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Abstract

Let us define A=H, :(al.j) to be nxn r-Hankel matrix. The entries of

or L =F

matrix A are F,=F, e

! iejoa where F and L, denote the
usual Fibonacci and Lucas numbers, respectively. Then, we obtained upper
and lower bounds for the spectral norm of matrix A. We compared our
bounds with exact value of matrix A’s spectral norm. These kinds of matrices
have connections with signal and image processing, time series analysis and

many other problems.
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1. Introduction

“Special matrices” is a widely studied subject in the research area of matrix anal-
ysis. Especially, special matrices whose entries are well known number sequences
have become a very interesting research subject in recent years and many au-
thors have obtained some good results in this area. Some researches denoted the
norms of the special matrices involving famous number sequences. The authors
found lower bounds, upper bounds and exact values for the spectral norms of
these matrices.

Our aim in this study is to obtain some norm bounds more closure than those
in literature to the exact value of matrix A’s spectral norm. Lots of articles which
concern estimates for spectral norms of special matrices have been written so

far.
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Solak has studied the norms of circulant matrices with fibonacci and lucas
numbers in [1], Tirkmen and Gokbas have made a similar study by using the
r-circulant matrix with pell and pell-lucas numbers in [2], Shen and Cen have
made a similar study by using the same special matrix with k-fibonacci and
k-lucas numbers in [3], Akbulak and Bozkurt found lower and upper bounds for
the spectral norms of toeplitz matrices with classical fibonacci and lucas num-
bers entries in [4], Shen gave upper and lower bounds for the spectral norms of
toeplitz matrices with k-fibonacci and k-lucas numbers entries in [5], Akbulak
and Bozkurt have made a similar study by using the hankel matrix with fibonac-
ci and lucas numbers in [6], Gokbas and Tirkmen gave upper and lower bounds
for the spectral norms of r-toeplitz matrices involving fibonacci and lucas num-
bers in [7], Bozkurt and Tam obtained determinants and inverse of circulant
matrices with jacobsthal and jacobsthal-lucas numbers in [8].

The Fibonacci and Lucas sequences F, and L, are defined by the recur-
rence relations (Table 1)

Fy,=0, =1, F,=F_+F,, forn>2
L,=2, L =1L =L_+L,, forn>2

The following sum formulas the Fibonacci and Lucas numbers are well known
[9]:
=12
i = BF,

n-1

n=1 ;2
T L=LL -2

n"~n-1

F,F,, —F}+1, if nis odd

n szZ ntntl T
Zk:l k {nFnF

ntl T

F?,  otherwise

S nL L —L -1, if nisodd
L L — F? +4, otherwise

nn+l

The Euclidean norm of the matrix A is defined as

12
I, (27 e

The singular values of the matrix A is

0, =44 4)

i

where /, is an eigenvalues of matrix 4'4 and A" is conjugate transpose of
the matrix A. The square roots of the maximum eigenvalues of A4 are called

the spectral norm of 4 and are induced by |4, .

Table 1. The Fibonacci and Lucas sequence have been given.

n 0 1 2 3 4 5 6 7 8 9 10 11
F, 0 1 1 2 3 5 8 13 21 34 55 89

Q, 2 1 3 4 7 11 18 29 47 76 123 199
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The following imequality holds,

<[l4l, <[4l

1
T,
n
Define the maximum row length norm 7 and the maximum column length

norm ¢, ofany matrix A by

r(A4) max,[Z | U| and ¢ ( )=mjax ’Zi|aij|2

respectively. Let A, Band Cbe mxn matrices. If 4=BoC then
4], <7 (B)a(€)
for the matrices 4= ( U) and B= (by) the Hadamard Product of these
matrices is defined as 4o B = (aijb,.j )mxn [10].
Let us give some lemmas which we will use in our result.

Lemma 1.1: Be a Hankel matrix whose entries determined by a, =F,,,

where F, stands for nth Fibonacci numbers [6].

L =3F} —2F, +6F'-2+2[-1]"
- w222y,

||A||2 < \/(FVZn ZF‘ZVI 3 F F + F'22n 2)(F'2n72F'2n73 _F n 2 +1)

Lemma 1.2: Be a Hankel matrix whose entries determined by a, =F,,,

where F, stands for nth Fibonacci numbers [11].

