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Abstract 
This paper studies the exponential attractor for a class of the Kirchhoff-type 
equations with strongly damped terms and source terms. The exponential at-
tractor is also called the inertial fractal set, which is an intermediate step be-
tween global attractors and inertial manifolds. Obtaining a set that attracts all 
the trajectories of the dynamical system at an exponential rate by the methods 
of Eden A. Under appropriate assumptions, we firstly construct an invariantly 
compact set. Secondly, showing the solution semigroups of the Kirchhoff-type 
equations is squeezing and Lipschitz continuous. Finally, the finite fractal di-
mension of the exponential attractor is obtained. 
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1. Introduction 

In this paper, we concerned the equation: 
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where Ω  is a bounded domain in Rn with a smooth boundary ∂Ω , 1β >  is 
a constant and ( )( )1,2if x i =  is a given out force term. Moreover, 

( )22 mM u v∇ + ∇  is a scalar function.  
Then the assumptions on M and ( ),ig u v  will be specified later. 
For an infinitely dynamic system with dissipative properties, studying the 

asymptotic behavior of its dynamical system is an important issue in mathemati-
cal physics. In generally, the asymptotic behavior of the dynamic system is cha-
racterized by global attractors, uniform attractors, pull back attractors, and ran-
dom attractors. The relevant research results on the autonomous system can be 
found in the literature [1] [2] [3] [4]. The relevant results for non-autonomous 
and stochastic systems can be found in the literature [5] [6] [7]. However, the at-
traction rates of these attractors are low and some are even difficult to estimate. 
In order to overcome these difficulties, people introduced the concept of expo-
nential attractors. The exponential attractor is a positively invariant compact set 
with finite fractal dimensions and attracts the solution orbit at an exponential 
rate. It is a tangible concept between the global attractor and the inertial mani-
fold. It can be understood as the intersection of an absorption set and an inertial 
manifold. In addition, the exponential attractor has a uniform orbital exponen-
tial attraction rate, making it more stable to disturbances. Therefore, it is ex-
tremely important to study the exponential attractor of an infinite-dimensional 
dynamical dissipative system. 

For the exponential attractor, Eden et al. [8] proposed the concept of inertial 
sets which were compact sets of finite fractal dimension and attracted all the so-
lutions with an exponential rate of convergence as early as in 1990. They showed 
the long time dynamics of the dissipative evolution equations are characterized 
by an inertial set. Then, in 1995, A Eden et al. [9] first proposed the concept of 
an exponential attractor (also called inertial sets). In the paper, they presented a 
new construction of exponential attractors based on the control of Lyapunov ex-
ponents over a compact, invariant set. In the same time, they also discussed var-
ious applications to Navier-Stokes system. There are more similar references (see 
[10] [11]).  

By the 21st century, the research on the exponential attractors of the dynami-
cal system has been further developed. Firstly, in 2003, Shang Yadong and Guo 
Boling [12] considered the asymptotic behavior of solutions for the following 
nonclassical diffusion equation: 

( ) ( ) ( ),
i

i
t t x x

u u u g u f x tν δ − ∆ − + = ∑ .             (2) 

Under appropriate assumptions, they showed the squeezing property and the 
existence of the exponential attractor for this equation. Meanwhile, they also 
made the estimates on its fractal dimension. 

Secondly, in 2010, Meihua Yang and Chunyou Sun [13] studied the following 
strongly damped wave equation on a bounded domain 3RΩ⊂  with smooth 
boundary ∂Ω : 
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They obtained the global attractor and exponential attractor with finite fractal 
dimension under appropriate conditions. Thereafter, Yang Zhijian and Li Xiao 
[14] studied the existence of the finite dimension global attractors and exponen-
tial attractors for the dynamical system associated with the Kirchhoff type equa-
tion with a strong dissipation. 

Finally, in 2016, Ruijin Lou, Penghui Lv and Guoguang Lin [15] considered a 
class of generalized nonlinear Kirchhoff-Sine-Gordon equation as following: 

( ) ( ) ( )2 sintt t tu u u u u g u f xβ α φ− ∆ + − ∇ ∆ + = .         (4) 

They obtained the exponential attractors and inertial manifolds for above equ-
ation. In addition, Yunlong Gao et al. also made their own contribution to the 
research of the exponential attractor (see [16] [17] [18] [19]). 

