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Abstract 
Quantum field theory can be understood through gauge theories. It is al-
ready established that the gauge theories can be studied either perturbative-
ly or non-perturbatively. Perturbative means using Feynman diagrams and 
non-perturbative means using Path-integral method. Operator regularization 
(OR) is one of the exceptional methods to study gauge theories because of its 
two-fold prescriptions. That means in OR two types of prescriptions have 
been introduced, which gives us the opportunity to check the result in self 
consistent way. In an earlier paper, we have evaluated basic QED loop dia-
grams in (3 + 1) dimensions using the both methods of OR and Dimensional 
regularization (DR). Then all three results have been compared. It is seen that 
the finite part of the result is almost same. In this paper, we are interested to 
evaluate the same basic loop diagrams in (2 + 1) space-time dimensions, be-
cause of two reasons: the main reason in (2 + 1) space-time dimensions, these 
loops diagrams are finite, on other hand, there are divergences in (3 + 1) 
space-time dimensions and the other reason is to see validity of using OR to 
evaluate Feynman loop diagrams in all dimensions. Here we have used both 
prescriptions of OR and DR to evaluate the basic loop diagrams and com-
pared the results. Interestingly the results are almost same in all cases. 
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1. Introduction 

Gauge theories [1]-[7] describe the interactions of all known forces such as elec-
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tromagnetic, week and strong interations. To get a clear picture of different 
features from these theories, renormalization is a must. These can be done in 
two ways. That means one can study these theories either perturbatively or 
non-perturbatively. In the perturbative method, we mainly get some Feynman 
diagrams from the theory. When we evaluate loop diagrams in some cases, the 
loop integrals are divergent. So we need to regularize the integrals. That is why 
perturbative method needs regularization prescription. There are many regula-
rization methods available in the literature. However, the most popular and ap-
propriately applicable methods are Dimensional regularization (DR) [8] [9], 
Pauli-Villars regularization [10], Pre-regularization [11] [12] [13] [14] and some 
others. In non-perturbative method, we expand the generating function in terms 
of path integrals, then using different techniques we try to renormalize the 
theory to find the different features of the particles involved in the interactions. 
Operator regularization (OR) method is one of the best non-perturbative me-
thods to study gauge theories. The remarkable feature of this method is that    
it gives us the opportunity to study the theory both perturbatively and 
non-perturbatively. That means although OR is mainly a path integral method 
but at one stage there is an option to consider the term as a factor for operator 
for loop diagrams. Then we can evaluate Feynman diagrams using these operators. 
Operator regularization method was prescribed by D.G.C. McKeon et al. [15] [16] 
[17] to study gauge theories non-perturbatively. However, they mentioned there 
that at one stage one can also use this prescription perturbatively. That means at 
that point one can also draw Feynman diagrams. A.Y. Sheiek [18] [19] has showed 
how one can use Feynman diagrammatic technique in OR method. 

In an earlier paper [20] we have described OR method in both ways and eva-
luated one-loop Feynman diagrams in QED in (3 + 1) space-time dimensions. 
Also we have used DR method in evaluating these diagrams and compared the 
results with the results obtained in OR in both ways. We have seen all the results 
are exactly same, except a finite constant term which will not affect the renorma-
lization of the theory. In this paper, we have used the same method to evaluate 
the basic QED one-loop Feynman diagrams in (2 + 1) space-time dimensions to 
see the basic difference between finite and infinite loop integrals. Because in (3 + 
1) dimensions, the loop integrals are divergent, on the other hand, in (2 + 1) di-
mensions, the loop integrals are finite. 

2. Operator Regularization Prescription 

Operator regularization is a convenient method of computing quantum correc-
tions in quantum field theory in the context of background-field quantization 
and using path integral method [21] [22] [23], which were given by D.G.C. 
McKeon et al. In this method the Feynman diagrams of the usual perturbation 
series can be avoided. But at one stage there is an option to consider the factor 
used for operators and inverse operators for Feynman diagrams. That is from 
this prescription one can choose either path integral method or Feynman dia-
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grammatic approach. 
We have clearly explained how this OR can be applied for evaluating Feyn-

man diagrams in ref. [18]. For self consistence let us write a few main steps of 
this prescription which has to be used in evaluating the one-loop Feynman dia-
grams in (2 + 1)-dimensions. 

In gauge theories we mainly deal with the generating functions. Then after 
some simplification we end up with some types operator and inverse operators. 
Then how one can take care of these operators has been explained in this OR. 

If we have an operator Ω  then according to OR we can write 

( )det exp lntrΩ = Ω                      (2.1) 

Let us regularize ln Ω  in the following way: 

( )
1

0

dln lim 1,2,3,
!d

n n

n n
n

ε

ε

ε
ε

−
−

→

 
Ω = − Ω = 

 


           (2.2) 

In facing no divergences we can always choose n to be greater than or equal to 
the number of “loop momentum integrals” or in other words order in  . 

Hence, 
1

0

ddet exp lim
!d

n n

ntr
n

ε

ε

ε
ε

−
−

→

    Ω = − Ω   
     

            (2.3a) 

and 

( )
( ) ( )

( )
( ) ( )

1

1

0

1 d ln
1 ! d

dlim
!d

m m
m

m

n n
m

n

m

m
n m

ε

ε

εε
εε

−
−

−
− −

→

−
Ω = Ω

− Ω

 Γ +
= − Ω  Γ Γ 

  
         (2.3b) 

If we now rewrite ε−Ω  as 

( ) ( )1

0

1 d expt t tε ε

ε

∞
− −Ω = −Ω

Γ ∫ .                 (2.4) 

in Equation (2.9) we arrive at the result 

( )det exp 0ξ ′Ω = −                      (2.5a) 

where we have defined the ξ-function 

( ) ( ) ( )1

0

1 d expt t tr tεξ ε
ε

∞
−= −Ω

Γ ∫                (2.5b) 

This is the usual ξ-function regularization of the determinant of an operator 
[24] [25]. 