-1+ 2F  +4F’ -3
2n1 \/2111 n-1 n ,ifnisodd

|41, =

-1+ -2F,_ +4F +1
Fos \/ o , otherwise

Lemma 1.3: Be a Hankel matrix whose entries determined by a, =L,

i+j-2
where L  stands for nth Lucas numbers [6].
L, =20, +1+5[1-(-1)"]
<||4
J n 4,
||A||2 < \/(LG ILZn 2 _Lnfan72 Zn 2 +1)( 2n-1 2n 2 _LnflLth)
Lemma 1.4: Be a Hankel matrix whose entries determined by a, =L,

where L, stands for nth Lucas numbers [11].

2
Ly, +1+ \/S[Lz” +5L2" — 5) +4
5 , if nisodd
], - :
L L, -
LG_] _,’_1_,’_\/5( 2n-2 + 2n Sj
5 .
5 s otherwise
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2. Result

In this section, we define an nxn r~-Hankel matrix 4A=H = (a,.j) whose en-
tries are a,=F, , or a;,=L,, , where F, and L, denote the usual Fi-
bonacci and Lucas numbers, respectively. We obtain some inequalities related to
A=H, =(a;).

Definition 2.5: A matrix H, = (h,.j) eM,, (E) is called a r~-Hankel matrix if
it is of the form

H. =

i

rhy, 5, i+ j<n
h

i jas LH >0
Obviously, the ~~Hankel matrix A is determined by parameter r and its first
thus we denote H =H, (hy,h,--,h,_ ). For r =1,
the matrix His called a Hankel matrix.

Theorem 2.6: Let A=H, = (a,.j) be a Hankel matrix satisfying a, =F, ,,
where re (E) .

P‘Zn lF'2n 2 F’Zn 2 3F;171F;172 _2F +FF;1 l+|:1 ( l)n:|
) |r|=1 <4

row elements /A,

’nl’

2
n

L, < (1 (=) 1) (Bo s~ o )

P‘2n71P'2n72 +F; 2n 2 3F n 2 2F;1272 +FnF;1—l +|:1_(_1)n:|
2 i<t | - <,

"A” <\/ 2n 1 2n 2 F;levan)

where ||||2 is the spectral norm and F, denotes the nth Fibonacci number.

Proof. The matrix A is of the form

y rE F;
FH Fn anfz

Then,

2n-2
k=n-1

lalfy = Xl (k1) 24 205 (2 =1 k) B

Hence, when |+{>1 we obtain

lall, = Z e+ ) B+ 25 (2n=1-k) F
>(2n-1)Y IR =Sk —(2n-1) YRR+ 2Y K+ R
> By By + By =3F, 1 Fyy =26 + F 4 1=(<1)']

2n-1

||A|| > \/F‘anF‘an + F‘Zznfz _3F;,,1F;172 —2E1272 + FLIP;F[ +|:1 _(_l)n:|
t .
n

On the other hand, let the matrices B and C be nxn matrices satisfying
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A=BoC
r F F,
B= : and C=
1.1 E., F - B,
Since
B)=mflx\/z,-|b,-,-|2 =\/Zj:) b =4 r(n-1)+1
and
} 2 n-1 2n2
CI(C)ZI'I’I?X Zi|cij :\/Zizo znl \/ 2n-1 2)12 n F;1—2>
we have

4l <[ (=) #1) (B o~ )

when |r| <1 we also obtain

4= [ X (ke F2+Zi"nzl( ~1-K)F; |

> | n =) X B -3 KR —(n =) YR+ 2k 4 YR |

| | [F‘Zn va2n 2 +F‘22n 2 3F;1 17 n-2 2F‘r1272 +F‘nF;lfl +|:1_(_1)n:|:|

2n IF‘Zn—Z + F‘ZZn—Z 3F;1—1F 2F +F F;z 1 + |:1 ( 1)"]
J4, > - -

On the other hand, let the matrices B and C be nxn matrices satisfying

A=BoC.
ror 1 Fo K w1
B= and C= . .
11 1 F., F, B
Since
2 n 2
=max |3 b, =X b, [ =
and
2 n— n-.
Cl (C) = m]aX w Zi |Cij = \/Zi:(; ,'z:nj F;'Z = \/F‘anlFVZthZ - F;1—1F;1—2 s
we have