Although the study of exponential attractors has continued to develop, the 
study of the exponential attractors of the system of equations is not universal. As 
a result, this has spurred our desire to explore the exponential attractor for a class 
of the Kirchhoff-type equations with strongly damped terms and source terms. 
In this paper, our main difficulty is the handling of ( )22 mM u v∇ + ∇  and 
nonlinear terms ( ),ig u v . But after many attempts, we finally solved this prob-
lem. 

The paper is arranged as follows. In Section 2, we introduced some notations 
and basic concepts. In Section 3, we proved the existence of the exponential at-
tractor and estimated the fractal dimension.  

2. Preliminaries 

For convenience, we need to introduce the following notations: 
( )2H L= Ω , ( )2. . L Ω

= , ( ). .q qL L Ω
= ,  

( ) ( ) ( ) ( )1 2 2
0 0 0

mV H H L L= Ω × Ω × Ω × Ω , 

( ) ( )( ) ( ) ( )( ) ( ) ( )2 1 2 1 1
1 0 0 0 0

m mV H H H H H H= Ω Ω × Ω Ω × Ω × Ω  ,  

( )1,2,iC i =   are denoted as different positive constants.  

Next, we give some assumptions in the proof of our results. 
(H1) ( ) ( ) ( )1

0 10 , ,m M s m M s C≤ ≤ ≤ ∈ Ω  
(H2) ( ) ( ) ( )1, , 1, 2 .ig u v C i∈ Ω =  

(H3) 2 2
1 1 1 , 1.

m m

Nm C mβ λ λ
−

+> + ≥  

Then, we denote the inner product and norm in 0V  as follows: 
( ) ( )0, , , , 1, 2i i i i iU u v p q V i∀ = ∈ = , we have 

( ) ( ) ( ) ( ) ( )
01 2 1 2 1 2 1 2 1 2, , , , ,m m

VU U u u v v p p q q= ∇ ∇ + ∇ ∇ + + ,      (5) 

0

22 2 2 2
1 1 1 1 1

m
VU u v p q= ∇ + ∇ + + .              (6) 
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Setting ( )T
0, , , , ,t tU u v p q V p u u q v vε ε∀ = ∈ = + = + , then equation (1) can 

be converted into the following first-order evolution equation 

( ) ( )tU H U F U+ = ,                      (7) 

where 
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In order to accomplish the proof, we need to construct a map. Let 0 1,V V  are 
two Hilbert spaces with 1 0V V→  is dense and continuous injection, and 

1 0V V→  is compact. Let ( )S t  is a solution semigroup generated by Equation 
(7). 

Definition 2.1 ([12]) A compact set M V⊂  is called an exponential attrac-
tor of ( )( ),D A V  type for ( )( ),S t B  if A M B⊆ ⊆  and 

1) ( ) , 0S t M M t⊆ ∀ ≥ , 
2) M has finite fractal dimension, ( )Fd M < +∞ , 
3) There exist positive constants 0 1,C C  such that 

( )( ) 1
0, e , 0C t

Vdist S t B M C t−≤ ∀ > ,              (10) 

where  

( ), supinfV Vy Bx A
dist A B x y

∈∈
= − , 

B is a positively invariant set for ( )S t  in V. 

Definition 2.2 ([12]) If for every 10,
8

δ  ∈ 
 

, there exists a time * 0t > , an  

integer 0 1N ≥ , and an orthogonal projection 
0NP  of rank equal to 0N  such 

that for every U and V in B, either 

( ) ( )* * VV
S t U S t V U Vδ− ≤ − ,                (11) 

or 

( ) ( )( ) ( ) ( )( )0 0* * * *N NV V
Q S t U S t V P S t U S t V− ≤ − ,     (12) 

then we call ( )S t  is squeezing in B, where 
0 0N NQ I P= − . 