Equations (2.2) and (2.3) are the main steps of the Operator regularization 
which has to be used in evaluating the Green’s function of any problem. From 
this point we can divide the prescription in two fold way. That means if we want 
to follow the path integral method we have to use Schwinger expansion [26] for 
the operator like 
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( ) ( ( )

( ) ( )

00 0 0
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d 1det exp lim d e e d e e
d 2

d d e e
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u tt t u t
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u t u v t uv t
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ttt tr t u

t uu ve

ε

ε ε ε

∞
− − Ω−Ω Ω − Ω−

→

− − Ω − − Ω − Ω

 Ω = − − Ω Ω Ω
Γ 

 − Ω Ω Ω + 
 

∫ ∫

∫ ∫ 

(2.6) 

where, 0 IΩ = Ω + Ω  with 0Ω  is independent of the background field if  and 

IΩ  is at least linear in if . 
Then following the steps described in ref. [15] we can find the result of the 

problems in consideration. 
On the other hand if we want to use perturbatuve method then we have to 

take n = 1 for one -loop, take n = 2 for two-loops in Equations (2.2) and (2.3) 
and so on. 

From Equation (2.3b) we can write the general prescription of Operator regu-
larization for the Feynman diagrams following [18]: 

( )2
1 20

dlim 1
!d

n n
m n m

nn n
ε

ε

εα ε α ε α ε
ε

− − −

→

 
Ω = + + + + Ω 

 


        (2.7) 

where the nα s are arbitrary. For one-loop diagrams it is enough to use n = 1. 
When m = 2 and n = 1, then Equation (2.7) taken the form 

( )2 2

0

dlim 1
d

ε

ε
ε αε

ε
− − −

→
 Ω = + Ω                  (2.8) 

In one loop calculations we can use (2.8) for operators. In the following sec-
tions we will use this prescription for evaluating the three basic one loop dia-
grams. 

2.1. One Loop Fermions Correction in (2 + 1) Dim. Using  
Dimensional and Operator Regularizations [18] [27] [28] [29] 

1) Dimensional Regularization Method: 
Starting with the Feynman diagram for the one loop correction to the fer-

mions line shown in Figure 1 which is represented by ( )( )p∑ : 
Using the standard Feynman rules one can write ( )( )p∑  as, 

( )( )
( )

( )
( )

3
2

3 2 2 2

d
2π

p l mlp ie
p l m l

µ µγ γ
/− −/= −

 /− −/ 
∑ ∫  

Using the Feynman identity for combining the denominators, we can write 
 

 
Figure 1. One loop Feynman diagram for external fermions lines. 
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( )( )
( )

( )
( ) ( )

1 3
2

3 22 2 20

dd
2π 1

p l mlp ie x
p l x m x l x

µ µγ γ/− −/= −
 − − + − 

∑ ∫ ∫  

Shifting the variable of integration as l l px′ = −  and simplifying we get 

( )( )
( )

( )
( )

1 3
2

3 22 2 2
0

1dd
2π 1

p x m llp ie x
l m x p x x
µ µγ γ′/− − − ′ / = −

 ′ − + − 
∑ ∫ ∫  

The term linear in l′  integrates to zero because of symmetric integration, so 

( )( )
( )

( )
( )

1 3
2

3 22 2 2
0

1dd
2π 1

p x mlp ie x
l m x p x x

µ µγ γ− − / = −
 − + − 

∑ ∫ ∫
      

 (2.1.1) 

Which is taken as the common starting point for both Dimensional and Op-
erator regularization. 

Using Feynman identity and then γ-algebra, the above result becomes, 

( )( )
( )

( ) ( )
( )

( )
( )

( )

12

2 1 22 2
0

12 2

1 22 2
0

1 3π 2 π d
4π 1

1 3
d

8π 1

p x mep x
m p x x

p x me x
m p x x

µ
µ

µ

− +  =
 − − 

− + / =
 − − 

∑ ∫

∫
      

 (2.1.2) 

Thus according to dimensional regularization, we see that there is no diver-
gent part in (2 + 1)-dimensional space-time, because the integrals are finite in 
3-dimensions. 

2) Operator Regularization Method: 
The same one-loop correction to fermion can be evaluated using OR, follow-

ing the rule cited in Equations (2.5) and (2.6) in ref. [8]. The amplitude of the 
self-energy diagram as 

( )( )

( )
( ) ( )

( )

1 3
2

3 20 2 2 2
0

1 1d dd lim
d 2π 1

p

p x mlie x
l m p x x

µ µ
εε

ε αε γ γ
ε +→

+ − − / = −
 − + − 

∑

∫ ∫
 

Using the standard integral 

( ) ( ) ( ) ( )
( )

( )
2

2 2 2 2

d 1 1
2π 4π

w

w A w A w

A wl
Al M M

−

Γ −
=

Γ+
∫          (2.1.3) 

we get, 

( )( )
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( )

( )
( ) ( )( )

12

3 2
0

10
2 2 2

d 1
4π

1
1d 2lim .

