x)}

2

(2.2.2)

If we apply the following integrals in the first and third terms in the integrand
of Equation (2.2.2),

11
Dld9)—»~
)] (7 +21g-m*)"

L3 ! d 1 J
ot (e
1 a . F(O{ —d/Z)
H) ddl—: -1 dj2
I (7 +2iq-m) o r(a)(-g -m*)™"
We arrive at,
1, (p)=8¢(p.p, ‘Pz%)j x| a it (2.2.3)

0 (2n) {12 —-m’ +p2x(1—x)}2

Which is again taken as the common starting point for both Dimensional and
Operator regularization for one loop correction to the photon lines.

Using Feynman identity-II, the above result becomes,
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5 €/2

—8ie” (pﬂpv}/2 P ) _i'dxx {pzx(l —x)-m
0
)

I -
HV (p ( 27[#2
 Sie ,U(P,,PV 5,.p° j o x(1=x)
0

( [p x(l—x)—mz]l/2

Thus according to dimensional regularization, we see that there is no diver-

(2.2.4)

gent part in (2 + 1)-dimensional space-time, because the integrals are finite in
3-dimensions.
Now proceeding with operator regularization and again following the same

route, we get,

| 3 _
zé‘yv)_’-d‘xnmi d’l e(1+ag)x(1-x) (22.5)

>0 dg (27:)3 |:lz —m? +p2x(1—x)T+2

Hyv (p) = _862 (pypv -

Performing the momentum integral (2.1.3), so that relative to the Equation
(2.2.5) weget, A=¢c+2, w:%, M? =-m’ + p’x(1-x), then Equation (2.2.5)
becomes,

1

1
i d e(l+ae) F(g+2)
>0 dg F(£+2) (

1
H,uv(p):_gez (p#p‘,—pzﬁﬂv)jdxx(l—x)
0

1
et—

-m’ + p2x(1 —x)) 2
Now using the Equation (2.1.4) then above equation reduces to,

! 2 X{1—X \/;
W(Pypy—p 5;1\/) (1 )[pzx(l—x)—mzx]l/z

4 (pup=0,0°) | (=)

(27) 0 [pzx(l—x)—mz]l/2

This is the same form as we obtained by dimensional regularization approach.

I, (p) =8¢’

2.3. One Loop Vertex Correction in (2 + 1) Dim. Using
Dimensional and Operator Regularizations

Let us now consider the Feynman diagram for the one loop correction to the
vertex shown in Figure 3 which is represented by T',(p.q)-

The QED one loop correction to the vertex in (2 + 1)-dimensions is

et [ [ra(pri=m)y, (g +1-m)7, ]

(@) 2 [(p+1) = |[(q+1) ~mr" ]

Applying the 3-parameter Feynman formula for combining the denominator

(2.3.1)
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N N
>

p A p+l g+l o ¢q

Figure 3. One loop Feynman diagram for vertex function.

and shifting the variable of integration /—/+ px+¢qy and simplify the deno-

minator and numerator, we obtain,

r (p q)=—2ie Idxj dy.f

)
.[;//1(l+p(1+x)+qy—m);/p(l+q(1+y)+px—m);/,1]
[ =m? (x4 )+ px(1=x)+ ¢y (1-y) = 2p g |

This integral contains convergent and divergent pieces. The part of the nu-
merator quadratic in /is divergent, the rest convergent, so separating the diver-

gent piece 1"(;) (p.q) and convergent piece 1"(;) (p.q),Le

r,(p.a)=T} (p.a)+T} (p.q)
Thus the divergent piece is,

1-x d31 }/Ul}/pl}/a
(211:)3 (12 —M2)3

where, M?>=m?(x+y)-p’x(1-x)—¢’y(1—-y)+2p-qxy.
Which is taken as the common starting point for both Dimensional and Op-

1
F(pl) (p,q) = -2ie’

(2.3.2)

erator regularizations for one-loop correction to the vertex.

Using Feynman identity and then p-algebra, the above result becomes,
2e ,ul"( ! )

2 ,U\/_ 20w,

™ (p.q)=

( )'/2
ldxﬂ( 1/2
{ I ( )/
Wpl 1
(41t) .([dx.([ dy (Mz)l/2

where, M*=m’(x+y)—p’x(1-x)—¢’y(1-y)+2p-qxy .