Theorem 2.1 [20] Assume that 
1) ( )S t  possesses a ( )1 0,V V -compact attractor A, 
2) ( )S t  exists a positive invariant compact set 0B V⊂ , 
3) ( )S t  is a Lipschitz continuous map with a Lipschitz continuous function 
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( )l t  on B, such that ( ) ( ) ( ) VV
S t u S t v l t u v− ≤ − , and satisfied the discrete 

squeezing property on B. 
Then ( )S t  has a ( )1 0,V V -compact exponential attractor M and 

( )
*

*
0 t t

M S t M
≤ ≤

=


,                      (13) 

where 

( ) ( )( )* *
1 1

j k

j k
M A S t E

∞ ∞

= =

 
=  

 




.                (14) 

Moreover, the fractal dimension of M satisfies ( ) 01Fd M cN≤ + , where 
( )

0 , kN E  are defined as in [20] 
Proposition 2.1 [12] There exists ( )0 0t B  such that  

( )
0

0
0 t t

B S t B
≤ ≤

=


 

is the positive invariant set of ( )S t  in 0V , and B attracts all bounded subsets of 

1V , where 0B  is a closed bounded adsorbing set for ( )S t  in 1V . 
Proposition 2.2 Let 0 1,B B  respectively are closed bounded adsorbing set of 

Equation (7) in 0 1,V V , then ( )S t  possesses a ( )1 0,V V -compact attractor A. 

3. The Exponential Attractor 

In [21], under of the appropriate hypothesizes, the initial boundary value prob-
lem Equation (1) exists unique smooth. This solution possesses the following 
properties: 

( )
0

22 2 22
0u m

V v p qU C R∇ + ∇ + + ≤= ,           (15) 

( )
1

2 22 2 2
1u m m

V v p q C RU ∆ + ∆ + ∇ + ∇ ≤= .         (16) 

We denote the solution in Theorem 2.1 by ( )( )0S t U U= , the ( )S t  is a con-
tinuous semigroup in 0V , There exist the balls: 

( ){ }
0

2
1 0 0: VB U V U C R= ∈ ≤ ,                 (17) 

( ){ }
1

2
2 1 1: VB U V U C R= ∈ ≤ ,                 (18) 

respectively is a absorbing set of ( )S t  in 0V  and 1V . 
Lemma 3.1 For ( )T

0, , ,U u v p q V∀ = ∈ , when  

( ) ( ) ( )

( )

2
1 1 11 1

2

1 1 1

5 2 5 2 163 2 3 2
0 min 1, , , ,

2 2 4

5 2 5 2 16

4

m
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λ β λ β λ βλ β λ β
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λ β λ β λ β

 − − + + +− −< < 


− − + + + 
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, 

we can obtain 

( )( ) ( )00

22 2
1 2, m

VV
H U U k U k p q≥ + ∇ + ∇ .          (19) 
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Proof. By (5), (8) we get 
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By employing holder’s inequality, Young’s inequality and Poincare inequality, 
we process the terms in (20), we have 

( )
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2 2 2 222 2 22
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2 2
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( ) 2 2
,

2 2
m m m mv q v qβε βε
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By the value of ε , and substituting (21)-(24), we have 
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    ≥ − − ∇ + − ∇ + − −    
    

   + ∇ + − − ∇ + − ∇   
  

 
+ − − + ∇ 
 

≥ ∇ + ∇ + + + ∇ + ∇

= + ∇ + ∇ = + ∇ + ∇

(25) 

where 1 2,
4 2

k kε β
= = . 

The proof is completed. 

Let ( ) ( ) ( ) ( ) ( ) ( )( )0
T

, , ,u vS t U U t t t tp tq= =  where ( ) ( ) ( )tp t u t u tε= + , 

( ) ( ) ( )tq t v t v tε= + , ( ) ( ) ( ) ( ) ( ) ( )( )0

T
, , ,t t u t v t p t tS V V q= = , 

where ( ) ( ) ( )tp t u t u tε= + , ( ) ( ) ( )tq t v t v tε= + . 