d 2
1

iep x p x m

m x p x x

µ µ

ε ε

γ γ

εε αε
ε ε→ +

−
= − − / 

  Γ +  +   ⋅
Γ + − + −  

∑ ∫
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Therefore, 

( )
( ) ( )( ) ( )

1 1 20 2 22 2 2

1
1d π2lim .

d 2 11 p x x m xm x p x x
ε ε

εε αε
ε ε→ +

  Γ +  +    =
Γ +   − −− + −      

 (2.1.4) 

Thus Equation (2.1.4) becomes, 

( )( )
( )

( )
( )

( )
( )

( )

12

3 2 1 22 2
0

12

1 22 2
0

πd 1 3
4π 1

1 3
d

8π 1

iep x p x m
p x x m x

p x me x
m p x x

−
= − + / 

 − − 
− + − / =

 − − 

∑ ∫

∫
 

This is the same form as like as obtained by dimensional regularization ap-
proach. 

2.2. One Loop Photon Correction in (2 + 1) Dim.  
Using Dimensional and Operator Regularizations 

Let us consider the Feynman diagram for the one loop correction to the photon 
line shown in Figure 2 which is represented by ( )pµνΠ : 

The QED one loop correction to the photon line in (2 + 1)-dimensions is 

( )
( )

( ) ( )
( ) ( )

3
2

3 2 2 2 2

d
2π

l p m l mlp e Tr
l p m l m
µ ν

µν

γ γ / /+ − −/ Π =   + − −   
∫  
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Figure 2. One loop Feynman diagram for external boson lines. 

 
Combining the denominator using the Feynman identity and simplifying, we 

get 

( )
( )

( ) ( )

( ) ( )( )

1 3
2

3 22 2 2 20

dd
2π 1

Tr l p m l mlp e x
l p x m x l m x

µ ν
µν

γ γ / /+ − −/ Π =
 + − + − − 

∫ ∫    (2.2.1) 

Now putting l l px′ = +  in Equation (2.2.1), then we get, 

( )
( )

( ) ( )

( )( ) ( )( )( )

1 3
2

3 22 22 20

dd
2π 1 1

Tr l px p m l px mlp e x
l p x x m x l px m x

µ ν
µν

γ γ′ ′ / /− + − − −′ / / / Π =
 ′ ′+ − − + − − −  

∫ ∫  

After simplification Equation (2.2.1) with l l′ →  becomes, 

( )
( ) ( ){ }

( )( )
( ){ } ( ){ }

1 3
2

3 22 2 2
0

2

2 2 2 22 2 2

2d4 d
2π 1

2 1

11

l llp e x
l m p x x

x x p p p

l m p x xl m p x x

µ ν
µν

µ ν µν µνδ δ


Π =
 − + −

− −
− −
− + −− + − 

∫ ∫

  

(2.2.2) 

If we apply the following integrals in the first and third terms in the integrand 
of Equation (2.2.2), 

( )

( )
( )

2 2

2
2 2

22 2

I) d
2

π 1 1 1
2 2 2

d

d

d

l l
l

l lq m

i d dq q g q m
q m

µ ν
α

µ ν µνα α α
α −

+ −

     = Γ − + − − Γ − −   − −

∫
 

II) 
( )

( ) ( )
( )( )

2
22 2 2 2

21d 1 π
2

d d
d

d
l i

l lq m q m

α
α α

α

α
−

Γ −
= −

+ − Γ − −
∫  

We arrive at, 

( ) ( )
( )

( )
( ){ }

1 3
2 2

3 22 2 2
0

1d8 d
2π 1

x xlp e p p p x
l m p x x

µν µ ν µνδ
 − Π = −
 − + − 

∫ ∫
 

 (2.2.3) 

Which is again taken as the common starting point for both Dimensional and 
Operator regularization for one loop correction to the photon lines. 

Using Feynman identity-II, the above result becomes, 
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( )
( )

( )
( ) ( )

( )
( )

( )
( )

22 2 2 21

3 2 2
0

2 2 1

1 22 2
0

8 1
d 1

2π2π

8 1
d

2π 1

ie p p p p x x m
p xx x

ie p p p x x
x

p x x m

ε
µ ν µν

µν

µ ν µν

δ

µ

µ δ

−− −  − −
Π = −  

  

− − −
=

 − − 

∫

∫
  (2.2.4) 

Thus according to dimensional regularization, we see that there is no diver-
gent part in (2 + 1)-dimensional space-time, because the integrals are finite in 
3-dimensions. 

Now proceeding with operator regularization and again following the same 
route, we get, 

( ) ( )
( )

( ) ( )
( )

1 3
2 2

3 20 2 2 2
0

1 1d d8 d lim
d 2π 1

x xlp e p p p x
l m p x x

µν µ ν µν εε

ε αε
δ

ε +→

+ −
Π = − −

 − + − 
∫ ∫  (2.2.5) 

Performing the momentum integral (2.1.3), so that relative to the Equation 

(2.2.5) we get, 2A ε= + , 3
2

w = , ( )2 2 2 1M m p x x= − + − , then Equation (2.2.5) 

becomes, 

( )
( )

( ) ( )

( )
( ) ( )( )

1
2 2

3 2
0

10
2 2 2

18 d 1
4π

1
1d 2lim .

d 2
1

p e p p p x x x

m p x x

µν µ ν µν

ε ε

δ

εε αε
ε ε→ +

Π = − − −

  Γ +  +   ⋅
Γ + − + −  

∫

 

Now using the Equation (2.1.4) then above equation reduces to, 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

2 2
3 2 1 22 2

2 2 1

1 22 2
0

1 π8 1
4π 1

4 1
d

2π 1

p e p p p x x
p x x m x

e p p p x x
x

p x x m

µν µ ν µν

µ ν µν

δ

δ

Π = − − −
 − − 

− − −
=

 − − 
∫

 

This is the same form as we obtained by dimensional regularization approach. 