(2.3.3)

Now proceeding with operator regularization through the rule (2.13) and
(2.14), we get,
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FS)(p’q): 3/2 J. ].
0

d . d/ voly Ly
1’*(1) ,q =_Dj dx [ d 1+ o'/ ptlo
P (p le .|. .[ y£_>0 dgj.(znf 8( ag)(lz_M2)5+3
Now performing the momentum integral -I from above, then we get,
1
I'e+—
lim d e(l+ae ( 2)
Y (p.g)=-i 3/2 Idxj ). O\ Vol a2 oY

5"0 d&' F(S +3) (MZ)HE
Now using the Equation (2.1.4) and p-algebra, then above equation reduces
to,

1 1-x

o[ ]‘”“ (i !"’“!dy[ T

where, M*=m*(x+y)-p’x(1-x)-¢’y(1-y)+2p-qxy.

(2.3.4)

This is the same form as like as obtained by dimensional regularization ap-

proach.

3. Path Integral Form of Operator Regularization
for One Loop Generating Functional in QED

The path integral form of OR for one-loop case is described in ref. [15]. That is if

we consider the QED Lagrangian as,
1 2 — 1 2
L= _Z<a”9" -0,Q,) +¥(-ir"0, —ey*Q, —m)¥ —Z(aHQ‘ | ERY

and let us expand this Lagrangian taking background field quantization of the
fields in the following form, gauge field €2, and fermionic field y are re-
spectively,

Q, =V, +0,, for gauge field Q,

w =1n+q, for fermionic field y,

where V, and 7 are the classical fields and O, and g are the quantum
fields.

Therefore Equation (3.1) becomes,
1 2
_Z<6uVu +6#Qﬂ =0V, _an")
+(77 + (7)(—1'7"6# —ey* (Vﬂ + Qu)— m)(?] +q)

1
_Z(aﬂl/ﬂ + a/lQ/’ )2

—[(0.0,-0.0) (@5, ~00)] +7(-ir*a, ~m)y

+77(—i)/”8ﬂ ~ m)q + (7(—1’7”@ —m)f]

(3.2)
+e(r"V,n+ 7y V,q + 7y  Qn + 1y 0, + v V,n
+qr'V,q+qr'on+qr” L(6V +0 ’
ar'V,a+ar'0n+ar'0q)- -, .0,)
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Following ref. [7] the one-loop generating functional for Green’s functions
Z, is
det D _det4

1 _ o ~ detB
det"?| p’5,, ~\1=—|p,p, = €'y, D"y, 0=y, D7y,
a

Z, = (say) (3.3)

where, D =y" (—ia# —eVﬂ) =p—el

Here we see that Z, is the ratio of determinant of operators. Each of the de-
terminants occurring in Equation (3.3) requires regularization and a corres-
ponding &function. The numerator and denominator separately contribute to
Green’s functions with only external boson lines and with both external fer-

mions lines and vertex function in massless QED respectively.

3.1. One-Loop Generating Functional and Loop Corrections for
External Boson Lines

To find the loop corrections or to write the generating functional for external
boson lines one has to make a close look at the numerator of Equation (3.3) and
on the other hand for external fermion lines one has to take care of the denomi-
nator of Equation (3.3). So for bosonic case we have to regulate the detA

through the use of é&function in Equation (2.5a) yielding
det 4 =7 =exp| ~lime” (o) | (3.1.1)
where,

5(5)=%Tdﬁ“trexp(—§2t) with Q=p—el . (3.1.2)

As we mentioned in Section-2, after regularization we have to consider
Schwinger expansion, to this view let us now identify the operator Q, and Q,
with p and —el, respectively, then by Equation (2.4), Equation (3.1.1) can be
written as,

