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The aim of the present work is to study the complete, vertical and horizontal
lifts using Tachibana and Visknnevskii operators along generalized almost
r-contact structure in tangent bundle. We also prove certain theorems on
Tachibana and Visknnevskii operators with Lie derivative and lifts.
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http://creativecommons.org/licenses/by/4.0/ Let M be an n-dimensional differentiable manifold and let 7'(M)

1. Introduction

UpeMT.”
be its tangent bundle. Then T (M ) is also a differentiable manifold [1]. Let
n i O w
X=3"x (FJ and 7=)"" n'dx’ be the expressions in local coordinates
x
for the vector field X and the 1-form 7 in M. Let (xi, yi) be local coordinates

(M)

of pointin T(M ) induced naturally from the coordinate chart (U ,xi) in M.

The complete, vertical and horizontal lifts of tensor field have vital role in
differential geometry of tangent bundle. In 2016, [2] studied Tachibana and
Vishneveskii operators applied to vertical and horizontal lifts in almost
paracontact structure on the tangent bundle T(M). The generalized almost
r-contact structure in tangent bundle and integrability of structure is studied by
the second author [3].
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This paper is organized as follows: Section 2 describes some basic definitions
and notations. Section 3 deals with the study of Tachibana and Vishnevskii

operators for generalized almost r-contact structure in tangent bundle.

2. Preliminaries
2.1. Vertical Lifts

If fis a function in A, we write f’ for the function in T (M ) obtained by
forming the composition of 7:T(M)—>M and f:M — R, so that

fl=for (1)

where o is composition of fand pi.

Thus, if a point f)eiz'l(U ) has induced coordinates (xh, yh) then
1 (p)=1"(x,y)=fon(p)=1(p)=/(x) (2)

Thus the value of f” ( ]3) is constant along each fibre T, (M ) and equal to
the value f ( p) .Wecall f” the vertical lift of the function £

Vertical lifts to a unique algebraic isomorphism of the tensor algebra S(M )
into the tensor algebra J (T (M )) with respect to constant coefficients by the
conditions (Tensor product of Pand Q)

(PRQ) =P' ®0Q",(P+R) =P  +R" (3)
P, Qand Rbeing arbitrary elements of J(M ).
Furthermore, the vertical lifts of tensor fields obey the general properties [4]
[5]:
@ (f-g) =/"g"(f+g) =1"+¢",
®) (X+7) =x"+Y"(f-x) =" X" X" f" =0,[XV,YV] =0,
© (fn) =r"n"0"(x")=0.x"(v")=0,

Vfg eI (M), XY €3y (M).neTi (M),

2.2. Complete Lifts
If £is a function in M, we write f € for the functionin T (M ) defined by [1]
fe=i(df)

and call f© the complete lift of the function £ The complete lift f of a
function fhas the local expression

fO=vos=o

with respect to the induced coordinatesin 7/(M ), where f denotes »'0,f .
Suppose that X € 3, (M) . We define a vector field X in T(M) by

chc :(Xf)c

fbeing an arbitrary function in M and call X the complete lift of X in
T(M).
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The complete lift X of Xwith components x" in A has components

h
X€: N

with respect to the induced coordinates in T (M ).
Suppose that 7€ 3, (M) Thena 1-form 7 in T(M) defined by

. C
1 (X°)=(n(x))
Xbeing an arbitrary vector field in M. We call n° the complete lift of 7.
The complete lifts to a unique algebra isomorphism of the tensor algebra

3 (M ) into the tensor algebra 3 (T(M )) with respect to constant coefficients,
is given by the conditions

(PRQ) =P ®Q" +P ®Q°,(P+R) =P +R"
P, Qand Rbeing arbitrary elements of S(M ) .
Moreover, the complete lifts of tensor fields obey the general properties [1]
(4]:
(@) () =rX"+ /X =(X) XS =(X) X =(X)
(b) ¢ XC=(px)" ,¢CXV = (¢X)V (¢ ) =¢ X,
@ n'x=(n(x))f A" =(n (X)),
(d) [XV,YC] (X, Y] 1€ =1,1"I° = XV,[XC,YC] =[x, Y]
Vf,geJ (M), XY eTFy(M),ne3) (M).