2.3. One Loop Vertex Correction in (2 + 1) Dim. Using  
Dimensional and Operator Regularizations 

Let us now consider the Feynman diagram for the one loop correction to the 
vertex shown in Figure 3 which is represented by ( ),p qρΓ . 

The QED one loop correction to the vertex in (2 + 1)-dimensions is 

( )
( )

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )

3

3 2

3
3

3 2 22 2 2

d,
2π

d
2π

l i ip q ie ie ie
p l m q l m l

p l m q l mlie
l p l m q l m

τσ
ρ λ ρ σ

λ ρ λ

δ
γ γ γ

γ γ γ

 
Γ = − − − 

/ /+ + + + / / 

 / /+ − + −/ / = −
   + − + −   

∫

∫
 (2.3.1) 

Applying the 3-parameter Feynman formula for combining the denominator 
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Figure 3. One loop Feynman diagram for vertex function. 

 
and shifting the variable of integration l l px qy→ + +  and simplify the deno-
minator and numerator, we obtain, 

( )
( )

( )( ) ( )( )
( ) ( ) ( )

1 1 3
3

3
0 0

32 2 2 2

d, 2 d d
2π

1 1

1 1 2

x lp q ie x y

l p x qy m l q y px m

l m x y p x x q y y p qxy

ρ

λ ρ λγ γ γ

−

Γ = −

 / /+ + + − + + + −/ / / / ⋅
 − + + − + − − ⋅ 

∫ ∫ ∫
 

This integral contains convergent and divergent pieces. The part of the nu-
merator quadratic in l is divergent, the rest convergent, so separating the diver-
gent piece ( ) ( )1 ,p qρΓ  and convergent piece ( ) ( )2 ,p qρΓ , i.e. 

( ) ( ) ( ) ( ) ( )1 2, , ,p q p q p qρ ρ ρΓ = Γ + Γ  

Thus the divergent piece is, 

( ) ( )
( ) ( )

1 1 3
1 3

3 32 2
0 0

d, 2 d d
2π

x l llp q ie x y
l M

σ ρ σ
ρ

γ γ γ− / /
Γ = −

−
∫ ∫ ∫          (2.3.2) 

where, ( ) ( ) ( )2 2 2 21 1 2M m x y p x x q y y p qxy≡ + − − − − + ⋅ . 
Which is taken as the common starting point for both Dimensional and Op-

erator regularizations for one-loop correction to the vertex. 
Using Feynman identity and then γ-algebra, the above result becomes, 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

3
1 1

1
2 1 22

0 0

3 1 1

2 1 22
0 0

3 1 1

1 22
0 0

12
2, d d

4π

2 π 1d d
4π

1d d
4π

x

x

x

e
p q x y

M

e
x y

M

e
x y

M

ρ
ρ

ρ

ρ

µ γ

µ γ

µγ

−

−

−

 Γ 
 Γ =

=

=

∫ ∫

∫ ∫

∫ ∫

           (2.3.3) 

where, ( ) ( ) ( )2 2 2 21 1 2M m x y p x x q y y p qxy≡ + − − − − + ⋅ . 
Now proceeding with operator regularization through the rule (2.13) and 

(2.14), we get, 

https://doi.org/10.4236/jamp.2018.610175


M. Forkan, M. A. M. Chowdhury 
 

 

DOI: 10.4236/jamp.2018.610175 2076 Journal of Applied Mathematics and Physics 
 

( ) ( )
( )

( )
( )

1 1 3
1 3

3 30 2 2
0 0

d d, 2 d d lim 1
d 2π

x l llp q ie x y
l M

σ ρ σ
ρ εε

γ γ γ
ε αε

ε

−

+→

/ /
Γ = − +

−
∫ ∫ ∫  

Now performing the momentum integral -I from above, then we get, 

( ) ( )
( )

( )
( ) ( )

1 12
1

3 2 10
20 0 2

1
1d 2, d d lim

d 34π

xep q ie x y
M

ρ σ λ ρ τ σε ε

εε αε
γ γ γ γ γ

ε ε

−

→ +

  Γ +  +   Γ = − ⋅
Γ + 

  

∫ ∫  

Now using the Equation (2.1.4) and γ-algebra, then above equation reduces 
to, 

( ) ( )
( ) ( )

21 1 1 12
1

3 2 1 2 1 22 2
0 0 0 0

π 1, d d d d
16π4π 2

x xeep q ie x y ie x y
M M

ρ
ρ ρ

γ
γ

− −

Γ = − = −
      

∫ ∫ ∫ ∫  (2.3.4) 

where, ( ) ( ) ( )2 2 2 21 1 2M m x y p x x q y y p qxy≡ + − − − − + ⋅ . 

This is the same form as like as obtained by dimensional regularization ap-
proach. 

3. Path Integral Form of Operator Regularization  
for One Loop Generating Functional in QED 

The path integral form of OR for one-loop case is described in ref. [15]. That is if 
we consider the QED Lagrangian as, 

( ) ( ) ( )221 1
4 2

L i e mµ µ µ
µ µ ν ν µ µ µγ γ

α
= − ∂ Ω − ∂ Ω + Ψ − ∂ − Ω − Ψ − ∂ Ω   (3.1) 

and let us expand this Lagrangian taking background field quantization of the 
fields in the following form, gauge field µΩ  and fermionic field ψ  are re-
spectively, 

V Qµ µ µΩ = + , for gauge field µΩ  

qψ η= + , for fermionic field ψ , 

where Vµ  and η  are the classical fields and Qµ  and q are the quantum 
fields. 