2

.. d 1 %, . _ _ t
z/ =exp|:—lgl(}${r(g)_£dtt ltr[e e +(—eV)E

1
~J.du ef(k")’”(—el/’)e’”’” (—eV) (3.1.3)
0

31 1
—%J.duu.[dve’("“)’” (_eV)efu(lfv)m (_eV)e—uvpt (_eV)Jr"'jH
0 0

To one-loop order this series plays the same role as Feynman rules in the
usual perturbation theory. Here we want to evaluate the one-loop correction to
the two-point function for external photon in QED; we restrict our attention to
the term bilinear in Vy on the right-hand side of Equation (3.1.3). This leaves
us with

d 82 © te+1 1 e
74 =exp| —lim—{ —— [dt—r| [due """ Ve 'y (3.1.4)
wv p|: SHOdg{F(S)‘[ 2 (.([

0
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Now let us complete the functional trace

1
T=tr (j due(“’)’”tVe“’”V] (3.1.5)
0

Schwinger has pointed out that such traces are most easily evaluated in mo-
mentum space. We introduce a complete orthonormal set of states | p) that are
eigenstates of the operator p, , where, in n dimensions,

ip-x

<X|P> :(26717 (3.1.6a)
and
(plflq)=% (3.1.6b)

On the right-hand side of Equation (3.1.6b), f(p—g¢) is the Fourier trans-
formof f(x):

X

dn —ix{ p—
f(P_Q):wa(x)e (#-0) (3.1.7)
Equation (3.1.5) takes the form,

T= [ pagd s (ple " [a) ¥ ) (el

(s|v|p) (3.1.8)

Upon inserting the complete set l:J.d3 p| p)( p| at the appropriate places,
and using (3.1.6), we rewrite Equation (3.1.8) as,

4 - —(1-u) pt "
T:jdﬁodﬁdﬁ‘d%&‘%e (1-u)p .(;n)3/2 5(1‘—91)

V(r=3) &7

S(s— 3.1.9
e V) -
_ d3pd3q —(l—u)pl—uth — NV (qg-
j—(zn)3 e (]17 Q) (q )

After shifting the variable of integration p — p+g¢, Equation (3.1.9) be-

comes,

d3pd3q — q+H(1-u it
=l (2n)’ Ay (pyr (-p) (3.1.10)

Upon substituting Equation (3.1.10) into Equation (3.1.4), we find that
Zyy = exp[—lingééﬁ (8)} (3.1.11a)
where,

2 © 1 3
&y (&)= %(S)J.dtt”'Idufd3pV(p)V(—p)Id—qe_[q+(]_u)p]t (3.1.11b)
0 0

(2n)

We use Equation (2.4) to integrate over £ then (3.1.11b) becomes,
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[¢-(1-u)p]™”

~ eT(e+2) (3.1.12)
&+2 M

£ (e)= [ (p)¥ (-p)f ]

d’q
2r(e) o) [ (1-u) ]

Now the last integral 7, (say) of Equation (3.1.12) can be calculated as fol-

lows:

- La Le=C-wp]”
(275)3 |:q2 —(1—1,{)2 p2 :|e+2
|:qe+2 _(g+2)(q)s+1 (1—u)p+---+(1—u)g+2 (p)s+2:|
la~(1-u)’ PZTZ

Differentiating Equation (3.1.12) with respect to & and taking £ —0, we

= d3q
J(an

see that the product terms in & will vanish. Hence in the numerator of I,
only the first and last term will contribute.

<q2 )% . (l—u)ﬁz (p)s+2

£+2 &+2
(== )" (=) )
To evaluate this integral let us consider the standard integral,
n 2\ " F[r+njl"(m—r—nj
[P ) SR 2 (3119)
(2m) (q2+c2) (161:2) F(ij(m)
Using Equation (3.1.14) in Equation (3.1.13), we get,

- r g+2+é r g+2_8+2_é
22w (T2 2 2 2

d3q
o= 3.1.13
[ ) (3.1.13)

_ (l—u) G-
! _<167112)3/4 { o) } F@jr(8+2)
4 £+2 £+2 _ 2 2 [2+0 672} r(3jr(8+2_3)
) { - } 1"2@]1"(5+2)

1 1 1= ¢ e 2 g 5 ¢ 1
e 0 (3553
- 5+l 1-¢ &+2 —(2¢+1 1
(=171 (=) () () >r(g+5ﬂ
Thus Equation (3.1.12) becomes,

G (e)= ezgr(:)z) (4;:1)3/2 r(gl+ L dzPV(P)V(—p)i du[(—l)i‘i

o (s Sy(sS
0 ) e e
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el )

2w e L 2
+g(_1){f+i)( ! J(p)m(p)—(zm)z (r( 2D

[Using Duplication formula]

1 s (53+3€2—g—3)

:éIdW(P)V(—p){(—l)z2(19)” 24(2-¢)

=)

2
where we have used {F(ZS; 1]} = (284+1JF(25 +1).