"A” <\/ anilona = F L F 2)~

Thus, the proof is concluded.
Theorem 2.7: Let A=H, = (a,.j) be a Hankel matrix satisfying a, =L, ,,
where re ([:) .
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\/L2"1L2n2 “2Lili Loy =2 1 if nis odd
D |21, |4, > !
\/L2n—lL2n—2 —2L,.,L,,+ Lin—Z _ 2Li_2 +6 otherwise
n
"A"2 < \/(|r|2 (n - 1) + 1)(L2n—1L2l172 - Ln*an*Z)
|r|\/L2nlL2n2 ~ 2Ll Ly =2 1 if nis odd
2) rl<t, [], > -

|r| \/LanLZnQ — 2L,171Ln72 + Lin—2 _ 2Li72 +6
n

, otherwise

||A||2 < \/n (LZn—lLZn—z - Ln—an—Z )

where L, isthespectral norm and L, denotes the nth Lucas number.
Proof. The matrix A is of the form

rky ko F
A rFi n
EH Eq o anfz

Then,

JAlL = Yol (1) 22+ 2 (2n=1-k) L.
Hence, when |r|>1 we obtain

A=Y )L+ (2n-1-k) L
2(2n-1)Y 0 =30 kG - (2n-1) YL 23 kG + YL
N {LML“2 —2L, L, ,+I%, , =212, +1, if nis odd
L, L, ,-2L, L ,+L., ,-2L ,+6, otherwise

\/L2nlL2n2 - 2L}'hlLth + Linfz _ ZLi*Z +1 , if nis odd

4], = .

\/L2nlL2n2 — 2Ln71 Ln72 + L§n72 — 2Li*2 +6 s otherwise

n

On the other hand, let the matrices B and C be nxn matrices satisfying
A=B-C.

ror 1 Ly, 1L L,

r 1 L .
B= : : and C=

1 1 1 Ln—l Ln L2n—2

Since
2 n-1 2 2
n(B)=max |3 |, =Sl =lf (n-1) 41
and
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€)=max |3 e[ =y ile.f

we have

2n-2
\/Z i=n—1 l L2n 1L2n 2 LnfanfQ >

4], < \/(|r|2 (n=1)+1)(Lyyilays =Lyl
when |r|<1 we also obtain
lal} =[S (k) 1+ 20 (2n=1-k) I |
> [(2n-) oL -2 kG (20 =) T 42Xk + Y L |

||2 L, L, ,-2L L ,+L ,-2L ,+1, if nisodd

n—1

LG Lo, —2L, L, +L§,, ,—2L i,z +6, otherwise

-2L, L, ,+L, ,-2L ,+1 .. .
|r| Ly, Ly, s n-1 2n-2 n2__ if nisodd
n
4], >
2 2
LyiLyyy =2L, L, + Ly, —2L, +6, otherwise
n

On the other hand, let the matrices B and C be nxn matrices satisfying

A=BoC.

ror 1 L, 1L L,

r 1 L L

B= .| and C= . .
1 1 : 1 Ln—l Ln L2n—2
Since
2 n-1
= max 2 fnl =] =

and

n-1 2n-2
maX Z | 1] _\/Z m \/Z, —n—1 l L2n 1L2n 2 _Ln—an—Z”

we have "A" <\/ oniLon 2 _Ln—an—Z)'
Thus, the proof is concluded.

3. Numerical Examples

Example 3.8: Let A=Hr(l4}),E,~--,F

n—1

) be a ~-Hankel matrix where re (E)
It can easily be seen that the values obtained in theorem 2.6. are more closure
than those obtained in lemma 1.1. to exact values in from Table 2.

Example 3.9: Let 4=H, (L, L, L, ) be a r-Hankel matrix where
re (E) It can easily be seen that the values obtained in theorem 2.7. are more

closure than those obtained in lemma 1.3. to exact values in from Table 3.

Table 2. Numerical results of a,=F, ,,r=1.

i+j-22

n Lemma 1.1. Theorem 2.6. Lemma 1.2. (exact value)
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Continued
2 J4 J4 1+2\B
3 J84 J 4+ ;/ﬁ
5 189744 530 @
6 V9057280 V29280 @
Table 3. Numerical results of a, =L, ,,r=1.
n Lemma 1.3. Theorem 2.7. Lemma 1.4. (exact value)
2 J20 V20 5 +2\/§
3 Ji184 J222 12 +2\/§
5 V4708068 7720 @
6 226236800 (136400 @

4. Conclusion

In this paper, we firstly define the r~Hankel matrix with entries Fibonacci and
Lucas numbers. Then we introduce the Euclidean norm equality and the spectral
norm inequalities of these matrices. Furthermore, we compared our finding with
the exact value of matrix A’s spectral norm. In the future we shall further devel-
op some kinds of r~Hankel matrix such as right r~-Hankel, left ~Hankel and
geometric r~-Hankel. Also we will observe upper and lower bounds for the spec-

tral norm of these matrices involving famous number sequences.
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