Therefore Equation (3.1) becomes, 

( )
( ) ( )( )( )

( )

2

2

1
4

1
2

L V Q V Q

q i e V Q m q

V Q

µ µ µ µ ν ν ν ν

µ µ
µ µ µ

µ µ µ µ

η γ γ η

α

= − ∂ + ∂ − ∂ − ∂

+ + − ∂ − + − +

− ∂ + ∂
  

 

( ) ( ) ( )
( ) ( )
(

) ( )

2

2

1
4

1
2

Q Q V V i m

i m q q i m

e V V q Q Q q q V

q V q q Q q Q q V Q

µ
µ µ ν ν µ µ ν ν µ

µ µ
µ µ

µ µ µ µ µ
µ µ µ µ µ

µ µ µ
µ µ µ µ µ µ µ

η γ η

η γ γ η

ηγ η ηγ ηγ η ηγ γ η

γ γ η γ
α

 = ∂ − ∂ + ∂ − ∂ + − ∂ − 

+ − ∂ − + − ∂ −

+ + + + +

+ + + − ∂ + ∂
   

(3.2) 

https://doi.org/10.4236/jamp.2018.610175


M. Forkan, M. A. M. Chowdhury 
 

 

DOI: 10.4236/jamp.2018.610175 2077 Journal of Applied Mathematics and Physics 
 

Following ref. [7] the one-loop generating functional for Green’s functions 

1Z  is 

1
1 2 2 2 1 2 1

det det
det1det 1

D AZ
Bp p p e D e Dµν µ ν µ ν ν µδ ηγ γ η ηγ γ η

α
− −

/
= =

  − − − / − /    

 (say) (3.3) 

where, ( )D i eV p eVµ
µ µγ/ = − ∂ − = − //  

Here we see that 1Z  is the ratio of determinant of operators. Each of the de-
terminants occurring in Equation (3.3) requires regularization and a corres-
ponding ξ-function. The numerator and denominator separately contribute to 
Green’s functions with only external boson lines and with both external fer-
mions lines and vertex function in massless QED respectively. 

3.1. One-Loop Generating Functional and Loop Corrections for 
External Boson Lines 

To find the loop corrections or to write the generating functional for external 
boson lines one has to make a close look at the numerator of Equation (3.3) and 
on the other hand for external fermion lines one has to take care of the denomi-
nator of Equation (3.3). So for bosonic case we have to regulate the det A  
through the use of ξ-function in Equation (2.5a) yielding 

( )/
1 0

det exp lim
AAA Z

ε
ξ ε

→
 = = −                

 (3.1.1) 

where, 

( ) ( ) ( )1

0

1 d expt t tr tεξ ε
ε

∞
−= −Ω

Γ ∫  with p eVΩ = − // .      (3.1.2) 

As we mentioned in Section-2, after regularization we have to consider 
Schwinger expansion, to this view let us now identify the operator 0Ω  and IΩ  
with p/  and eV− / , respectively, then by Equation (2.4), Equation (3.1.1) can be 
written as, 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
1

1 0
0

1
1

0

1 13
1 1

0 0

d 1exp lim d
d 2

d

d d
3

A pt pt

u pt upt

u pt u v pt uvpt

tZ t t tr e te eV

u e eV e eV

t u u v e eV e eV e eV

ε

ε ε ε

∞
− − −/ /

→

− − −/ /

− − − − −/ / /

  = − − + − /  Γ 

⋅ − −/ /

− − − − +/ / / 


∫

∫

∫ ∫ 

  

(3.1.3) 

To one-loop order this series plays the same role as Feynman rules in the 
usual perturbation theory. Here we want to evaluate the one-loop correction to 
the two-point function for external photon in QED; we restrict our attention to 
the term bilinear in Vµ  on the right-hand side of Equation (3.1.3). This leaves 
us with 

( )
( )

12 1
1

1 0
0 0

dexp lim d d
d 2

u ptA upt
VV

e tZ t tr ue Ve V
ε

ε ε ε

∞ +
− − −/ /

→

    = − / /   
Γ     

∫ ∫      (3.1.4) 
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Now let us complete the functional trace 

( )
1

1

0

d u pt uptT tr ue Ve V− − −/ /
 

= / / 
 
∫                  (3.1.5) 

Schwinger has pointed out that such traces are most easily evaluated in mo-
mentum space. We introduce a complete orthonormal set of states p/  that are 
eigenstates of the operator pµ , where, in n dimensions, 

( ) 22π

ip x

n

ex p
⋅/

=/                     (3.1.6a) 

and  

( )
( ) 22π n

f p q
p f q

−/ /=/ /                   (3.1.6b) 

On the right-hand side of Equation (3.1.6b), ( )f p q−/ /  is the Fourier trans-
form of ( )f x : 

( )
( )

( ) ( )
2

d
2π

n
ix p q

n

xf p q f x e− ⋅ −/ /− =/ / ∫
             

 (3.1.7) 

Equation (3.1.5) takes the form, 

( )13 3 3 3d d d d u pt uptT p q r s p e q q V r r e s s V p− − −/ /= / // / // / // / / / / /∫   
 (3.1.8) 

Upon inserting the complete set 31 d p p p= / / /∫  at the appropriate places, 
and using (3.1.6), we rewrite Equation (3.1.8) as, 