Next set ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
0 0 1 2 1 2, , ,t t t t t t tS U S V U V w w z t tzφ = − = − = , 

where ( ) ( ) ( )1 1 1tt tz tw wε= + , ( ) ( ) ( )2 2 2tt tz tw wε= + ,then ( )tφ  satisfies: 

( ) ( ) ( ) 0t t HU HV F U F Vφ + − + − = ,            (26) 

( ) 0 00 U Vφ = − .                       (27) 
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In order to certify Equation (1) exists a exponential attractor, we first show the 
semigroup ( )S t  of system (1) is Lipschitz continuous on B. 

Lemma 3.2 For 0 0,U V B∀ ∈ , where 0 0,U V  is the initial values of prob-
lem(1), and 0t ≥ , we have 

( ) ( )
00

2 2
0 0 0 0ekt

VV
S t U S t V U V− ≤ − .               (28) 

Proof. Taking the inner product of the Equation (26) with ( )tφ  in 0V , we 
have 
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∇ + ∇ −∆

+ − − −∆ − −∆

+

+

+ − +

∇ ∇

−

+ −

=

− ∆

(29) 

Next, we deal with the following items one by one. 
Similar to Lemma 3.1, we easily obtain 

( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

0

0

0

22 2
1 2 1 2

, ,

m
V

V V
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HU HV t H t
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tt
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φ + ∇ + ∇

− =

≥
             (30) 

For convenience, let’s call 
2 22 2,m mu v ss u v∇ + ∇ = ∇ + ∇= , then by (H1) 

and using the mean value theorem, young’s inequality, we have 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )( ) ( )( )

1

1
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′≤ −∆ + − −∆

 

( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1
2 22 21 1 1 1

1 1

2 1 2 1

1 1
12 22 21 1 1 1 2

1 1 3 1 1 2 1

1 1 1
12 2 222 21 3 1 3 1 1 1 2

1 2 3 1 1

2 2

2 2

.
2 2 2

m

m

m

m mw t z t

C M w t w t u z t

m mw t z t C w t w t z t

m C C mw t w t C z t

λ λ

ξ

λ λ
λ

λ λ λ
λ

−

∞

−
−

− −
−

≤ ∇ + ∇

′+ ∇ + ∇ −∆

≤ ∇ + ∇ + ∇ + ∇ ∇

 
+  ≤ ∇ + ∇ + + ∇ 

 
 

(31) 

Similar to the above process 

( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

2

2 2 22 221 4 1 4 1 1 1 2
2 1 4 1 2

,

.
2 2 2

m m

m m m
m

m m

M s v M s v z t

m C C mw t w t C z t
λ λ λ

λ
− −

−

−∆ − −∆

 
+  ≤ ∇ + ∇ + + ∇ 

 
 

(32) 

For the last two terms, we apply the mean value theorem, Young’s inequality 
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and Poincare inequality, by (H2), we have 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

0

2

1
2
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12
2 2
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, , ,

, ,

,

i i i
i

iu i iv i
i

m
m

i i
i

m
m

i i
i

V

g u v g u v z t

g v w t z t g u w t z t

C w t z t C w t z t

C w t z t C w t z t

C t

ς η

λ λ

λ λ

φ

=

∞ ∞
=

− −

=

− −

=

−

≤ +

 
≤ ∇ + ∇  

 
 

≤ ∇ + + ∇ +  
 

≤

∑

∑

∑

∑

    (33) 

where 
1

1 2 2
5 1 6 12 2

7 5 1 6 1max , ,
2

m
m C CC C C λ λ

λ λ
− −

− −
 

+ =  
 
 

 

Integrating (30)-(33) into (29), we have 

( ) ( ) ( )
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0 0
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2 2
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1
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3 1

2
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 


+ −

∇ ≤



∇

+ −

 

where 

( ) ( )
1 1
2 2 22

1 3 1 1 4 1 3 14 1
8

1 1
max ,

2 2 2 2

mm

m C m C CCc
λ λ λλ
− − −− 

+ + + + = + + 
 
 

. 