N (_1)-(‘9%] (p)™ (p) ) 22

1 ¢

To see sign of the term, let us put &—>0 in the factor (-1)22 and

1
(—1)_[”5) , then these terms are equal to 7 and -i Thus the above equation be-

comes,

& (€) =§Id3pV(p)V(—p){(p)” (

g3+352—g—3)

DOI: 10.4236/jamp.2018.610175

24(2-¢
( ) (3.1.15)
£+2 —(26+1) 5241 (28 + 1)8
— o R N
()" (r) .
Now differentiating Equation (3.1.15) w.r. to &, we get
2080 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.610175

M. Forkan, M. A. M. Chowdhury

)= ] d}zaV(p)V(—p)[ﬁ(p)“ in(p)(-1 %

| 1_g{(z—g)(s.gz +62-1) (5" +3¢7 —5—3)(—1)}

+_(p) (2—8)2

24

+ (]D)Hz In (p)(p)f(zm) 21 (

W(P)‘Hz (p)—(Q.sH) ln (p)
) (P ) B
(2-¢)(4e+1)- (26’ +g)(_1)]

(2-¢)

2o (26 +1)e

(2-¢)

i (p)5+2 (p)—(25+1) 225_1

(-2)2

Hence

7 (0)=lim&7 (e)

STAIRT ';3'5}

Substituting of Equation (3.1.16) into Equation (3.1.11a) yields our final ex-
pression for Z/}, as,

ie’
128

zZ, zexp[ J‘dSpV(P)V(—P)P(ln(P)—?H (3.1.17)
This contributes to the to the one-loop generating functional for external bo-
sons (photon) lines.
To find one-loop correction for external boson lines from above generating
functional, we have to take logarithm on Equation (3.1.17) and then functional
differentiation of the expansion with respect to momentum p.

Thus the one-loop correction for the external boson lines is,

e’ 29

e
= e p(m(p)_?j (3.1.18)

Hence the result in (3.1.18) is finite and of the same form as we obtained by
the diagrammatic form of Operator regularization and Dimensional regulariza-
tion methods in Section-2. In this section we have shown and explained how one
can choose the appropriate terms from the Schwinger expansion for the problem

in hand.

3.2. One-Loop Generating Functional and Loop Corrections for
External Fermion Lines and Vertex Function

In this case we focus on the denominator in Equation (3.3), so that let us regu-
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late the det B through use of the é-function in Equation (3.11a) yielding
1. .,
dethZlB =eXp|:—5£1£1’(}§B(£):l, (3.2.1)

where,

1 7., 1
gB(g)=l_(€)J'dtt ltrexp{—t|:p25ﬂv—(I—Ejpﬂpv
0

(3.2.2)
- e’ 1 — e’ !
UV#p_eVVVﬂ 777/‘/]0_6[/7’”77

In Equation (3.2.2) it is understood that the exponential is tr[exp(—tB)],

where

1

2_
—-eny,——

P e

1
_ 2 2—
B,=p9, —(l—gjp,,pv —eny,

=B +B

0uv Tuv

(3.2.3)

where, B, is at

is independent of the background field 7 and 7,and B,
least linear in 7 and 7.