( )
( )

( )

( )
( )

( )
( ) ( )

( )

( )
( ) ( ) ( )

.
13 3 3 3

3 2 3 2

3 2 3 2

3 3
1

3

d d d d
2π 2π

2π 2π

d d
2π

ir q
u pt

is p
urt

u pt uqt

V p q eT p q r s e r q

V r s ee s p

p q e V p q V q p

δ

δ

/ /
− − /

⋅/ /
− /

− − −/ /

−/ / /= ⋅ −/ /// / /

−/ / /⋅ ⋅ −/ /

/ /= − −/ // / / /

∫

∫
     

 (3.1.9) 

After shifting the variable of integration p p q→ +/ / / , Equation (3.1.9) be-
comes, 

( )
( ) ( ) ( )

3 3
1

3

d d
2π

q u p tp qT e V p V p− + − / / = −/ /∫             (3.1.10) 

Upon substituting Equation (3.1.10) into Equation (3.1.4), we find that 

( )1 0
exp limA A

VV VVZ
ε

ξ ε
→

 ′= − 
                (3.1.11a) 

where, 

( ) ( ) ( ) ( )
( )

( )
12 3

11 3
3

0 0

dd d d
2 2π

q u p tA
VV

e qt t u pV p V p eεξ ε
ε

∞
− + − + / = −/ /

Γ ∫ ∫ ∫ ∫  (3.1.11b) 

We use Equation (2.4) to integrate over t, then (3.1.11b) becomes, 
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( ) ( )
( ) ( ) ( )

( )
( )

( )

22 1 3
3

3 222 20

12 dd d
2 2π 1

A
VV

q u pe qpV p V p u
q u p

ε

ε

ε
ξ ε

ε

+

+

− − Γ + / / = −/ /
Γ  − − 

∫ ∫ ∫  (3.1.12) 

Now the last integral 1I  (say) of Equation (3.1.12) can be calculated as fol-
lows: 

( )
( )

( )

( )
( )( ) ( ) ( ) ( )

( )

2
3

1 3 222 2

1 2 223

3 222 2

1d
2π 1

2 1 1d
2π 1

q u pqI
q u p

q q u p u pq

q u p

ε

ε

ε ε ε

ε

ε

+

+

+ + +∈+

+

− − / / =
 − − 
 − + − + + −/ / / / =

 − − 

∫

∫


 

Differentiating Equation (3.1.12) with respect to ε  and taking 0ε → , we 
see that the product terms in ε  will vanish. Hence in the numerator of 1I  
only the first and last term will contribute. 

( )
( )
( )( )

( ) ( )
( )( )

2
2 2 223

1 3 2 22 22 2 2 2

1d
2π 1 1

q u pqI
q u p q u p

ε
ε ε

ε ε

+
+ +

+ +

 
− / /∴ = + 

 − − − −/ / 

∫    (3.1.13) 

To evaluate this integral let us consider the standard integral, 

( )
( )

( ) ( )
( )

( )

2
2 2

42 2 2

d 1 2 2
2π 16π

2

r
nn r m

n m n

n nr m rqq c
nq c m

 + − 
 

   Γ + Γ − −   
   =

 + Γ Γ 
 

∫  (3.1.14) 

Using Equation (3.1.14) in Equation (3.1.13), we get, 

( )
( ){ } ( )

( )

( ) ( ) ( ){ }
( )

( ) ( ) ( ) ( ) ( )

3 2 22 2 2 2
1 3 42

3 0 22 2 2 2 2

1 1 1
2

3 2

2 3 2 32
1 2 2 2 21

316π 2
2

3 32
2 21 1

3 2
2

1 1 2 51 1
2 2 2π4π

I u p

u p u p

u p

ε ε

εε ε

ε ε ε

ε εε

ε

ε

ε

ε
ε

+ + − + 
 

 + − − + +  

−
− −

 + +   Γ + Γ + − −       = − −
  Γ Γ +   

   Γ Γ + −        + − − − ⋅/   Γ Γ +    
 = − − Γ +Γ +  

( ) ( ) ( ) ( ) ( )1 1 2 2 1
2

1
2 2

11 1
2

u p pε ε ε ε

ε

ε
 − + − + − + 
 

  Γ −    
 + − − Γ +/   

 

Thus Equation (3.1.12) becomes, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1
3 2 2

3 2
0

1 1

1 1 2 2 1
2

2 1 1 d d 1
2 24π

2 5 11
2 2 2 2π

11 1
2

A
VV

e
pV p V p u

u p

u p p

ε

ε ε

ε ε ε ε

ε
ξ ε

ε ε
ε ε

ε

−

− −

 − + − + − + 
 

Γ + = − −/ / Γ Γ + 
   ⋅ − Γ + Γ −   
   

 + − − Γ +/   

∫ ∫
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2 1
3 2 2

2

2
1

1 2 2 1
2

1 1d 1
28π

3 1 1 1
2 2 2 2 2 2 2 2

π 1 11
2 2 2

e pV p V p

p

p p

ε

ε

ε ε ε

ε ε

ε ε ε ε

ε
ε

−

−

 − + + − + 
 

  = − −/ /  Γ − 

      ⋅ + + − Γ −      
      

   + − Γ + /   −   

∫

 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( )