2.3. Horizontal Lifts

The horizontal lift f” of feJ)(M) tothetangentbundle T(M) by

(f)'=r-v,s (4)
where
V. f=r(Vf),
Let X €3;(M). Then the horizontal lift X" of X defined by
xX"=x°-v x (5)
in T(M),where
V., X =y(VX)

The horizontal lift X" of Xhas the components

xh
{r} “

with respect to the induced coordinates in T(M ), where T " =yT ’/’l
The horizontal lift S” of a tensor field S of arbitrary type in Mto T (M ) is
defined by

st=5°-v 8 (7)
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forall P,0e3(M).We have
V,(P®Q)=(V,P)®0" +P" ®(V,0)
or
(PRQO)" =P"®0" +P ®0". (8)
In addition, the horizontal lifts of tensor fields obey the general properties [4]
[6]:
(@ X7f"=(Xf) .0 X" =(px) ¢ X" =(pX)" +(V,4) X"
® 7" (X7 )=(n(X)" 0" (X" )= (0 (X)) =7 (1(VX));
© 0" (X)=n"(v,X).n" (x")=0
Vg €T (M), XY €3, (M),n e 3 (M), e} (M),

Let X be a vector field in an n-dimensional differentiable manifold M. The

differential transformation L, is called Lie derivative with respect to Xif

(@) Lyof =Xf,Vf €3 (M),

(b) LY =[X,Y],VX,Y €T (M).

The Lie derivative L, F of a tensor field F of type (1, 1) with respect to a
vector field Xis defined by

(LyF)=[X,FY]-F[X,Y] (9)
where [,] is Lie bracket [1] page 113.

Let M be an n-dimensional differentiable manifold. Differential transformation of
algebra T (M ) defined by

D=V, :T(M)->T(M),Xe3 (M), (10)
is called as covariant derivation with respect to vector field Xif
(@) V0t =fVit+gV,t,
(b) V. /=X,
Vf,geI (M), VX, Y €3, (M),VieI(M).
and a transformation defined by
Vi3 (M)x 3y (M) > Fy (M) (11)
is called affine connection [1].
Proposition 1. Forany X,YeJ,(M) [4]
(@ [ 7" ]=[x] ~(v,¥) =—(V,7) .
®) [XOr"]=[x.¥]" -y (L,¥),
() [X”,YV]=[X,Y]V+(VYX)V,
(d) [XC,YH] =[x, ¥]" - yR(X.Y)

where R denotes the curvature tensor of the affine connection V .
Proposition 2. For any X,Ye3)(M),[fe3,(M) and V" s the
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horizontal lift of the affine connection V to T (M ) [1]
(a) V;VYV=O,
(b) V?VYH =0,
(© VI,¥ =(V,y),
@ v,y =(v,r)".

3. Tachibana and Vishnevskii Operators for Generalized
Almost R-Contact Structure in Tangent Bundle

Let M be a differentiable manifold of C” class. Suppose that there are given a
tensor field ¢ of type (1, 1), a vector field &, and a l-form 7, p=1,2,---,r
satisfying [7] [8] [9]

(a) ¢ :a21+ez;:1§p ®1,
(b) ¢, =0
(©) n,°4=0

2

@ n,(¢)=-"9, (12)

where p=12,---,r and §, denote the Kronecker delta while 2 and € are
non-zero complex numbers. The manifold M is called a generalized almost

r-contact manifold with a generalized almost r-contact structure or in short with
<¢,77p, p,a,e) -structure.

Let us suppose that the base space A admits the Lorentzian almost
r-para-contact structure. Then there exists a tensor field ¢ of type (1, 1),
r(Cw) vector fields &,&,,---,&, and r(C°°) 1-forms 7,,7,,---,7, such that
Equation (12) are satisfied. Taking complete lifts of Equation (12) we obtain the

following:
@ (¢") =a’1+eX {& @l +& @)
(b) ¢"& =0,9"&5 =0

(© 1l od" =0 od" =0, ¢ =0,n) o4 =0
@ a (&)= (&) -0n (&) -n (&) =20, 0
Let us define an element J of J,T (M) by
J=¢H+§§(¢;®nz+5:®n;f) (14)
then in the view of Equation (13), it is easily shown that
X' =ax", X" =’ X"
which givess that J is GF structurein T(M) [10].

