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Abstract
In this paper, the ADM method is used to construct the solution of the singu-

lar fourth-order partial differential equation.
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1. Introduction

These last years, a lot of relatively new techniques as Adomian decomposition
method (ADM), perturbation method, homotopy perturbation method, SOME
BLAISE ABBO (SBA) method, variational iteration method etc. are used to
solving a linear and nonlinear partial differential equations. Many problems are
governed by partial differential equations, or by systems of partial differential
equations. It is difficult to find their exact solutions. In this paper, we use the
Adomian decomposition method (ADM) [1] [2] [3] [4] to find the exact solu-
tion of the singular fourth-order partial differential equation. This equation has
been studied in [5], one used the homotopy perturbation to get the solution of

the singular fourth-order partial differential equation in two space variables.

2. About the ADM Method

Suppose that we need to solve the following equation

Au=f (1)
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in a real Hilbert space H, where A:H — H is a linear or a nonlinear operator,
f eH and uis the unknown function. The principle of the ADM is based on
the decomposition of the operator A in the following form:

A=L+R+N (2)

where L + R is linear, N nonlinear, L invertible with L™ as inverse. Using that

decomposition, equation (1) is equivalent to
u=0+L"f~L"Ru—L"'Nu (3)

where 6 verifies LO=0. (3) is called the Adomian’s fundamental equation or

Adomian’s canonical form.We look for the solution of (1) in a series expansion
+00 +

form u=>)u, and we consider Nu=>) A, where A, are special polynomials
n=0 n=0

of variables u,u,,---,u

[4]:

called Adomian polynomials and defined by [1] [2] [3]

n

An:i|:d N(Zﬂlulj:| > I’l=0,1,2,"' (4)
A=0

n!| da" i

where A is a parameter used by “convenience”. Thus (3) can be rewritted as

follllows:
Zun:9+L“f—L"R(Zunj—E‘[ZAJ (5)
n=0 n=0 n=0

+00 +00
We suppose that the series » u, and ) 4, are convergent, and obtain by
n=0 n=0

identification the following Adomian algorithm:
u,=0+L"f
=-L"(Ru,)-L"
U, : ( uo) 4, 6)

u,, =—L"(Ru,)-L"'4

n+: n?

n=>0

In practice it is often difficult to calculate all the terms of an Adomian series,
so we approach the series solution by the truncated series:

n
u=>yu,
i=0

where the choice of n depends on error requirements. If this series converges,
the solution of (1) is:

u=lim ) u, (7)

n—>+o0 4
i=0

3. Resolution of the Singular Fourth-Order Parabolic Partial
Differential Equation in m Space Variables (m = 2)

3.1. The Singular Fourth-Order Parabolic Partial Differential
Equation in Three Space Variables

We consider the following singular fourth-order parabolic partial differential
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equation in three space variables:
o’ t Vot t Vot t
u(x,y,z, )+a 1 x*\0u(x .z, )+a 1 ) du(xyz)
x> 6! 6!
Vot t
+a[L+%JM:0

2 4
z oz

or’ " ox* y oy
(8)

with the initial conditions

u(x,y,z,t)=0

o 0 6 6 6 9)
ou(xy.z0) o x* » 2
ot 6! 6! 6!

From (8), we have:

Xy xy,ZS
M(X,y,Z,t) [Q‘FZ"I‘E‘FEJZ‘—Q(X JJ-I dsdh

_a[i+y_4]j'}—a u(0:25) 4 an (10)
00 ay

‘“(%*%”Mdﬂ”’

4
00 Oz

We suppose that the solution of (8) has the following form:
u(x,y,z,t)=> u,(x,y,2,1) (11)
n=0

From (10) and (11) we have:

From (12), we obtain the following Adomian algorithm:

x6 y6 Z() x6 y() 6
uo(x,y,z,t):(a+a+a+a t= 3+a+ 6'+a t+(a-=3)t
4

w th A4
”nﬂ(x,y,z,t)}a(%ﬂ—j [ A CEER)
* 6! )35

- ;iJ
_a[

g
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(13)

Ms

t h p4
“-8 u, (x i},z S)dsdh
00 oy

3
Il
S

&

Ms

+

NN| — ‘<N| —_

j‘ji—yu G s)dsdh n>0
00 a

Z

N
é;

From (13), we obtain:
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6 6 6
u, (x,y,z,t):[3+2—+y—+z—)t+

6 6 6 3
t
ul(x,y,z,t):—%(3+—x +—y +—Z —

61" 6! 61)3!
2 6 6 6 3
A O L
(% 0:21) = (3+ 6 6l 6!)5!
3 (14)

6 6 6 3
I S S A L
(0. 2:0) = 8[3+6!+6!+6! 7!

2n+1
o
=

6 6 6
(1) [~ .,y .z
, (52,20 = (=14 (2n+1)! [3+6!+6!+61]’"21

Thus

© % y6 56
u(x,y,z,t)—;un (x,y,z,t)—[3+6—!+6—!+ajt+(a—3)t

(t\/;JZrHI (15)
+\/z[3+x_6+y_6+iJ N (_l)nz—
a 6! ).

6! 6! = (2n+1)!

2 Xy ). e
u(x,y,z,t)=(a-3)t+,|—| 3+—+~—+— |[sint,|— 16
(xenz.1)=(a=3) \/a[ 6l 6 6 ) \2 (1o

Remark: In the case of the singular fourth-order parabolic partial differential

equation in two space variables, we have:

6 6
u(x,y,t)=(a—2)t+\/g(2+%+%}int\/% (17)

and we recover the examined case in [5], where a=2,
6 6
X .
u(x, y,t) :[2+—+y—]smt
6! 6!

3.2. Main Result

Proposition
The exact solution of the following singular fourth-order parabolic partial

differential equation in m space variables meN, (m>2):

o2 m 40t
—u(xlétz Xo!) +a2(iz+%}—u(xlé ; 1) =0,a eR’, (18)
Jj=1 xj. . xj

with the following initial conditions
u(xl,--~,xm,0) =0
ou(x,,++,x x»‘; (19)

or “ 6!
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is:
. x 2 . o
u(x,x,,0)=(a—m)t+| m+> == | [=sint, [— (20)
= 6! ) Va 2
Proof

If =0, from (20), we have u(x,,--,x,,0)=0.
From (20), we get:

m x°
W:(a—m)+{m+zx—ﬂjcost\/% (21)

8u(x1,---,xm,0)

6
m X
and if = 0, we have: a—=a+z/7—’

t .

6!

o? S X Lt m_ x®
Fulnnt) faf o5, Jo 22)
ot 27 Foel 2
64 3"'5 ’t 2 'xz
Sl oxt) \ﬁ_fsmt o 23)
ox; a 2! 2
4\ A4 2 4 6
X X x; X!
Lz+—’ a—tf:\/z—’ L2+_f sint‘{g:l 1+ ,{zsint‘/g (24)
x; 6! )0x; a 2!\ x; ! 2 2! 6! Vo 2
4 4 6
2 1 x/’ o'u o “ xj 2 . (04
ay | —=+—+|—=—|m+ ) = |,|—sint,|— (25)
;[sz. !Jaxj 2( ; !J a N2

From (22) and (25), we obtain:

2y n( 1 x}\o'u
¥+(ZZ —2+—j =0 (26)

. ! 4
Al x;  6!)ox;

4. Conclusion

Through this example, we showed again the usefulness of the Adomian decom-
position method, in the search of an approximate solution of a linear or nonli-

near equation; and this method gives us the exact solution.
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