2 1
3 2 2

2

1

1 2 2 1
2 2

1d 1
28π

3 1 1 1
2 2 2 2 2 2 4

π 1 1 11
2 2 2 2

e pV p V p

p

p p

ε

ε

ε ε ε

ε
εε ε ε

ε

ε
ε ε

−

−

 − + + − + 
 

  = − −/ /   − 
Γ   ⋅ + + −    Γ   

   + − Γ + /   − Γ    

∫

 

where we have used ( )2
1

2 4
εε Γ −  Γ =    

. 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )

( )

3 22 1 13 2 2
2

2
2 1

1 2 2 1
2

3 3
d 1

24 28π

12
2π 11

2 2 π 2

e pV p V p p

p p

ε ε

ε

ε ε ε

ε ε ε

ε

ε

ε ε

− −

−

 − + + − + 
 


+ − −

= − −/ / 
−


  Γ +        + − /  − Γ  


∫

 

[Using Duplication formula] 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )
( )

3 22 1 13 2 2
2

1 2 2 1 2 12

3 3
d 1

24 28π

2 1
1 2

2

e pV p V p p

p p

ε ε

ε ε ε ε

ε ε ε

ε

ε ε
ε

− −

 − + + − + − 
 

 + − −
= − −/ /

−
+

+ − / − 

∫
 

where we have used ( )
2

2 1 2 1 2 1
2 4

ε ε ε +  +   Γ = Γ +        
. 

To see sign of the term, let us put 0ε →  in the factor ( )
1
2 21

ε
−−  and 

( )
1
21 ε − + 

 − , then these terms are equal to i and –i. Thus the above equation be-
comes, 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )
( )

3 22
13

2

2 2 1 2 1

3 3
d

24 28π

2 1
2

2

A
VV

ie pV p V p p

p p

ε

ε ε ε

ε ε ε
ξ ε

ε

ε ε
ε

−

+ − + −

 + − −
= −/ /

−
+

− / − 

∫

    

(3.1.15) 

Now differentiating Equation (3.1.15) w. r. to ε , we get 
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( ) ( ) ( ) ( ) ( )( )
( )

( )

( )
( )( ) ( )( )

( )

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

3 22
13

2

2 3 2
1

2

2 2 1 2 2 12 1

2 2 12 1 2 1

2 2 1

3 31d ln 1
24 28π

2 3 6 1 3 3 11
24 2

2 1
ln 2 ln

2

2 1 2 1
2 2 2 ln 2 2

2 2

2

A
VV

ie pV p V p p p

p

p p p p p p

p p

p p

ε

ε

ε ε ε εε

ε εε ε

ε ε

ε ε ε
ξ ε

ε

ε ε ε ε ε ε

ε

ε ε
ε

ε ε ε ε
ε ε

−

−

+ − + + − +−

+ − +− −

+ − +

 + − −
′ = − −/ /

−
 − + − − + − − − +  

−  
+

+ / / /−

+ +
⋅ − + /− −

+ /

∫

( )( ) ( )( )
( )

2
2 1

2

2 4 1 2 1

2
ε

ε ε ε ε

ε
−

− + − + −

− 

 

Hence 

( ) ( )

( ) ( ) ( )( )

( )

( ) ( ) ( )

0
2

3
2

2

2
3

2

0 lim

1 3d ln 1
24 28π

1 5 1 1 1
24 4 2 2

29d ln
6128π

A A
VV VV

ie pV p V p p p

p p
p

ie pV p V p p p

ε
ξ ξ ε

→
′ ′=

  = − ⋅ − −/ /    
− + ⋅ + ⋅ ⋅ ⋅/  

  

 = − −/ /   

∫

∫
   

 (3.1.16) 

Substituting of Equation (3.1.16) into Equation (3.1.11a) yields our final ex-
pression for 1

A
VVZ  as, 

( ) ( ) ( )
2

3
1 2

29exp d ln
6128π

A
VV

ieZ pV p V p p p
  = − −/ /  

  
∫

    
 (3.1.17) 

This contributes to the to the one–loop generating functional for external bo-
sons (photon) lines. 

To find one-loop correction for external boson lines from above generating 
functional, we have to take logarithm on Equation (3.1.17) and then functional 
differentiation of the expansion with respect to momentum p. 

Thus the one-loop correction for the external boson lines is, 

( )
2

2

29ln
6128π

ie p p = − 
 

                 (3.1.18) 

Hence the result in (3.1.18) is finite and of the same form as we obtained by 
the diagrammatic form of Operator regularization and Dimensional regulariza-
tion methods in Section-2. In this section we have shown and explained how one 
can choose the appropriate terms from the Schwinger expansion for the problem 
in hand. 

3.2. One-Loop Generating Functional and Loop Corrections for 
External Fermion Lines and Vertex Function 

In this case we focus on the denominator in Equation (3.3), so that let us regu-
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late the det B  through use of the ξ-function in Equation (3.11a) yielding 

( )1 0

1det exp lim
2

B BB Z
ε

ξ ε
→

 ′= = −  
,             (3.2.1) 

where, 

( ) ( )
1 2

0

2 2

1 1d exp 1

1 1

B t t tr t p p p

e e
p eV p eV

ε
µν µ ν

µ ν ν µ

ξ ε δ
ε α

ηγ γ η ηγ γ η

∞
−    = − − −  Γ  

− − − −/ / / / 

∫

     

 (3.2.2) 

In Equation (3.2.2) it is understood that the exponential is ( )exptr tB−   , 

where 

2 2 2

0

1 1 11

I

B p p p e e
p eV p eV

B B

µν µν µ ν µ ν ν µ

µν µν

δ ηγ γ η ηγ γ η
α

 ≡ − − − −  − −/ /  / /
≡ +

  

 (3.2.3) 

where, 0B µν  is independent of the background field η  and η , and IB µν  is at 
least linear in η  and η . 