Now in view of the Equation (15), we have
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@ I =(gx) +< 37 f(n, (1)) &)
©) B =(ox) + 37 {(n, (%) &) as)

forall X e3;(M).

3.1. Tachibana Operator

Let ¢ be a tensor fieldof type (1,1) ie. peJj(M) and
peI(M)= ZZ:OSf (M) be a tensor algebra over R. A map O, s called

a Tachibana operator or @, operator on Mif [2] [11]

(a) @ 4 18 linear with respect to constant coefficient,

b) 3 (M)>T

s+l

(M) forall rand s,
(©) @,(K® L)=(0,K)®L+K®D,L forall K,LeT (M),
(d) ©,Y=—(L¢g)X forall X,YeT,(M)
where L, is Lie derivation with respect to ¥,
(@)Y =(d(Syn (X))~ (d(Sy (7°®) X +7((L,¢) X)
=(@X (3,m))(®X) =X (3,0m) +n((L,9) X)

forall 7e3) (M) and X,YeJ (M), where I,n=n(X)=n®°Y,

J°(M) the module of pure tensor fields of type (r,s) on M with respect to

the affinor field ¢ [12] [13].
Theorem 3. For Tachibana operator on M,L, the operator Lie derivation

with respectto X,J € 3|(T(M)) defined by

(16)

j:¢H+§Z;Z](§L]®n;+§:®7];’) and 77(Y)=0, we have

@ @, X" =~((98)7) +S3 (9, )Y) &

a
© @, X" =~((Lg)r) +7R(X97)+ 5 ((Lem, )Y & ~TrR(x.y)

(c) @, X" =0

i

@, X" =~((L)7) +(V.)) -5, (1)) &
(d) (17)

F (V))&

where X,Ye3((M), a tensor field ¢e3 (M), a vector field & and a
1-form ne3) (M).

Proof For J=¢" +£Z;Zl(§; ®77]I: +§]f] ®77;') and n(Y)zO,we get
a
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D,
:—[XH,jYV]+[¢H +;p:l(§p ®n +&! ®775)J[XH,YV]
@ =[x () [+ 0" ((X7] +(V,))
w3 (o] + (2 )+ X (] + (v x) )4
=[x (0r) |(Vox) 0 ([X7] +(V,X))
+g;nz([mr+(va>V)r:z+§;nf ([xx] (v, x) )2
=—(<w>y>V—<¢w>y+<¢<w>)”+§;<<me>yf e
2 an) ) & -3 (n, (L)
S Y e G

X”:—(LXH])YV— (L Jr’ - JLXHY”), since L, Y =[X,Y]

(18)

X" ==(L,J)¥" =_(LXHJyH ~JL,Y") since LXYz[X, Y]
:_[XH,.}YH]J{W +§§:(§; ®n +&" ®nf)J[XH,YH]
) =[x, (p7)" |+" [XH,YHJ+2277£ [x",y" e +§in§ [x".v" el (19)
since [X”,Y”] =[x, r]" - yR(X,Y),
——((Lyg)Y)" +y1%(X,¢Y)—§i((Lan)Y)V & - JyR(X,Y).
> X =—(LXVJ)YV =—(LXVJYV ~JL, YV) since L Y =[X,Y]
=—[XV,JYV]+J[XV,YV], [XV,YV]zo
© ={XV,[¢H+ii(§£®n,5+§:®nf)jﬂ} 20
ayi
s (1, (1)g,)" 0= X" (o) -5 3 " (n, (1)) | =0
© X =—(L TV ==L JY" +JL,¥Y", since LY =[X,Y]
_[xt v (¢ S5 (g ony <l o )][Xv,w]
=X g1 +(Vagr) +4" ([X¥] = (V,))
@ . ) e ) N (21)0
2 (L] =) e X ([ -7 )
since 77,L,Y = Lyn, (Y)=(Lyn, )Y, 2,V Y =V, (Y)=(V,7,)Y

(L) () (1 )V &+ LT )7) &

DOI: 10.4236/jamp.2018.610168 1974 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.610168