By (H1), (H3) we using Gronwall inequality, we have 

( ) ( ) ( ) ( )
0

87

0 0

2 22 2
e 0 e 0C

V
t

V
C t

V
ktφ φ φ+≤ = ,            (34) 

where ( )7 82k C C= + , so we have 

( ) ( )
00

2 2
0 0 0 0ekt

VV
S t U S t V U V− ≤ − .             (35) 

The proved is ended. 
Now, we introduce the operator  

( ) ( ) { }: ; , , mA D A H D A u v H Au A v H= −∆ → = ∈ ∈ . 

Obviously, A is an unbounded self-adjoin positive operator and A−1 is compact. 
So, there is an orthonormal basis { } 1i i

ω ∞

=
 of H consisting of eigenvectors jω  of 

A such that 1 2,0 .j j j jAω λ ω λ λ λ= < ≤ ≤ ≤ → +∞  N∀  denote by 
{ }1: , ,n NP P H span ω ω= →   the projector, N NQ Q I P= = − . 

As follows, we will need 
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1 1 1 1
2 2 2 2

1 ,  ,    , ,N NA u u u Q H A u u u D Aλ +

 
≥ ∈ = ∇ ∈   

 
 

( ),  ,N NAQ u Q Au Au u D A= ≤ ∈  

2 2 2 2
1 ,  v ,     ,

m m m m
m

N NA v v Q H A u v v D Aλ +

 
≥ ∈ = ∇ ∈   

 
 

( ),  ,m m m
N NA Q v Q A v A v v D A= ≤ ∈  

Lemma 3.3 For 0 0,U V B∀ ∈ , where 0 0,U V  is the initial values of problem 
(1). Let 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
0 0 0 0

0 0 0 0

T

1 2 1 2, , , ,

n n n n

n n n n

Q t Q U t V t Q t t

w t w t z t z t

φ φ= − = =

=
 

then we have 

( ) ( ) ( )
0 00

1

1
22 211 1

1

122e e 0
2

k t ktN
n VV

C
t k

k
C λ

φ φ−

−

+

 
+ ≤ + 

 
 

.         (36) 

Proof. Applying 
0nQ  to (26), we have 

( ) ( ) ( ) ( )( )0 0 0
0n t n nt Q HU HV Q F U F Vφ + − + − = .        (37) 

Taking the inner product of (37) with ( )
0n t tφ  in 0V , we have 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

0 00

0 0 0 0

0 0

0 0

0

0 0

0

0

0 0

2 2 2

1 2 1 2

2 22 2

2 22

2

1 1 2 2

1

2

1 1 1 2 2 2

2

,

1 d
2 d

, ,

, , 0.

,

, , , ,

n nV

m
n n n n

n n

n n

n n n

m
n nV

m m

m mm

n

m

t t
t

w t z t w t z t

Q z t

Q z t

Q g u v g u v z t Q g u v g u v z t

k k z t z t

M u v u M u v u

M u v v M u v v

φ φ ++

− −∆ − −∆

 +

∇ + ∇

∇ + ∇ −∆ − ∇ + ∇ −∆

∇ + ∇


 
 + 
 

+ −

−

+ −

∆ − ∇ −∆

=

∇ +

(38) 

Next, we deal with the following items one by one. 

( )( ) ( )( )( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( ) ( )

( )

0 0

0 0 0 0 0

0 0

0

1

1

1 1
2 22 21 9 1 9 1

1 2

1
12 21 1 2

9 1 1

,

,

2 2

.
2

n n

n n n n n

N mN
n n

N
N n

Q M s u M s u z t

M s u M s u z t

m C Cw t w t

m C z t

λ λ

λ
λ

− −

+ +

−
+

+

−∆ − −∆

= −∆ − −∆

+
≤ ∇ + ∇

 
 + + ∇ 
 
 

        (39) 

Similar to the above process 

( )( ) ( )( )( ) ( )( )0 0 2,m m
n nQ M s v M s v z t−∆ − −∆  
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( )( ) ( )( ) ( )( )

( ) ( ) ( )

( )