Now as before to use Schwinger expansion in this case let us use the Equation 
(2.4) and then taking bilinear in η  and η  on the on the right-hand side of 
Equation (3.2.1), we end up with 

( )

( )

2
1 0

0

2 1

1 d 1 1exp lim d exp 1
2 d

2

BZ t t tr p p p

t e D

ε
µν µ νε

µ ν

δ
ε ε α

ηγ γ η

∞

→

−

       = − − −     Γ     
⋅ − / 



∫

  

(3.2.4) 

The exponential factor in the trace of Equation (3.2.4) can be simplified using 
the complete set of orthonormal projections operators: 

( ) 2

p p
T p

p
µ ν

µν µνδ
 

= − 
 

                 (3.2.5a) 

( ) 2

p p
L p

p
µ ν

µν =                     (3.2.5b) 

These allows us to write ( )0tBe
µν

−  as 

2 2

2

2

0

1exp 1

1 1
!

n
tp tp

n

p p p t

p t T L e T e L
n

µν µ ν

α
µν µν µν µν

δ
α

α

∞
− −

=

  − −  
  

  = + = +    
∑

       

 (3.2.6) 

and let us expand 1D−/  in powers of the back-ground field in the ξ-function 
Equation (3.2.4): 

1
1 1 1 11

1 1 1 1 1 1

D eV
p eV p p

eV eV eV
p p p p p p

−
−  

/ = = − / − // / / 
 

= + + +/ / / 
/ / / / / / 
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It is interesting to note that at this stage this is straightforward to apply the 
perturbative expansion of Equation (2.3) to this ξ-function and to select from the 
expansion those terms appropriate for any particular Greens function. This 
means that from the expansion we can choose appropriate terms that are asso-
ciated with the related problems that we are interested in. Let us consider here 
the ξ-function for the fermion two-point function and the vertex function, we 
find 

( ) ( ) ( )2 2
2

0

1 1 1dB tp tpe t t tr eV e T e L
p p p

ε α
µ ν µν µνξ ε ηγ γ η

ε

∞
− −  

≅ + +/  Γ / / /  
∫   (3.2.7) 

Following ref. [15] [16] in the Approach-A, we compute from Equation (3.2.7) 
the ξ-function in the limit of zero momentum transfer to the photon: 

( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2
3 1

2 2

2 2

1 21d 2 1
3 18π

0 2 0
4π

B e p
p

e pp p V p V p
p

εε ε
ξ ε α

ε ε

η ε η

+ Γ − − 
= + −   Γ − +    

  /⋅ + − ⋅ − /  
  

∫

     

(3.2.8) 

Therefore by Equation (3.2.1) the contributions to the one-loop generating 
functional is 

( ) ( ) ( )

( ) ( ) ( )

2
3 2

1 2 2

3
3

4 2

1 3exp d ln ln 0
2 28π 4π

0
d

16π

B e eZ p p p p V p

p Ve p p p p
p

α α α η η

α η η

    ≅ + − + −/ /    
    

⋅ − − / 


∫

∫
(3.2.9) 

This contributes to the one-loop generating functional for external fermion 
(electron) lines and vertex function in QED. 

To obtain the one-loop correction for external fermion lines and vertex func-
tion, we have to take logarithm of Equation (3.2.9) and then functional differen-
tiation with respect to momentum p. 

Hence from Equation (3.2.9), we get 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2
2

2

3
2

4

3

4 2

2
2

2

3
2

4

3 ln ln
216π

3 ln ln 0
264π

0
32π

3 ln ln
216π

3 ln ln 2 0
264π

e p p p p

e p p V p

p Ve p p p
p

e p p p p

e p p V p

ν
νµ

µ

α α α η η

α α α η η

α η γ η

α α α η η

α α α α η η

 = + − −/ 
 

 + + − −/ 
 

− −

 = + − −/ 
 

 + + − − −/ 
       

(3.2.10) 

From the expansion (3.2.10) we can find the one-loop correction for the ex-
ternal fermion lines and one-loop vertex function by choosing the appropriate 
terms. This expression is of the same form as obtained by DR and OR methods 
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with Feynman diagrams in Section-2. 
Thus the one-loop correction for the external fermion lines is, 

2
2

2

3 ln ln
216π

e p pα α α + −/  
 

               (3.2.11) 

and the one-loop correction to the vertex function is, 
3

2
4

3 ln ln 2
264π

e pα α α α + − − 
 

             (3.2.12) 

The result in (3.2.11) and (3.2.12) is of the same form as we obtained by the 
diagrammatic form of Operator regularization and Dimensional regularization 
methods in Section-2. 

4. Conclusion 

Radiative corrections in quantum field theory are very important for renormali-
zation of a theory. Because when we evaluate loop-diagrams in some cases we 
find both finite and infinite terms. To absorb the infinite parts is the renormali-
zation. That is why best regularization method is needed to get the correct finite 
and infinite parts of the loop-diagrams. Dimensional regularization (DR) is one 
of the best methods to evaluate the loop diagrams, but it has also some limita-
tions in some cases. Operator regularization (OR) method had been prescribed 
to overcome some of these problems. To compare the advantage of OR, we have 
evaluated basic loop diagrams in QED using OR and compared the result with 
DR. We found that the result is finite and comparable, which was expected. In 
an earlier paper also we have shown the comparable result between OR and DR 
where the result consists of finite and divergent parts. From these calculations it 
is clear that OR is an attractive method to use in evaluating loop diagrams. 
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