Now as before to use Schwinger expansion in this case let us use the Equation
(2.4) and then taking bilinear in 7 and 7 on the on the right-hand side of
Equation (3.2.1), we end up with

[ df 1 %5, ., |
AE ——{lim— detft 5 | 1-—
1 eXI{ 2{€%d8[r(8)£ r{exp[p » ( ajpypvJ
-t(—2e2777,,1Dl7V77)}H

The exponential factor in the trace of Equation (3.2.4) can be simplified using

(3.2.4)

the complete set of orthonormal projections operators:

T,.(p)= [% —%} (3.2.5a)
L,(p)= p;f“ (3.2.5b)

These allows us to write (e"BO) as
uv

1
eXp[p25w _(1_Z)pﬂpvjt

| ., (3.2.6)
ks 2 .y
ZZ_'|:P2t(THV +ZLWH =e" T, +e” / L,

n=01:

and let us expand D'

Equation (3.2.4):

in powers of the back-ground field in the éfunction
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It is interesting to note that at this stage this is straightforward to apply the
perturbative expansion of Equation (2.3) to this &function and to select from the
expansion those terms appropriate for any particular Greens function. This
means that from the expansion we can choose appropriate terms that are asso-
ciated with the related problems that we are interested in. Let us consider here
the &function for the fermion two-point function and the vertex function, we
find

> _ (1 1 1
HGE ¢ Idlt‘gt{m/ﬂ{—+—el/—]7v,7(e—tp?T#v+e"”z/“Lw)} (3.2.7)
0 p pP b

I'(e)

Following ref. [15] [16] in the Approach-A, we compute from Equation (3.2.7)

the &function in the limit of zero momentum transfer to the photon:
2
B e s (1\C(1-¢) o n(2-¢)
=2 (&p| — |——|2 )
(o) =5 p(pz]r(3—8) (e )(1+g)

0) 102627 0) 0

(3.2.8)

p

Therefore by Equation (3.2.1) the contributions to the one-loop generating

functional is

5 1 ¢ 3 2 )=
Z, Eexp{g{;ﬂ2 J‘dzp[5+alna—alnp j?](p)(p+—4iz V(O)j?](—p)
(3.2.9)

3
p 1667:4 j'd3p77(p)]077(—17)%2(0)}}

This contributes to the one-loop generating functional for external fermion
(electron) lines and vertex function in QED.

To obtain the one-loop correction for external fermion lines and vertex func-
tion, we have to take logarithm of Equation (3.2.9) and then functional differen-
tiation with respect to momentum p.

Hence from Equation (3.2.9), we get

2

- 1;2 (%+alna—alnp2jﬁ(p)pn(—p)

3

to (%+alna—alnpzjﬁ(P)V(o)U(_p)

3 _ , VI/V O
3;4 7(p)r pyﬂ(—p)pp—z() (3.2.10)

-

2
e

T len
3

(%+alna—alnp2jﬁ(p)p77(_p)

+ o (%+alna—alnp2 —ZaJﬁ(p)V(O)n(—p)

From the expansion (3.2.10) we can find the one-loop correction for the ex-
ternal fermion lines and one-loop vertex function by choosing the appropriate

terms. This expression is of the same form as obtained by DR and OR methods
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with Feynman diagrams in Section-2.

Thus the one-loop correction for the external fermion lines is,

2
e 3
~+alha-alnp’ 3.2.11
16w ¥ (2 P j (3210
and the one-loop correction to the vertex function is,
e (3

“t+alna-alnp’—2a 3.2.12

64" (2 P j (3.2.12)

The result in (3.2.11) and (3.2.12) is of the same form as we obtained by the
diagrammatic form of Operator regularization and Dimensional regularization

methods in Section-2.

4. Conclusion

Radiative corrections in quantum field theory are very important for renormali-
zation of a theory. Because when we evaluate loop-diagrams in some cases we
find both finite and infinite terms. To absorb the infinite parts is the renormali-
zation. That is why best regularization method is needed to get the correct finite
and infinite parts of the loop-diagrams. Dimensional regularization (DR) is one
of the best methods to evaluate the loop diagrams, but it has also some limita-
tions in some cases. Operator regularization (OR) method had been prescribed
to overcome some of these problems. To compare the advantage of OR, we have
evaluated basic loop diagrams in QED using OR and compared the result with
DR. We found that the result is finite and comparable, which was expected. In
an earlier paper also we have shown the comparable result between OR and DR
where the result consists of finite and divergent parts. From these calculations it

is clear that OR is an attractive method to use in evaluating loop diagrams.
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