0 0 0 0 0

0 0

0

2

2 22 21 10 1 10 1
2 1

2 21 1 2
10 1 1

,

2 2

.
2

m m
n n n n n

m m

N m mN
n n

m
m

N
N n

M s v M s v z t

m C C
w t w t

m
C z t

λ λ

λ
λ

− −

+ +

−+
+

= −∆ − −∆

+
≤ ∇ + ∇

 
 + + ∇ 
 
 

        (40) 

For the last two terms, we apply the mean value theorem, Young’s inequality 
and Poincare inequality, by (H2), we have 

( ) ( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )

0 0

0 0 0 0 0
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2 2

5 1 1 6 1 2
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12 2 2 2 2
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5 1 1 6 1 2
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1
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2
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, , ,

, , ,
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m
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m
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i
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Q g u v g u v z t
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C t

λ λ

λ λ

λ φ
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=

− −

+ +
=

− −

+ +
=

−

+

−

= −

 
≤ ∇ + ∇  

 
 

≤ ∇ + + ∇ +  
 

≤

∑

∑

∑

∑

(41) 

where 

5 6
11 5 6max , ,

2
C CC C C + =  

 
 

Integrating (39)-(41) into (38), by (H3) we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

1
2

2
11 1

1 1
222 2

2 2

11 1 0 0 11 1

1 12

12 12
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e e 0 ,

n NV

kt kt
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t t C t
t

C U V C
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φ φ λ φ

λ λ φ

−

+

− −

+ +

+

≤ +

≤+

− = +

      (42) 

where 

1 3 4
12

1
2

m C CC + + +
=  

Using Gronwall inequality, we have 

( ) ( ) ( )
0 00

1

1
22 211 1

1

122e e 0
2

k t ktN
n VV

C
t k

k
C λ

φ φ−

−

+

 
+ ≤ + 

 
 

,           (43) 

The proved is ended. 
Lemma 3.4 (squeezing property) For 0 0,U V B∀ ∈ , if 

( ) ( )( ) ( ) ( ) ( )( )0 00 0

22

* 0 * 0 * 0 * 0n nV V
P S t U S t V I P S t U S t V− ≤ − − ,    (44) 

then we have 
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( ) ( )
00

* 0 * 0 0 0
1
8 VV

S t U S t V U V− ≤ − .               (45) 

Proof. If ( ) ( )( ) ( ) ( ) ( )( )0 00 0

22

* 0 * 0 * 0 * 0n nV V
P S t U S t V I P S t U S t V− ≤ − − , then 

( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
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0
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* 0 * 0 * 0 * 0
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* 0 * 0

1
2

211 1
0

122
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2 e e .
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S t U S t V

P S t U S t V I P S t U S t V

I P S t U S t V

C
k U V

k
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+

−

≤ − + − −

≤ − −

 
+ ≤ + − 

 
 

  (46) 

Let *t  be large enough 

1 *2 1e
256

k t− ≤ .                      (47) 

Also let 0n  be large enough 

( )
*

1
2

11 1

1

12 1e
2 256

tN kC
k

k
C λ

−

++
≤ .                (48) 

Subsituting (46), (47) into (45), we have 

( ) ( )
00

* 0 * 0 0 0
1
8 VV

S t U S t V U V− ≤ − .            (49) 

The prove to complete. 
Theorem 3.1 Under the above assumptions, 0 , 1, 2,kU V k f H∈ = ∈ . Then the 

initial boundary value problem (1) the solution semigroup has a ( )1 0,V V -compact 
exponential attractor M on B,  

( ) ( ) ( )( )
*

*
0 1 1

j k

t t j k
M S t A S t E

∞ ∞

≤ ≤ = =

  
=      



 

, 

and the fractal dimension is satisfied ( ) 01Fd M cN≤ + . 
Proof. According to Theorem 2.1, Lemma 3.2, Lemma 3.3, Theorem 3.1 is eas-

ily proven.  

4. Conclusion 

In this paper, we studied the exponential attractor for a class of the Kir-
chhoff-type equations with strongly damped terms and source terms, and ob-
tained the finite fractal dimension of the exponential attractor. Next, we will 
study the existence of random attractors for this dynamic system.  
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