L. S. Das, M. N. I. Khan

Corollary 1. Ifweput Y =&, ie. 77;’(66:):’7;/@1?):0’

n, (g;/):UZ (5;{):—61—2, then we have

A

(a) (D],f,’jXH = aZ;zl(LipX)H —ay]%(X, ‘fp)_((ﬁ)ﬁ) S )V +((VX77P )‘fp )V éf
(b)
@, X" =a(V.,) ~(L9)g,) ~0"rR(x.8,)-< X (L, )e,) &

p=l

=3 mrR(X.8,)E =3 rR(X 8, )
(©) @, x" = —a(@ pr)V

(DJ;;’XV - _((LX¢)§p)V + ((VX¢)§I’)V —gz;zl((Lan)ip)V &
(d) (22)

+2z;=1((van)§p )V ff

3.2. Vishnevskii Operator

Let V isalinear connection and ¢ be a tensor field of type (1, 1) on M. If the
condition (d) of Tachibana operator replace by

(@) W, Y=V, Y-¢V,Y, (23)

VX,Y e, (M) , is a mapping wih linear connection V . A map
¥, :3°(M)—> 3(M), which satisfies conditions (a), (b), (c), (e) of Tachibana
operator and the condition (d’), is called Vishnevskii operator on M [2] [14].

Theorem 4. For ¥, Vishnevskii operator on M and V" the horizontal lift
of an affine connection V in M to T(M), Je3 (T(M)) defined by (14),

we have

p=1

@ ¥, ¥ =5 (n, (X)V,, )

ol =((929)0) (L)) L2 (9, %)
i o2 hx) g
CR2 YV=§Z’ (m, () VI ¥

JxV p=l

Pt =((%,0) %) (L)) =X (0, 90) &
(d) . , (24)
+;zrp=1(77pLYX) éf:
where X,Ye3, (M), a tensor field pe3, (M), vector fields &, and a
l-form 7, € S? (M),p =17,
Proof.
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Yo Y=V vt - VY

:v@u oy _(¢H +§z(g; ®n! +& ®n;’)]Vf{VY”

Vv V., «H H
Shai(gh@ny e ony )]X =

(a) = v( Y" asvir" =0 (25)

, v
o) o (mpX) &

r H
_ gz(an)V (v.r) as VI =0

vy =vi oyl _gviy”
26 JX X

o
SR UOe XELYSEL YA TRG
=V ¥ =" (V) —E;qz’j (v, r) el
(b) p p (26)
=(Vypx) +[px.7] -¢" ((@YX) +[x, Y]V)
__;775 ((@YX)V + [X,Y]V)gjj’
=((v,0) %) ~((L.#)x) _Eg(nlﬁyx)y £ +2§(anYX)V g
Yo Y=Ly —J”v;VYV
:vaﬁix&%%b$®ﬂWJw¢{¢H+§§¥5;®n:+g:®n:ﬂv;ﬂm
() _ V(’;X)VYV +§§(77,, (X))V V;},YV (27)
- EZW (X)) VY asvl Y=o,
oY=Vt —Jv;’,,YH
- V@Hiz;zl(@y@”ﬁ%ﬁ@ﬂg))XHYH _(¢H +§§(§Z ®1, +£, ®n, )] e
=V Y=g (V)" —Egnz (V) e
(d) (28)

_ (6Y¢X)H +[px. Y] - ¢" ((@YX)H +[X,Y]H)

—52’75 ((9,x)" +Lxr]" e
~((%,0)2) (L) x) -5 (0,9,x) & +E5 (0, 1,x) &

p=1 p=1

Corollary 2. Ifweput Y =¢, ie. 1, (é;l) =1, (5‘;) =0,

n, (5;,/) =n, (§:) = _(16_25'"’ , then we have
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@ ¥, " =a(v,y)

Jé,
o =" (9,6) (La)g) +SX(n (98] )&
® ¢
X )e

(&) ¥, 7" =—a(V ng)V

@ ¥, =((Vi0)S) (L9)s,) + =X ((Vim)E, ) & 09)

_gz;zl((l‘)’np)‘fp )V 51‘7/

4. Conclusion

The generalized almost r-contact structure on Tachibana and Visknnevskii
operators in tangent bundle are introduced. We deduced the theorems on
Tachibana and Visknnevskii operators with respect to Lie derivative and lifting

theory.
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